1
|
Skinner KC, Kammeraad JA, Wymore T, Narayan ARH, Zimmerman PM. Simulating Electron Transfer Reactions in Solution: Radical-Polar Crossover. J Phys Chem B 2023; 127:10097-10107. [PMID: 37976536 PMCID: PMC11135460 DOI: 10.1021/acs.jpcb.3c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Single-electron transfer (SET) promotes a wide variety of interesting chemical transformations, but modeling of SET requires a careful treatment of electronic and solvent effects to give meaningful insight. Therefore, a combined constrained density functional theory and molecular mechanics (CDFT/MM) tool is introduced specifically for SET-initiated reactions. Mechanisms for two radical-polar crossover reactions involving the organic electron donors tetrakis(dimethylamino)ethylene (TDAE) and tetrathiafulvalene (TTF) were studied with the new tool. An unexpected tertiary radical intermediate within the TDAE system was identified, relationships between kinetics and substitution in the TTF system were explained, and the impact of the solvent environments on the TDAE and TTF reactions were examined. The results highlight the need for including solvent dynamics when quantifying SET kinetics and thermodynamics, as a free energy difference of >20 kcal/mol was observed. Overall, the new method informs mechanistic analysis of SET-initiated reactions and therefore is envisioned to be useful for studying reactions in the condensed phase.
Collapse
Affiliation(s)
- Kevin C Skinner
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Josh A Kammeraad
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Troy Wymore
- Laufer Center, Stony Brook University, Stony Brook, New York 11794, United States
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Kontkanen OV, Biriukov D, Futera Z. Reorganization Free Energy of Copper Proteins in Solution, in Vacuum, and on Metal Surfaces. J Chem Phys 2022; 156:175101. [DOI: 10.1063/5.0085141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Metalloproteins, known to efficiently transfer electronic charge in biological systems, recently found their utilization in nanobiotechnological devices where the protein is placed into direct contact with metal surfaces. The feasibility of oxidation/reduction of the protein redox sites is affected by the reorganization free energies, one of the key parameters determining the transfer rates. While their values have been measured and computed for proteins in their native environments, i.e., in aqueous solution, the reorganization free energies of dry proteins or proteins adsorbed to metal surfaces remain unknown. Here, we investigate the redox properties of blue copper protein azurin, a prototypical redox-active metalloprotein previously probed by various experimental techniques both in solution and on metal/vacuum interfaces. We used a hybrid QM/MM computational technique based on DFT to explore protein dynamics, flexibility, and corresponding reorganization free energies in aqueous solution, vacuum, and on vacuum gold interfaces. Somewhat surprisingly, the reorganization free energy only slightly decreases when azurin is dried because the loss of the hydration shell leads to larger flexibility of the protein near its redox site. At the vacuum gold surfaces, the energetics of the structure relaxation depends on the adsorption geometry, however, significant reduction of the reorganization free energy was not observed. These findings have important consequences for the charge transport mechanism in vacuum devices, showing that the free energy barriers for protein oxidation remain significant even under ultra-high vacuum conditions.
Collapse
Affiliation(s)
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences, Czech Republic
| | - Zdenek Futera
- University of South Bohemia in Ceske Budejovice Faculty of Science, Czech Republic
| |
Collapse
|
3
|
Limited solvation of an electron donating tryptophan stabilizes a photoinduced charge-separated state in plant (6-4) photolyase. Sci Rep 2022; 12:5084. [PMID: 35332186 PMCID: PMC8948257 DOI: 10.1038/s41598-022-08928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
(6-4) Photolyases ((6-4) PLs) are ubiquitous photoenzymes that use the energy of sunlight to catalyze the repair of carcinogenic UV-induced DNA lesions, pyrimidine(6-4)pyrimidone photoproducts. To repair DNA, (6-4) PLs must first undergo so-called photoactivation, in which their excited flavin adenine dinucleotide (FAD) cofactor is reduced in one or two steps to catalytically active FADH- via a chain of three or four conserved tryptophan residues, transiently forming FAD•-/FADH- ⋯ TrpH•+ pairs separated by distances of 15 to 20 Å. Photolyases and related photoreceptors cryptochromes use a plethora of tricks to prevent charge recombination of photoinduced donor-acceptor pairs, such as chain branching and elongation, rapid deprotonation of TrpH•+ or protonation of FAD•-. Here, we address Arabidopsis thaliana (6-4) PL (At64) photoactivation by combining molecular biology, in vivo survival assays, static and time-resolved spectroscopy and computational methods. We conclude that At64 photoactivation is astonishingly efficient compared to related proteins-due to two factors: exceptionally low losses of photoinduced radical pairs through ultrafast recombination and prevention of solvent access to the terminal Trp3H•+, which significantly extends its lifetime. We propose that a highly conserved histidine residue adjacent to the 3rd Trp plays a key role in Trp3H•+ stabilization.
Collapse
|
4
|
Carmona-Espíndola J, Gázquez JL. Perturbation approach to constrained electron transfer in density functional theory. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02798-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Kudisch B, Oblinsky DG, Black MJ, Zieleniewska A, Emmanuel MA, Rumbles G, Hyster TK, Scholes GD. Active-Site Environmental Factors Customize the Photophysics of Photoenzymatic Old Yellow Enzymes. J Phys Chem B 2020; 124:11236-11249. [PMID: 33231450 DOI: 10.1021/acs.jpcb.0c09523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of non-natural photoenzymatic systems has reinvigorated the study of photoinduced electron transfer (ET) within protein active sites, providing new and unique platforms for understanding how biological environments affect photochemical processes. In this work, we use ultrafast spectroscopy to compare the photoinduced electron transfer in known photoenzymes. 12-Oxophytodienoate reductase 1 (OPR1) is compared to Old Yellow Enzyme 1 (OYE1) and morphinone reductase (MR). The latter enzymes are structurally homologous to OPR1. We find that slight differences in the amino acid composition of the active sites of these proteins determine their distinct electron-transfer dynamics. Our work suggests that the inside of a protein active site is a complex/heterogeneous dielectric network where genetically programmed heterogeneity near the site of biological ET can significantly affect the presence and lifetime of various intermediate states. Our work motivates additional tunability of Old Yellow Enzyme active-site reorganization energy and electron-transfer energetics that could be leveraged for photoenzymatic redox approaches.
Collapse
Affiliation(s)
- Bryan Kudisch
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Michael J Black
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Anna Zieleniewska
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Megan A Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Garry Rumbles
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States.,Department of Chemistry and RASEI, University of Colorado Boulder, Colorado 80309, United States
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
6
|
Futera Z, Jiang X, Blumberger J. Ergodicity Breaking in Thermal Biological Electron Transfer? Cytochrome C Revisited II. J Phys Chem B 2020; 124:3336-3342. [PMID: 32223243 DOI: 10.1021/acs.jpcb.0c01414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It was recently suggested that cytochrome c operates in an ergodicity-breaking regime characterized by unusually large energy gap thermal fluctuations and associated reorganization free energies for heme oxidation of up to 3.0 eV. The large fluctuations were reported to lower activation free energy for oxidation of the heme cofactor by almost a factor of 2 compared to the case where ergodicity is maintained. Our group has recently investigated this claim computationally at several levels of theory and found no evidence for such large energy gap fluctuations. Here we address the points of our earlier work that have raised criticism and we also extend our previous investigation by considering a simple linear polarizability model for cytochrome c oxidation. We find very consistent results among all our computational approaches, ranging from classical molecular dynamics, to the linear polarizability model to QM(PMM)/MM to full QM(DFT)/MM electrostatic emdedding. None of them support the notion of very large energy gap fluctuations or ergodicity breaking. The deviation between our simulations and the ones reported in [ J. Phys. Chem. B 2017, 121, 4958] is traced back to rather large electric fields at the Fe site of the heme c cofactor in that study, not seen in our simulations, neither with the AMBER nor with the CHARMM force field. While ergodicity breaking effects may well occur in other biological ET, our numerical evidence suggests that this is not the case for cytochrome c.
Collapse
Affiliation(s)
- Zdenek Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Xiuyun Jiang
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, U.K
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, U.K
| |
Collapse
|
7
|
Jiang X, Futera Z, Blumberger J. Ergodicity-Breaking in Thermal Biological Electron Transfer? Cytochrome C Revisited. J Phys Chem B 2019; 123:7588-7598. [PMID: 31405279 DOI: 10.1021/acs.jpcb.9b05253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It was recently suggested that certain redox proteins operate in an ergodicity-breaking regime to facilitate biological electron transfer (ET). A signature for this is a large variance reorganization free energy (several electronvolts) but a significantly smaller Stokes reorganization free energy due to incomplete protein relaxation on the time scale of the ET event. Here we investigate whether this picture holds for oxidation of cytochrome c in aqueous solution, at various levels of theory including classical molecular dynamics with two additive and one electronically polarizable force field, and QM/MM calculations with the QM region treated by full electrostatic DFT embedding and by the perturbed matrix method. Sampling the protein and energy gap dynamics over more than 250 ns, we find no evidence for ergodicity-breaking effects. In particular, the inclusion of electronic polarizability of the heme group at QM/MM levels did not induce nonergodic effects, contrary to previous reports by Matyushov et al. The well-known problem of overestimation of reorganization free energies with additive force fields is cured when the protein and solvent are treated as electronically polarizable. Ergodicity-breaking effects may occur in other redox proteins, and our results suggest that long simulations, ideally on the ET time scale, with electronically polarizable force fields are required to obtain strong numerical evidence for them.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Zdenek Futera
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
8
|
Migliore A. How To Extract Quantitative Information on Electronic Transitions from the Density Functional Theory "Black Box". J Chem Theory Comput 2019; 15:4915-4923. [PMID: 31314526 DOI: 10.1021/acs.jctc.9b00518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electronic couplings and vertical excitation energies are crucial determinants of charge and excitation energy transfer rates in a broad variety of processes ranging from biological charge transfer to charge transport through inorganic materials, from molecular sensing to intracellular signaling. Density Functional Theory (DFT) is generally used to calculate these critical parameters, but the quality of the results is unpredictable because of the semiempirical nature of the available DFT approaches. This study identifies a small set of fundamental rules that enables accurate DFT computation of electronic couplings and vertical excitation energies in molecular complexes and materials. These rules are applied to predict efficient DFT approaches to coupling calculations. The result is an easy-to-use guide for reliable DFT descriptions of electronic transitions.
Collapse
Affiliation(s)
- Agostino Migliore
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
9
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Bignon E, Rizza S, Filomeni G, Papaleo E. Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Comput Struct Biotechnol J 2019; 17:415-429. [PMID: 30996821 PMCID: PMC6451115 DOI: 10.1016/j.csbj.2019.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule in the regulation of multiple cellular processes. It is endogenously synthesized by NO synthase (NOS) as the product of L-arginine oxidation to L-citrulline, requiring NADPH, molecular oxygen, and a pterin cofactor. Two NOS isoforms are constitutively present in cells, nNOS and eNOS, and a third is inducible (iNOS). Despite their biological relevance, the details of their complex structural features and reactivity mechanisms are still unclear. In this review, we summarized the contribution of computational biochemistry to research on NOS molecular mechanisms. We described in detail its use in studying aspects of structure, dynamics and reactivity. We also focus on the numerous outstanding questions in the field that could benefit from more extensive computational investigations.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Wang H, Liu F, Dong T, Du L, Zhang D, Gao J. Charge-Transfer Knowledge Graph among Amino Acids Derived from High-Throughput Electronic Structure Calculations for Protein Database. ACS OMEGA 2018; 3:4094-4104. [PMID: 31458645 PMCID: PMC6641752 DOI: 10.1021/acsomega.8b00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 03/30/2018] [Indexed: 05/25/2023]
Abstract
The charge-transfer coupling is an important component in tight-binding methods. Because of the highly complex chemical structure of biomolecules, the anisotropic feature of charge-transfer couplings in realistic proteins cannot be ignored. In this work, we have performed the first large-scale quantitative assessment of charge-transfer preference by calculating the charge-transfer couplings in all 20 × 20 possible amino acid side-chain combinations, which are extracted from available high-quality structures of thousands of protein complexes. The charge-transfer database quantitatively shows distinct features of charge-transfer couplings among millions of amino acid side-chain combinations. The overall distribution of charge-transfer couplings reveals that only one average or representative structure cannot be regarded as the typical charge-transfer preference in realistic proteins. This work provides us an alternative route to comprehensively understand the charge-transfer couplings for the overall distribution of realistic proteins in the foreseen big data scenario.
Collapse
Affiliation(s)
- Hongwei Wang
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Fang Liu
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Tiange Dong
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Likai Du
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Dongju Zhang
- Institute
of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| | - Jun Gao
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
12
|
Wu X, Clavaguera C, Lagardère L, Piquemal JP, de la Lande A. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms. J Chem Theory Comput 2018; 14:2705-2720. [PMID: 29630819 DOI: 10.1021/acs.jctc.7b01128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H2O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.
Collapse
Affiliation(s)
- Xiaojing Wu
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| | - Carine Clavaguera
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| | - Louis Lagardère
- Sorbonne Université, CNRS , Institut Parisien de Chimie Physique et Théorique (IP2CT) , 4 Place Jussieu , F-75005 , Paris , France.,Sorbonne Université , Institut des Sciences du Calcul et des Données (ISCD) , 4 place Jussieu , F-75005 , Paris , France
| | - Jean-Philip Piquemal
- Sorbonne Université, CNRS , Laboratoire de Chimie Théorique (LCT) , 4 Place Jussieu , F-75005 , Paris , France.,Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Institut Universitaire de France , 75005 , Paris , France
| | - Aurélien de la Lande
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| |
Collapse
|
13
|
Mendive-Tapia D, Mangaud E, Firmino T, de la Lande A, Desouter-Lecomte M, Meyer HD, Gatti F. Multidimensional Quantum Mechanical Modeling of Electron Transfer and Electronic Coherence in Plant Cryptochromes: The Role of Initial Bath Conditions. J Phys Chem B 2017; 122:126-136. [DOI: 10.1021/acs.jpcb.7b10412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Mendive-Tapia
- Institut
Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, CTMM, Université Montpellier, CC 15001, Place Eugène Bataillon, 34095 Montpellier, France
- Theoretische
Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| | - Etienne Mangaud
- Laboratoire
Collisions Agrégats Réactivité, UMR 5589, IRSAMC, Université Toulouse III Paul Sabatier, F-31062 Toulouse, France
| | - Thiago Firmino
- Laboratoire
de Chimie Physique, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | - Aurélien de la Lande
- Laboratoire
de Chimie Physique, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | - Michèle Desouter-Lecomte
- Laboratoire
de Chimie Physique, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | - Hans-Dieter Meyer
- Theoretische
Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| | - Fabien Gatti
- Institut
des Sciences Moléculaires d’Orsay, UMR-CNRS 8214, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| |
Collapse
|
14
|
Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the QY band. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:895-905. [DOI: 10.1016/j.bbabio.2017.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022]
|
15
|
Gillet N, Lévy B, Moliner V, Demachy I, de la Lande A. Theoretical estimation of redox potential of biological quinone cofactors. J Comput Chem 2017; 38:1612-1621. [PMID: 28470751 DOI: 10.1002/jcc.24802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/10/2022]
Abstract
Redox potentials are essential to understand biological cofactor reactivity and to predict their behavior in biological media. Experimental determination of redox potential in biological system is often difficult due to complexity of biological media but computational approaches can be used to estimate them. Nevertheless, the quality of the computational methodology remains a key issue to validate the results. Instead of looking to the best absolute results, we present here the calibration of theoretical redox potential for quinone derivatives in water coupling QM + MM or QM/MM scheme. Our approach allows using low computational cost theoretical level, ideal for long simulations in biological systems, and determination of the uncertainties linked to the calculations. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natacha Gillet
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France.,Departament de Química Física i Analítica, Universitat Jaume I, Castellón, 12071, Spain
| | - Bernard Lévy
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, Castellón, 12071, Spain.,Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Isabelle Demachy
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France
| | - Aurélien de la Lande
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France
| |
Collapse
|
16
|
Dinpajooh M, Martin DR, Matyushov DV. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer. Sci Rep 2016; 6:28152. [PMID: 27306204 PMCID: PMC4910110 DOI: 10.1038/srep28152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/27/2016] [Indexed: 11/12/2022] Open
Abstract
Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.
Collapse
Affiliation(s)
- Mohammadhasan Dinpajooh
- Department of Physics and School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Daniel R Martin
- Department of Physics and School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| |
Collapse
|
17
|
Cailliez F, Müller P, Firmino T, Pernot P, de la Lande A. Energetics of Photoinduced Charge Migration within the Tryptophan Tetrad of an Animal (6–4) Photolyase. J Am Chem Soc 2016; 138:1904-15. [DOI: 10.1021/jacs.5b10938] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fabien Cailliez
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Pavel Müller
- Institute
for Integrative Biology of the Cell (I2BC), CEA, CNRS, University
Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette
cedex, France
| | - Thiago Firmino
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Pascal Pernot
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Aurélien de la Lande
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
18
|
Blumberger J. Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions. Chem Rev 2015; 115:11191-238. [DOI: 10.1021/acs.chemrev.5b00298] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jochen Blumberger
- Department of Physics and
Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|