1
|
Jiang H, Thapa P, Hao Y, Ding N, Alshahrani A, Wei Q. Protein Disulfide Isomerases Function as the Missing Link Between Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1191-1205. [PMID: 36000195 PMCID: PMC9805878 DOI: 10.1089/ars.2022.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
Significance: Diabetes has long been recognized as an independent risk factor for cancer, but there is insufficient mechanistic understanding of biological mediators that bridge two disorders together. Understanding the pathogenic association between diabetes and cancer has become the focus of many studies, and findings are potentially valuable for the development of effective preventive or therapeutic strategies for both disorders. Recent Advances: A summary of literature reveals a possible connection between diabetes and cancer through the family of protein disulfide isomerase (PDI). Historical as well as the most recent findings on the structure, biochemistry, and biology of the PDI family were summarized in this review. Critical Issues: PDIs in general function as redox enzymes and protein chaperones to control the quality of proteins by correcting or otherwise eliminating misfolded proteins in conditions of oxidative stress and endoplasmic reticulum stress, respectively. However, individual members of the PDI family may contribute uniquely to the pathogenesis of diabetes and cancer. Studies of exemplary members such as protein disulfide isomerase-associated (PDIA) 1, PDIA6, and PDIA15 were reviewed to highlight their contributions in the pathogenesis of diabetes and cancer and how they can be potential links bridging the two disorders through the cross talk of signaling pathways. Future Directions: Apparently ubiquitous presence of the PDIs creates difficulties and challenges for scientific community to develop targeted therapeutics for the treatment of diabetes and cancer simultaneously. Understanding molecular contribution of individual PDI in the context of specific disease may provide some insights into the development of mechanism-based target-directed therapeutics. Antioxid. Redox Signal. 37, 1191-1205.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Kumari D, Fisher EA, Brodsky JL. Hsp40s play distinct roles during the initial stages of apolipoprotein B biogenesis. Mol Biol Cell 2021; 33:ar15. [PMID: 34910568 PMCID: PMC9236142 DOI: 10.1091/mbc.e21-09-0436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Apolipoprotein B (ApoB) is the primary component of atherogenic lipoproteins, which transport serum fats and cholesterol. Therefore, elevated levels of circulating ApoB are a primary risk factor for cardiovascular disease. During ApoB biosynthesis in the liver and small intestine under nutrient-rich conditions, ApoB cotranslationally translocates into the endoplasmic reticulum (ER) and is lipidated and ultimately secreted. Under lipid-poor conditions, ApoB is targeted for ER Associated Degradation (ERAD). Although prior work identified select chaperones that regulate ApoB biogenesis, the contributions of cytoplasmic Hsp40s are undefined. To this end, we screened ApoB-expressing yeast and determined that a class A ER-associated Hsp40, Ydj1, associates with and facilitates the ERAD of ApoB. Consistent with these results, a homologous Hsp40, DNAJA1, functioned similarly in rat hepatoma cells. DNAJA1 deficient cells also secreted hyperlipidated lipoproteins, in accordance with attenuated ERAD. In contrast to the role of DNAJA1 during ERAD, DNAJB1-a class B Hsp40-helped stabilize ApoB. Depletion of DNAJA1 and DNAJB1 also led to opposing effects on ApoB ubiquitination. These data represent the first example in which different Hsp40s exhibit disparate effects during regulated protein biogenesis in the ER, and highlight distinct roles that chaperones can play on a single ERAD substrate.
Collapse
Affiliation(s)
- Deepa Kumari
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
3
|
The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway: An Expanding Repertoire of Regulated Substrates. Biomolecules 2021; 11:biom11081185. [PMID: 34439852 PMCID: PMC8393694 DOI: 10.3390/biom11081185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
All proteins are subject to quality control processes during or soon after their synthesis, and these cellular quality control pathways play critical roles in maintaining homeostasis in the cell and in organism health. Protein quality control is particularly vital for those polypeptides that enter the endoplasmic reticulum (ER). Approximately one-quarter to one-third of all proteins synthesized in eukaryotic cells access the ER because they are destined for transport to the extracellular space, because they represent integral membrane proteins, or because they reside within one of the many compartments of the secretory pathway. However, proteins that mature inefficiently are subject to ER-associated degradation (ERAD), a multi-step pathway involving the chaperone-mediated selection, ubiquitination, and extraction (or “retrotranslocation”) of protein substrates from the ER. Ultimately, these substrates are degraded by the cytosolic proteasome. Interestingly, there is an increasing number of native enzymes and metabolite and solute transporters that are also targeted for ERAD. While some of these proteins may transiently misfold, the ERAD pathway also provides a route to rapidly and quantitatively downregulate the levels and thus the activities of a variety of proteins that mature or reside in the ER.
Collapse
|
4
|
Yin H, Gao J, Chen X, Ma B, Yang Z, Tang J, Wang B, Chen T, Wang C, Gao S, Zhang J. A Gallium(III) Complex that Engages Protein Disulfide Isomerase A3 (PDIA3) as an Anticancer Target. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao‐Yan Yin
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Jiu‐Jiao Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Xuemin Chen
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Bin Ma
- Department of Chemistry Jinan University Guangzhou 510632 P. R. China
| | - Zi‐Shu Yang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Juan Tang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Tianfeng Chen
- Department of Chemistry Jinan University Guangzhou 510632 P. R. China
| | - Chu Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
5
|
Yin H, Gao J, Chen X, Ma B, Yang Z, Tang J, Wang B, Chen T, Wang C, Gao S, Zhang J. A Gallium(III) Complex that Engages Protein Disulfide Isomerase A3 (PDIA3) as an Anticancer Target. Angew Chem Int Ed Engl 2020; 59:20147-20153. [DOI: 10.1002/anie.202008432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/23/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hao‐Yan Yin
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Jiu‐Jiao Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Xuemin Chen
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Bin Ma
- Department of Chemistry Jinan University Guangzhou 510632 P. R. China
| | - Zi‐Shu Yang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Juan Tang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Tianfeng Chen
- Department of Chemistry Jinan University Guangzhou 510632 P. R. China
| | - Chu Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
6
|
Tang D, Sandoval W, Lam C, Haley B, Liu P, Xue D, Roy D, Patapoff T, Louie S, Snedecor B, Misaghi S. UBR E3 ligases and the PDIA3 protease control degradation of unfolded antibody heavy chain by ERAD. J Cell Biol 2020; 219:151862. [PMID: 32558906 PMCID: PMC7337499 DOI: 10.1083/jcb.201908087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/01/2022] Open
Abstract
Accumulation of unfolded antibody chains in the ER triggers ER stress that may lead to reduced productivity in therapeutic antibody manufacturing processes. We identified UBR4 and UBR5 as ubiquitin E3 ligases involved in HC ER-associated degradation. Knockdown of UBR4 and UBR5 resulted in intracellular accumulation, enhanced secretion, and reduced ubiquitination of HC. In concert with these E3 ligases, PDIA3 was shown to cleave ubiquitinated HC molecules to accelerate HC dislocation. Interestingly, UBR5, and to a lesser degree UBR4, were down-regulated as cellular demand for antibody expression increased in CHO cells during the production phase, or in plasma B cells. Reducing UBR4/UBR5 expression before the production phase increased antibody productivity in CHO cells, possibly by redirecting antibody molecules from degradation to secretion. Altogether we have characterized a novel proteolysis/proteasome-dependent pathway involved in degradation of unfolded antibody HC. Proteins characterized in this pathway may be novel targets for CHO cell engineering.
Collapse
Affiliation(s)
- Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA
| | - Peter Liu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA
| | - Di Xue
- Department of Research Biology, Genentech Inc., South San Francisco, CA
| | - Deepankar Roy
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Tom Patapoff
- Department of Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA
| | - Salina Louie
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Brad Snedecor
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| |
Collapse
|
7
|
Abstract
ABSTRACT
For most of the proteins synthesized in the endoplasmic reticulum (ER), disulfide bond formation accompanies protein folding in a process called oxidative folding. Oxidative folding is catalyzed by a number of enzymes, including the family of protein disulfide isomerases (PDIs), as well as other proteins that supply oxidizing equivalents to PDI family proteins, like ER oxidoreductin 1 (Ero1). Oxidative protein folding in the ER is a basic vital function, and understanding its molecular mechanism is critical for the application of plants as protein production tools. Here, I review the recent research and progress related to the enzymes involved in oxidative folding in the plant ER. Firstly, nine groups of plant PDI family proteins are introduced. Next, the enzymatic properties of plant Ero1 are described. Finally, the cooperative folding by multiple PDI family proteins and Ero1 is described.
Collapse
Affiliation(s)
- Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| |
Collapse
|
8
|
Chawsheen HA, Ying Q, Jiang H, Wei Q. A critical role of the thioredoxin domain containing protein 5 (TXNDC5) in redox homeostasis and cancer development. Genes Dis 2018; 5:312-322. [PMID: 30591932 PMCID: PMC6303481 DOI: 10.1016/j.gendis.2018.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
Correct folding of nascent peptides occurs in the endoplasmic reticulum (ER). It is a complicate process primarily accomplished by the coordination of multiple redox proteins including members of the protein disulfide isomerase (PDI) family. As a critical member of the PDI family, thioredoxin domain containing protein 5 (TXNDC5) assists the folding of newly synthesized peptides to their mature form through series of disulfide bond exchange reactions. Interestingly, TXNDC5 is frequently found overexpressed in specimens of many human diseases including various types of cancer. In this review, we summarized the biochemical function of TXNDC5 in mammalian cells and the recent progress on the understanding of its role and molecular mechanisms in cancer development. Findings of TXNDC5 in the activation of intracellular signaling pathways, stimulation of cell growth & proliferation, facilitation of cell survival and modulation of extracellular matrix to affect cancer cell invasion and metastasis are reviewed. These published studies suggest that strategies of targeting TXNDC5 can be developed as potentially valuable methods for the treatment of certain types of cancer in patients.
Collapse
Affiliation(s)
- Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qi Ying
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
9
|
Printsev I, Curiel D, Carraway KL. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membr Biol 2017; 250:379-392. [PMID: 27743014 PMCID: PMC5392169 DOI: 10.1007/s00232-016-9931-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Daniel Curiel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Lee HY, Kim SW, Lee GH, Choi MK, Chung HW, Lee YC, Kim HR, Kwon HJ, Chae HJ. Curcumin and Curcuma longa L. extract ameliorate lipid accumulation through the regulation of the endoplasmic reticulum redox and ER stress. Sci Rep 2017; 7:6513. [PMID: 28747775 PMCID: PMC5529367 DOI: 10.1038/s41598-017-06872-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/13/2022] Open
Abstract
For this study, we examined the effects of curcumin against acute and chronic stress, paying specific attention to ROS. We also aimed to clarify the differences between acute and chronic stress conditions. We investigated the effects of curcumin against acute stress (once/1 day CCl4 treatment) and chronic-stress (every other day/4week CCl4 treatment). Compared with acute stress, in which the antioxidant system functioned properly and aspartate transaminase (AST) and ROS production increased, chronic stress increased AST, alanine aminotransferase (ALT), hepatic enzymes, and ROS more significantly, and the antioxidant system became impaired. We also found that ER-originated ROS accumulated in the chronic model, another difference between the two conditions. ER stress was induced consistently, and oxidative intra-ER protein folding status, representatively PDI, was impaired, especially in chronic stress. The PDI-associated client protein hepatic apoB accumulated with the PDI-binding status in chronic stress, and curcumin recovered the altered ER folding status, regulating ER stress and the resultant hepatic dyslipidemia. Throughout this study, curcumin and curcumin-rich Curcuma longa L. extract promoted recovery from CCl4-induced hepatic toxicity in both stress conditions. For both stress-associated hepatic dyslipidemia, curcumin and Curcuma longa L. extract might be recommendable to recover liver activity.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Seung-Wook Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Min-Kyung Choi
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Han-Wool Chung
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Yong-Chul Lee
- Department of Internal Medicine, School of Medicine, Chonbuk National University, Jeonju, 560-182, Republic of Korea
| | - Hyung-Ryong Kim
- Daegu Gyeonbuk Institute of Science & Technology (DGIST) graduate school, Daegu Gyeonbuk Institute of Science & Technology (DGIST) graduate school, Daegu, Gyeonbuk, South Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752, Republic of Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea.
| |
Collapse
|
11
|
Lee HY, Lee GH, Bhattarai KR, Park BH, Koo SH, Kim HR, Chae HJ. Bax Inhibitor-1 regulates hepatic lipid accumulation via ApoB secretion. Sci Rep 2016; 6:27799. [PMID: 27297735 PMCID: PMC4906294 DOI: 10.1038/srep27799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
In this study, we explored the effects of Bax Inhibitor-1 (BI-1) on ApoB aggregation in high-fat diet (HFD)-induced hepatic lipid accumulation. After 1 week on a HFD, triglycerides and cholesterol accumulated more in the liver and were not effectively secreted into the plasma, whereas after 8 weeks, lipids were highly accumulated in both the liver and plasma, with a greater effect in BI-1 KO mice compared with BI-1 WT mice. ApoB, a lipid transfer protein, was accumulated to a greater extent in the livers of HFD-BI-1 KO mice compared with HFD-BI-1 WT mice. Excessive post-translational oxidation of protein disulfide isomerase (PDI), intra-ER ROS accumulation and folding capacitance alteration were also observed in HFD-BI-1 KO mice. Higher levels of endoplasmic reticulum (ER) stress were consistently observed in KO mice compared with the WT mice. Adenovirus-mediated hepatic expression of BI-1 in the BI-1 KO mice rescued the above phenotypes. Our results suggest that BI-1-mediated enhancement of ApoB secretion regulates hepatic lipid accumulation, likely through regulation of ER stress and ROS accumulation.
Collapse
Affiliation(s)
- Hwa Young Lee
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| | - Geum-Hwa Lee
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| | - Byung-Hyun Park
- Department of Biochemistry, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, School of Dentistry, Wonkwang University, Iksan, 570-749, Korea
| | - Han Jung Chae
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| |
Collapse
|
12
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|