1
|
Vodnjov N, Cerar A, Maver A, Peterlin B, Writzl K. TTN:c.12478del in proximal I-band of titin represents a common molecular cause of dilated cardiomyopathy in Slovenian patients. Orphanet J Rare Dis 2025; 20:92. [PMID: 40022161 PMCID: PMC11871621 DOI: 10.1186/s13023-025-03613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Titin truncating variants (TTNtv-s) are the most common genetic cause of dilated cardiomyopathy (DCM). Only rare TTNtv-s in the constitutively expressed exons of the A-band of the protein titin are associated with DCM according to the guidelines, however, studies in large cohorts of patients with DCM suggest that the region where TTNtv-s are associated with DCM is wider, extending at least into the I-band. The aim of this study was to describe the molecular pathology of TTNtv-s in Slovenian patients with cardiomyopathy and to clinically characterise the most recurrent TTNtv. RESULTS We collected all TTNtv-s identified in patients with cardiomyopathy using next-generation sequencing genetic testing between 2010 and July 2024, resulting in 42 unique variants identified in 54 patients. The TTN:c.12478del variant, affecting not the A-band but the proximal I-band, specifically the cardiac-specific N2Bus region, was found to be the most recurrent variant, present in seven (11.6%) probands with DCM. Genetic characterisation revealed a probable founder origin of the variant. Clinical characterisation of these probands revealed a phenotype consistent with DCM and severely reduced left ventricular ejection fraction in all probands. Three (43%) of the probands had atrial fibrillation and/or non-sustained ventricular tachycardia. Based on literature reports and evidence supporting the pathogenicity of the TTN:c.12478del variant affecting the proximal I-band, we classified all rare TTNtv-s in constitutively expressed exons of the I-band as (likely) pathogenic. Therefore, 33 (78.6%) TTNtv-s were classified as (likely) pathogenic (13 in the I-band, affecting 19 probands and 20 in the A-band affecting 25 probands), meaning that TTNtv-s were identified in 44 genotype-positive Slovenian probands with DCM, explaining 73.3% of the molecular pathology of DCM. CONCLUSION We report an almost threefold higher diagnostic yield of TTNtv-s in probands with DCM compared to previously reported findings in cohorts of patients with DCM from other populations. We also highlight the need for screening for rare TTNtv-s in the constitutively expressed exons of the I-band and for TTN:c.12478del in patients with DCM in this geographical region.
Collapse
Affiliation(s)
- Nina Vodnjov
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Cerar
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- European Reference Network for Rare, Low Prevalence, Or Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Sun Y, Liu X, Huang W, Le S, Yan J. Structural domain in the Titin N2B-us region binds to FHL2 in a force-activation dependent manner. Nat Commun 2024; 15:4496. [PMID: 38802383 PMCID: PMC11530556 DOI: 10.1038/s41467-024-48828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Titin N2B unique sequence (N2B-us) is a 572 amino acid sequence that acts as an elastic spring to regulate muscle passive elasticity. It is thought to lack stable tertiary structures and is a force-bearing region that is regulated by mechanical stretching. In this study, the conformation of N2B-us and its interaction with four-and-a-half LIM domain protein 2 (FHL2) are investigated using AlphaFold2 predictions and single-molecule experimental validation. Surprisingly, a stable alpha/beta structural domain is predicted and confirmed in N2B-us that can be mechanically unfolded at forces of a few piconewtons. Additionally, more than twenty FHL2 LIM domain binding sites are predicted to spread throughout N2B-us. Single-molecule manipulation experiments reveals the force-dependent binding of FHL2 to the N2B-us structural domain. These findings provide insights into the mechano-sensing functions of N2B-us and its interactions with FHL2.
Collapse
Affiliation(s)
- Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Xuyao Liu
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Wenmao Huang
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
- Centre for Biological Imaging Sciences, National University of Singapore, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.
| |
Collapse
|
3
|
Methawasin M, Farman GP, Granzier-Nakajima S, Strom J, Kiss B, Smith JE, Granzier H. Shortening the thick filament by partial deletion of titin's C-zone alters cardiac function by reducing the operating sarcomere length range. J Mol Cell Cardiol 2022; 165:103-114. [PMID: 35031281 PMCID: PMC8940690 DOI: 10.1016/j.yjmcc.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Titin's C-zone is an inextensible segment in titin, comprised of 11 super-repeats and located in the cMyBP-C-containing region of the thick filament. Previously we showed that deletion of titin's super-repeats C1 and C2 (TtnΔC1-2 model) results in shorter thick filaments and contractile dysfunction of the left ventricular (LV) chamber but that unexpectedly LV diastolic stiffness is normal. Here we studied the contraction-relaxation kinetics from the time-varying elastance of the LV and intact cardiomyocyte, cellular work loops of intact cardiomyocytes, Ca2+ transients, cross-bridge kinetics, and myofilament Ca2+ sensitivity. Intact cardiomyocytes of TtnΔC1-2 mice exhibit systolic dysfunction and impaired relaxation. The time-varying elastance at both LV and single-cell levels showed that activation kinetics are normal in TtnΔC1-2 mice, but that relaxation is slower. The slowed relaxation is, in part, attributable to an increased myofilament Ca2+ sensitivity and slower early Ca2+ reuptake. Cross-bridge dynamics showed that cross-bridge kinetics are normal but that the number of force-generating cross-bridges is reduced. In vivo sarcomere length (SL) measurements revealed that in TtnΔC1-2 mice the operating SL range of the LV is shifted towards shorter lengths. This normalizes the apparent cell and LV diastolic stiffness but further reduces systolic force as systole occurs further down on the ascending limb of the force-SL relation. We propose that the reduced working SLs reflect titin's role in regulating diastolic stiffness by altering the number of sarcomeres in series. Overall, our study reveals that thick filament length regulation by titin's C-zone is critical for normal cardiac function.
Collapse
Affiliation(s)
- Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America.
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Shawtaroh Granzier-Nakajima
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Balazs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America.
| |
Collapse
|
4
|
Schick BM, Dlugas H, Czeiszperger TL, Matus AR, Bukowski MJ, Chung CS. Reduced preload increases Mechanical Control (strain-rate dependence) of Relaxation by modifying myosin kinetics. Arch Biochem Biophys 2021; 707:108909. [PMID: 34015323 PMCID: PMC8635462 DOI: 10.1016/j.abb.2021.108909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022]
Abstract
Rapid myocardial relaxation is essential in maintaining cardiac output, and impaired relaxation is an early indicator of diastolic dysfunction. While the biochemical modifiers of relaxation are well known to include calcium handling, thin filament activation, and myosin kinetics, biophysical and biomechanical modifiers can also alter relaxation. We have previously shown that the relaxation rate is increased by an increasing strain rate, not a reduction in afterload. The slope of the relaxation rate to strain rate relationship defines Mechanical Control of Relaxation (MCR). To investigate MCR further, we performed in vitro experiments and computational modeling of preload-adjustment using intact rat cardiac trabeculae. Trabeculae studies are often performed using isometric (fixed-end) muscles at optimal length (Lo, length producing maximal developed force). We determined that reducing muscle length from Lo increased MCR by 20%, meaning that reducing preload could substantially increase the sensitivity of the relaxation rate to the strain rate. We subsequently used computational modeling to predict mechanisms that might underlie this preload-dependence. Computational modeling was not able to fully replicate experimental data, but suggested that thin-filament properties are not sufficient to explain preload-dependence of MCR because the model required the thin-filament to become more activated at reduced preloads. The models suggested that myosin kinetics may underlie the increase in MCR at reduced preload, an effect that can be enhanced by force-dependence. Relaxation can be modified and enhanced by reduced preload. Computational modeling implicates myosin-based targets for treatment of diastolic dysfunction, but further model refinements are needed to fully replicate experimental data.
Collapse
Affiliation(s)
- Brianna M Schick
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Hunter Dlugas
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | | | | | | | - Charles S Chung
- Department of Physiology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
5
|
Stronczek C, Lange S, Bullard B, Wolniak S, Börgeson E, Mayans O, Fleming JR. The N2A region of titin has a unique structural configuration. J Gen Physiol 2021; 153:211969. [PMID: 33836065 PMCID: PMC8042602 DOI: 10.1085/jgp.202012766] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
The N2A segment of titin is a main signaling hub in the sarcomeric I-band that recruits various signaling factors and processing enzymes. It has also been proposed to play a role in force production through its Ca2+-regulated association with actin. However, the molecular basis by which N2A performs these functions selectively within the repetitive and extensive titin chain remains poorly understood. Here, we analyze the structure of N2A components and their association with F-actin. Specifically, we characterized the structure of its Ig domains by elucidating the atomic structure of the I81-I83 tandem using x-ray crystallography and computing a homology model for I80. Structural data revealed these domains to present heterogeneous and divergent Ig folds, where I81 and I83 have unique loop structures. Notably, the I81-I83 tandem has a distinct rotational chain arrangement that confers it a unique multi-domain topography. However, we could not identify specific Ca2+-binding sites in these Ig domains, nor evidence of the association of titin N2A components with F-actin in transfected C2C12 myoblasts or C2C12-derived myotubes. In addition, F-actin cosedimentation assays failed to reveal binding to N2A. We conclude that N2A has a unique architecture that predictably supports its selective recruitment of binding partners in signaling, but that its mechanical role through interaction with F-actin awaits validation.
Collapse
Affiliation(s)
- Chiara Stronczek
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California, San Diego, San Diego, CA.,Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Emma Börgeson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Olga Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
6
|
Abstract
Muscle has conventionally been viewed as a motor that converts chemical to kinetic energy in series with a passive spring, but new insights emerge when muscle is viewed as a composite material whose elastic elements are tuned by activation. New evidence demonstrates that calcium-dependent binding of N2A titin to actin increases titin stiffness in active skeletal muscles, which explains many long-standing enigmas of muscle physiology.
Collapse
Affiliation(s)
- Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
7
|
Kellermayer D, Smith JE, Granzier H. Titin mutations and muscle disease. Pflugers Arch 2019; 471:673-682. [PMID: 30919088 DOI: 10.1007/s00424-019-02272-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
The introduction of next-generation sequencing technology has revealed that mutations in the gene that encodes titin (TTN) are linked to multiple skeletal and cardiac myopathies. The most prominent of these myopathies is dilated cardiomyopathy (DCM). Over 60 genes are linked to the etiology of DCM, but by far, the leading cause of DCM is mutations in TTN with truncating variants in TTN (TTNtvs) associated with familial DCM in ∼ 20% of the cases. Titin is a large (3-4 MDa) and abundant protein that forms the third myofilament type of striated muscle where it spans half the sarcomere, from the Z-disk to the M-line. The underlying mechanisms by which titin mutations induce disease are poorly understood and targeted therapies are not available. Here, we review what is known about TTN mutations in muscle disease, with a major focus on DCM. We highlight that exon skipping might provide a possible therapeutic avenue to address diseases that arise from TTNtvs.
Collapse
Affiliation(s)
- Dalma Kellermayer
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA. .,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
8
|
Ait Mou Y, Lacampagne A, Irving T, Scheuermann V, Blot S, Ghaleh B, de Tombe PP, Cazorla O. Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy. J Mol Cell Cardiol 2017; 114:345-353. [PMID: 29275006 DOI: 10.1016/j.yjmcc.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
Abstract
AIM Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. OBJECTIVE The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. METHODS AND RESULTS We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI) and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9μm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. CONCLUSIONS We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.
Collapse
Affiliation(s)
- Younss Ait Mou
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar; Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alain Lacampagne
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Physiologie et Médecine Expérimentale du cœur et des muscles - PHYMEDEXP, CHU Arnaud de Villeneuve, 34295 Montpellier cedex 05, France
| | - Thomas Irving
- Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, IL 60153, USA; Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Valérie Scheuermann
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Physiologie et Médecine Expérimentale du cœur et des muscles - PHYMEDEXP, CHU Arnaud de Villeneuve, 34295 Montpellier cedex 05, France
| | - Stéphane Blot
- Inserm U955-E10, IMRB, Université Paris Est, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort 94700, France
| | | | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, IL 60153, USA
| | - Olivier Cazorla
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Physiologie et Médecine Expérimentale du cœur et des muscles - PHYMEDEXP, CHU Arnaud de Villeneuve, 34295 Montpellier cedex 05, France..
| |
Collapse
|
9
|
Myosin MgADP Release Rate Decreases as Sarcomere Length Increases in Skinned Rat Soleus Muscle Fibers. Biophys J 2017; 111:2011-2023. [PMID: 27806282 DOI: 10.1016/j.bpj.2016.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022] Open
Abstract
Actin-myosin cross-bridges use chemical energy from MgATP hydrolysis to generate force and shortening in striated muscle. Previous studies show that increases in sarcomere length can reduce thick-to-thin filament spacing in skinned muscle fibers, thereby increasing force production at longer sarcomere lengths. However, it is unclear how changes in sarcomere length and lattice spacing affect cross-bridge kinetics at fundamental steps of the cross-bridge cycle, such as the MgADP release rate. We hypothesize that decreased lattice spacing, achieved through increased sarcomere length or osmotic compression of the fiber via dextran T-500, could slow MgADP release rate and increase cross-bridge attachment duration. To test this, we measured cross-bridge cycling and MgADP release rates in skinned soleus fibers using stochastic length-perturbation analysis at 2.5 and 2.0 μm sarcomere lengths as pCa and [MgATP] varied. In the absence of dextran, the force-pCa relationship showed greater Ca2+ sensitivity for 2.5 vs. 2.0 μm sarcomere length fibers (pCa50 = 5.68 ± 0.01 vs. 5.60 ± 0.01). When fibers were compressed with 4% dextran, the length-dependent increase in Ca2+ sensitivity of force was attenuated, though the Ca2+ sensitivity of the force-pCa relationship at both sarcomere lengths was greater with osmotic compression via 4% dextran compared to no osmotic compression. Without dextran, the cross-bridge detachment rate slowed by ∼15% as sarcomere length increased, due to a slower MgADP release rate (11.2 ± 0.5 vs. 13.5 ± 0.7 s-1). In the presence of dextran, cross-bridge detachment was ∼20% slower at 2.5 vs. 2.0 μm sarcomere length due to a slower MgADP release rate (10.1 ± 0.6 vs. 12.9 ± 0.5 s-1). However, osmotic compression of fibers at either 2.5 or 2.0 μm sarcomere length produced only slight (and statistically insignificant) slowing in the rate of MgADP release. These data suggest that skeletal muscle exhibits sarcomere-length-dependent changes in cross-bridge kinetics and MgADP release that are separate from, or complementary to, changes in lattice spacing.
Collapse
|
10
|
Zhang X, Kampourakis T, Yan Z, Sevrieva I, Irving M, Sun YB. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. eLife 2017; 6. [PMID: 28229860 PMCID: PMC5365314 DOI: 10.7554/elife.24081] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 12/02/2022] Open
Abstract
The Frank-Starling relation is a fundamental auto-regulatory property of the heart that ensures the volume of blood ejected in each heartbeat is matched to the extent of venous filling. At the cellular level, heart muscle cells generate higher force when stretched, but despite intense efforts the underlying molecular mechanism remains unknown. We applied a fluorescence-based method, which reports structural changes separately in the thick and thin filaments of rat cardiac muscle, to elucidate that mechanism. The distinct structural changes of troponin C in the thin filaments and myosin regulatory light chain in the thick filaments allowed us to identify two aspects of the Frank-Starling relation. Our results show that the enhanced force observed when heart muscle cells are maximally activated by calcium is due to a change in thick filament structure, but the increase in calcium sensitivity at lower calcium levels is due to a change in thin filament structure. DOI:http://dx.doi.org/10.7554/eLife.24081.001 The heart needs to pump out the same volume of blood that enters it. This is not as simple as it sounds, as changes in heart rate – for example, in response to exercise – alter how hard the heart must pump. When blood flows into the heart it stretches the heart muscle, which consists of units called sarcomeres. Sarcomeres contain two types of protein filament, known as thick filaments and thin filaments. When a heartbeat is triggered by calcium ions flowing into the heart muscle cells, the thick filaments slide over the thin filaments. This causes the heart muscle cell to contract. The Frank–Starling mechanism helps to regulate the contraction of the heart. This mechanism has two aspects. Firstly, as the sarcomere lengthens, its protein filaments are able to contract with more force for a given high level of calcium ions. Secondly, the lengthening of the sarcomere makes the filaments more sensitive to calcium ions, which again causes the heart to contract more forcefully. However, the molecular mechanisms that underlie these effects were not clear. Zhang et al. have now studied rat heart muscle cells using a new fluorescence-based method that can detect structural changes in the thick and thin filaments. The results show that the increased force that is generated when sarcomeres are stretched can be accounted for by changes in the structure of the thick filament. In contrast, the increase in calcium sensitivity that occurs as the sarcomere lengthens is largely due to structural alterations in the thin filament. These two processes can be controlled independently, but work together in the Frank–Starling mechanism. Now that we better understand the molecular basis of the Frank–Starling mechanism, further work could investigate new strategies for designing and testing treatments for heart disease. DOI:http://dx.doi.org/10.7554/eLife.24081.002
Collapse
Affiliation(s)
- Xuemeng Zhang
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ivanka Sevrieva
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Mechano-chemical Interactions in Cardiac Sarcomere Contraction: A Computational Modeling Study. PLoS Comput Biol 2016; 12:e1005126. [PMID: 27716775 PMCID: PMC5055322 DOI: 10.1371/journal.pcbi.1005126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
We developed a model of cardiac sarcomere contraction to study the calcium-tension relationship in cardiac muscle. Calcium mediates cardiac contraction through its interactions with troponin (Tn) and subsequently tropomyosin molecules. Experimental studies have shown that a slight increase in intracellular calcium concentration leads to a rapid increase in sarcomeric tension. Though it is widely accepted that the rapid increase is not possible without the concept of cooperativity, the mechanism is debated. We use the hypothesis that there exists a base level of cooperativity intrinsic to the thin filament that is boosted by mechanical tension, i.e. a high level of mechanical tension in the thin filament impedes the unbinding of calcium from Tn. To test these hypotheses, we developed a computational model in which a set of three parameters and inputs of calcium concentration and sarcomere length result in output tension. Tension as simulated appeared in good agreement with experimentally measured tension. Our results support the hypothesis that high tension in the thin filament impedes Tn deactivation by increasing the energy required to detach calcium from the Tn. Given this hypothesis, the model predicted that the areas with highest tension, i.e. closest to the Z-disk end of the single overlap region, show the largest concentration of active Tn's.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Critical care physicians frequently try to manipulate the preload of the heart to optimize cardiac function. There is, however, still debate as to what actually indicates the preload of the heart. RECENT FINDINGS Although central venous pressure (CVP) is commonly used to estimate cardiac filling, it is often argued that it is a poor indicator of preload. This is likely true if one does not understand what preload is, principles of measurement with fluid filled systems, the effect of respiratory efforts on the measurement, the physiological determinants of CVP, and finally which point on the tracing to use as the estimate of the preload of the heart. When these are considered, however, the value of the CVP at the base of the 'c' wave gives a good indication of cardiac preload and a value which can be followed. SUMMARY When properly measured CVP can be a useful guide to the filling status of the right ventricle. CVP is especially useful when followed over time and combined with a measurement of cardiac output. Importantly, preload is only one of the factors determining cardiac output and it must be integrated into a comprehensive approach that takes into account changes in cardiac function and the return of blood to the heart. Finally, the specific value of preload does not indicate volume responsiveness.
Collapse
|
13
|
Mamidi R, Gresham KS, Verma S, Stelzer JE. Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation. Front Physiol 2016; 7:38. [PMID: 26913007 PMCID: PMC4753332 DOI: 10.3389/fphys.2016.00038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is an important regulator of contractile function, however, its contributions to length-dependent changes in cross-bridge (XB) kinetics is unknown. Therefore, we performed mechanical experiments to quantify contractile function in detergent-skinned ventricular preparations isolated from wild-type (WT) hearts, and hearts expressing non-phosphorylatable cMyBP-C [Ser to Ala substitutions at residues Ser273, Ser282, and Ser302 (i.e., 3SA)], at sarcomere length (SL) 1.9 μm or 2.1μm, prior and following protein kinase A (PKA) treatment. Steady-state force generation measurements revealed a blunting in the length-dependent increase in myofilament Ca(2+)-sensitivity of force generation (pCa50) following an increase in SL in 3SA skinned myocardium compared to WT skinned myocardium. Dynamic XB behavior was assessed at submaximal Ca(2+)-activations by imposing an acute rapid stretch of 2% of initial muscle length, and measuring both the magnitudes and rates of resultant phases of force decay due to strain-induced XB detachment and delayed force rise due to recruitment of additional XBs with increased SL (i.e., stretch activation). The magnitude (P2) and rate of XB detachment (k rel) following stretch was significantly reduced in 3SA skinned myocardium compared to WT skinned myocardium at short and long SL, and prior to and following PKA treatment. Furthermore, the length-dependent acceleration of k rel due to decreased SL that was observed in WT skinned myocardium was abolished in 3SA skinned myocardium. PKA treatment accelerated the rate of XB recruitment (k df) following stretch at both SL's in WT but not in 3SA skinned myocardium. The amplitude of the enhancement in force generation above initial pre-stretch steady-state levels (P3) was not different between WT and 3SA skinned myocardium at any condition measured. However, the magnitude of the entire delayed force phase which can dip below initial pre-stretch steady-state levels (Pdf) was significantly lower in 3SA skinned myocardium under all conditions, in part due to a reduced magnitude of XB detachment (P2) in 3SA skinned myocardium compared to WT skinned myocardium. These findings demonstrate that cMyBP-C phospho-ablation regulates SL- and PKA-mediated effects on XB kinetics in the myocardium, which would be expected to contribute to the regulation of the Frank-Starling mechanism.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Sujeet Verma
- Department of Horticultural Science, Institute of Food and Agricultural Sciences Gulf Coast Research and Education Center, University of Florida Wimauma, FL, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
14
|
Pandit S, Woranush W, Wattanapermpool J, Bupha-Intr T. Significant role of female sex hormones in cardiac myofilament activation in angiotensin II-mediated hypertensive rats. J Physiol Sci 2014; 64:269-77. [PMID: 24777837 PMCID: PMC10717796 DOI: 10.1007/s12576-014-0316-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Ovariectomy leads to suppression of cardiac myofilament activation in healthy rats implicating the physiological essence of female sex hormones on myocardial contraction. However, the possible function of these hormones during pathologically induced myofilament adaptation is not known. In this study, sham-operated and ovariectomized female rats were chronically exposed to angiotensin II (AII), which has been shown to cause myocardial adaptation. In the shams, AII induced cardiac adaptation by increasing myofilament Ca(2+) sensitivity. Interestingly, this hypersensitivity was further enhanced in AII-infused ovariectomized rats. Ovariectomy increased the phosphorylation levels of cardiac tropomyosin, which may underlie the mechanism of hypersensitivity. On the other hand, AII infusion did not alter maximal tension that was suppressed after ovariectomy. This finding coincided with a comparable increase in β-isoform of myosin heavy chains in both ovariectomized groups. Together, it is conceivable that female sex hormones serve as predominant factors that regulate cardiac myofilament activation. Furthermore, they may prevent stress-induced myofilament maladaptation.
Collapse
Affiliation(s)
- Sulaksana Pandit
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400 Thailand
| | - Warunya Woranush
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400 Thailand
| | | | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400 Thailand
| |
Collapse
|
15
|
Elhamine F, Radke MH, Pfitzer G, Granzier H, Gotthardt M, Stehle R. Deletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics. J Cell Sci 2014; 127:3666-74. [PMID: 24982444 DOI: 10.1242/jcs.141796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiac titin is the main determinant of sarcomere stiffness during diastolic relaxation. To explore whether titin stiffness affects the kinetics of cardiac myofibrillar contraction and relaxation, we used subcellular myofibrils from the left ventricles of homozygous and heterozygous N2B-knockout mice which express truncated cardiac titins lacking the unique elastic N2B region. Compared with myofibrils from wild-type mice, myofibrils from knockout and heterozygous mice exhibit increased passive myofibrillar stiffness. To determine the kinetics of Ca(2+)-induced force development (rate constant kACT), myofibrils from knockout, heterozygous and wild-type mice were stretched to the same sarcomere length (2.3 µm) and rapidly activated with Ca(2+). Additionally, mechanically induced force-redevelopment kinetics (rate constant kTR) were determined by slackening and re-stretching myofibrils during Ca(2+)-mediated activation. Myofibrils from knockout mice exhibited significantly higher kACT, kTR and maximum Ca(2+)-activated tension than myofibrils from wild-type mice. By contrast, the kinetic parameters of biphasic force relaxation induced by rapidly reducing [Ca(2+)] were not significantly different among the three genotypes. These results indicate that increased titin stiffness promotes myocardial contraction by accelerating the formation of force-generating cross-bridges without decelerating relaxation.
Collapse
Affiliation(s)
- Fatiha Elhamine
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str. 39, D-50931 Köln, Germany
| | - Michael H Radke
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str. 39, D-50931 Köln, Germany
| | - Henk Granzier
- Sarver Molecular Cardiovascular Research and Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str. 39, D-50931 Köln, Germany
| |
Collapse
|
16
|
Joumaa V, Herzog W. Calcium sensitivity of residual force enhancement in rabbit skinned fibers. Am J Physiol Cell Physiol 2014; 307:C395-401. [PMID: 24965591 DOI: 10.1152/ajpcell.00052.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isometric force after active stretch of muscles is higher than the purely isometric force at the corresponding length. This property is termed residual force enhancement. Active force in skeletal muscle depends on calcium attachment characteristics to the regulatory proteins. Passive force has been shown to influence calcium attachment characteristics, specifically the sarcomere length dependence of calcium sensitivity. Since one of the mechanisms proposed to explain residual force enhancement is the increase in passive force that results from engagement of titin upon activation and stretch, our aim was to test if calcium sensitivity of residual force enhancement was different from that of its corresponding purely isometric contraction and if such a difference was related to the molecular spring titin. Force-pCa curves were established in rabbit psoas skinned fibers for reference and residual force-enhanced states at a sarcomere length of 3.0 μm 1) in a titin-intact condition, 2) after treatment with trypsin to partially eliminate titin, and 3) after treatment with trypsin and osmotic compression with dextran T-500 to decrease the lattice spacing in the absence of titin. The force-pCa curves of residual force enhancement were shifted to the left compared with their corresponding controls in titin-intact fibers, indicating increased calcium sensitivity. No difference in calcium sensitivity was observed between reference and residual force-enhanced contractions in trypsin-treated and osmotically compressed trypsin-treated fibers. Furthermore, calcium sensitivity after osmotic compression was lower than that observed for residual force enhancement in titin-intact skinned fibers. These results suggest that titin-based passive force regulates the increase in calcium sensitivity of residual force enhancement by a mechanism other than reduction of the myofilament lattice spacing.
Collapse
Affiliation(s)
- V Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - W Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Methawasin M, Hutchinson KR, Lee EJ, Smith JE, Saripalli C, Hidalgo CG, Ottenheijm CAC, Granzier H. Experimentally increasing titin compliance in a novel mouse model attenuates the Frank-Starling mechanism but has a beneficial effect on diastole. Circulation 2014; 129:1924-36. [PMID: 24599837 DOI: 10.1161/circulationaha.113.005610] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Experimentally upregulating compliant titins has been suggested as a therapeutic for lowering pathological diastolic stiffness levels. However, how increasing titin compliance impacts global cardiac function requires in-depth study. We investigate the effect of upregulating compliant titins in a novel mouse model with a genetically altered titin splicing factor; integrative approaches were used from intact cardiomyocyte mechanics to pressure-volume analysis and Doppler echocardiography. METHODS AND RESULTS Compliant titins were upregulated through deletion of the RNA Recognition Motif of the splicing factor RBM20 (Rbm20(ΔRRM)mice). A genome-wide exon expression analysis and a candidate approach revealed that the phenotype is likely to be dominated by greatly increased lengths of titin's spring elements. At both cardiomyocyte and left ventricular chamber levels, diastolic stiffness was reduced in heterozygous (+/-) Rbm20(ΔRRM)mice with a further reduction in homozygous (-/-) mice at only the intact myocyte level. Fibrosis was present in only -/- Rbm20(ΔRRM) hearts. The Frank-Starling Mechanism was reduced in a graded fashion in Rbm20(ΔRRM) mice, at both the cardiomyocyte and left ventricular chamber levels. Exercise tests revealed an increase in exercise capacity in +/- mice. CONCLUSIONS Titin is not only important in diastolic but also in systolic cardiac function. Upregulating compliant titins reduces diastolic chamber stiffness owing to the increased compliance of myocytes, but it depresses end-systolic elastance; under conditions of exercise, the beneficial effects on diastolic function dominate. Therapeutic manipulation of the RBM20-based splicing system might be able to minimize effects on fibrosis and systolic function while improving the diastolic function in patients with heart failure.
Collapse
Affiliation(s)
- Mei Methawasin
- Sarver Molecular Cardiovascular Research Program, Departments of Physiology and Cellular and Molecular Medicine, University of Arizona, Tucson, AZ (M.M., K.R.H., E.-J.L., J.E.S., C.S., C.G.H., C.A.C.O., H.G.); and Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands (C.A.C.O.)
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hanft LM, Biesiadecki BJ, McDonald KS. Length dependence of striated muscle force generation is controlled by phosphorylation of cTnI at serines 23/24. J Physiol 2013; 591:4535-47. [PMID: 23836688 PMCID: PMC3784197 DOI: 10.1113/jphysiol.2013.258400] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/02/2013] [Indexed: 01/24/2023] Open
Abstract
According to the Frank-Starling relationship, greater end-diastolic volume increases ventricular output. The Frank-Starling relationship is based, in part, on the length-tension relationship in cardiac myocytes. Recently, we identified a dichotomy in the steepness of length-tension relationships in mammalian cardiac myocytes that was dependent upon protein kinase A (PKA)-induced myofibrillar phosphorylation. Because PKA has multiple myofibrillar substrates including titin, myosin-binding protein-C and cardiac troponin I (cTnI), we sought to define if phosphorylation of one of these molecules could control length-tension relationships. We focused on cTnI as troponin can be exchanged in permeabilized striated muscle cell preparations, and tested the hypothesis that phosphorylation of cTnI modulates length dependence of force generation. For these experiments, we exchanged unphosphorylated recombinant cTn into either a rat cardiac myocyte preparation or a skinned slow-twitch skeletal muscle fibre. In all cases unphosphorylated cTn yielded a shallow length-tension relationship, which was shifted to a steep relationship after PKA treatment. Furthermore, exchange with cTn having cTnI serines 23/24 mutated to aspartic acids to mimic phosphorylation always shifted a shallow length-tension relationship to a steep relationship. Overall, these results indicate that phosphorylation of cTnI serines 23/24 is a key regulator of length dependence of force generation in striated muscle.
Collapse
Affiliation(s)
- Laurin M Hanft
- K. S. McDonald: Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
19
|
Jin JP. Myofilament and cytoskeleton proteins: Fine machineries of biological movements. Arch Biochem Biophys 2013; 535:1-2. [DOI: 10.1016/j.abb.2013.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|