1
|
Li J, Zhao G, Liu J, Hu X, Yu W, Wang J, Zhong S, Zhu W, Yang T, Zhou Y, Jiang Y, Bai L, Tu M, Yang Q, Li Y. Effect of Continuous Lipopolysaccharide Induction on Oxidative Stress and Heart Injury in Weaned Piglets. Vet Sci 2025; 12:330. [PMID: 40284832 PMCID: PMC12030969 DOI: 10.3390/vetsci12040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
After weaning, piglets no longer consume breast milk, and their immune system is not yet fully developed. At this time, if weaned piglets are infected with E. coli, their subsequent growth will be seriously affected. In the present study, 48 healthy 28-day-old weaned piglets (6.65 ± 1.19 kg, Duroc × Landrace × Large White) were randomly divided into an LPS group and control group. Piglets in the LPS group were intraperitoneally injected with an LPS solution (LPS was dissolved in sterile saline to form a solution of 100 μg/mL and injected at a dose of 1 mL per kilogram of body weight) for 13 consecutive days. Piglets in the control group were injected with the same volume of sterile saline. On days 1, 5, 9, and 13 of the experiment, six piglets from each group were randomly selected for dissection, the blood and heart samples were collected, and then cardiac function-related indicators were detected. A portion of the heart tissue was fixed in 4% paraformaldehyde and further used to make paraffin sections; then, hematoxylin-eosin (H&E) staining was performed. Masson staining was used to detect the changes in collagen fibers in the hearts. The other parts of the heart tissues were frozen in liquid nitrogen and stored in a refrigerator at -80 °C for the detection of tissue antioxidant indices. The mRNA expression levels of the toll-like receptor 4 (TLR4) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway, and inflammatory cytokines in heart tissues were detected by real-time PCR. The results showed that catalase (CAT) and superoxide dismutase (SOD) contents in the heart tissue homogenates increased significantly on days 1 and 5 in LPS-induced piglets (p < 0.01, p < 0.05), while total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) contents decreased significantly on day 5 (p < 0.05). On day 5, the contents of serum cardiac function indicators lactate dehydrogenase (LDH), creatine kinase isoenzymes (CK-MB), and cardiac troponin I (cTn-I) were significantly increased in LPS-induced piglets (p < 0.01). On the 1st and 5th days, the heart tissue showed obvious pathological damage, which was manifested as the disordered arrangement of myocardial fibers, depression of myocardial cells, infiltration of inflammatory factors, congestion of capillaries, and significant increase in cardiac collagen fibers. On the 1st day, the mRNA expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were significantly increased in LPS-induced piglets with heart injury (p < 0.01). On the 5th day, the mRNA expression levels of the TLR4 signaling pathway [TLR4, myeloid differentiation primary response gene 88 (MyD88), nuclear factor kappa-B (NF-κB)], TNF-α, and interleukin 10 (IL-10) were also significantly increased in LPS-induced piglets with heart injury (p < 0.01, p < 0.05). The mRNA expression levels of the TGF-β signaling pathway (TGF-β, Smad2, and Smad4) in cardiac fibrosis-related genes were significantly increased on days 5 and 9 (p < 0.01, p < 0.05). The mRNA expression levels of Smad3 and Smad7 in cardiac fibrosis-related genes were also significantly increased on day 9 (p < 0.01). These results indicate that oxidative stress occurs in the heart tissue of LPS-induced piglets on the 1st and 5th days, leading to cardiac tissue damage. However, on the 9th and 13th days, the degree of heart damage in the piglets was less than that on the 1st and 5th days, which may be due to the tolerance of piglets' tissues and organs because of multiple same-dose LPS stimulations.
Collapse
Affiliation(s)
- Jinyan Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Guotong Zhao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Jin Liu
- Dezhou Agricultural and Rural Bureau, Dezhou 253000, China
| | - Xiaofen Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Wanting Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Jue Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Shengwei Zhong
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Wenlu Zhu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Tingyu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Yunxiao Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yijie Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Lingna Bai
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Mengyan Tu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Quan Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| |
Collapse
|
2
|
Zarzycka W, Kobak KA, King CJ, Peelor FF, Miller BF, Chiao YA. Hyperactive mTORC1/4EBP1 signaling dysregulates proteostasis and accelerates cardiac aging. GeroScience 2025; 47:1823-1836. [PMID: 39379739 PMCID: PMC11979070 DOI: 10.1007/s11357-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses age-related deteriorations in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. mTORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The objective of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We used a whole-body 4EBP1 KO mouse model, which mimics a hyperactive mTORC1/4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements of middle-aged 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and these parameters are at similar levels as old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further decline in systolic and diastolic function compared to middle-aged counterparts and have worse systolic and diastolic function than age-matched WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT hearts. However, ribosomal biogenesis and protein ubiquitination are significantly increased in 4EBP1 KO hearts when compared to WT controls, suggesting dysregulated proteostasis in 4EBP1 KO hearts. Together, these results show that a hyperactive mTORC1/4EBP1 axis accelerates cardiac aging, potentially by dysregulating proteostasis.
Collapse
Affiliation(s)
- Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kamil A Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Catherine J King
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA, Oklahoma City, OK, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Post-translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton (Hoboken) 2024; 81:832-842. [PMID: 38587113 PMCID: PMC11458826 DOI: 10.1002/cm.21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.
Collapse
Affiliation(s)
- Paula Nieto Morales
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Arianna N. Coons
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Amelia J. Koopman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Sonu Patel
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Michelle S. Parvatiyar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| |
Collapse
|
4
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
5
|
Lynn ML, Jimenez J, Castillo RL, Vasquez C, Klass MM, Baldo A, Kim A, Gibson C, Murphy AM, Tardiff JC. Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation. Circ Res 2024; 135:974-989. [PMID: 39328062 PMCID: PMC11502267 DOI: 10.1161/circresaha.124.325223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cTnC (cardiac troponin C)-cTnI (cardiac troponin I) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. METHODS HCM mutations R92L-cTnT (cardiac troponin T; Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo, in vitro, and in silico via 2-dimensional echocardiography, Western blotting, ex vivo hemodynamics, stopped-flow kinetics, time-resolved fluorescence resonance energy transfer, and molecular dynamics simulations. RESULTS The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D23D24) was sufficient to recover diastolic function to non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D23D24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via time-resolved fluorescence resonance energy transfer revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing time-resolved fluorescence resonance energy transfer distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. CONCLUSIONS These data show that the early diastolic dysfunction observed in a subset of HCM is attributable to allosterically mediated structural changes at the cTnC-cTnI interface that impair accessibility of PKA, thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa L. Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Jesus Jimenez
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
| | - Romi L. Castillo
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Catherine Vasquez
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Matthew M. Klass
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
| | - Anthony Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Andrew Kim
- Department of Physiology, University of Arizona, Tucson, AZ
| | - Cyonna Gibson
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Anne M. Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
- Department of Physiology, University of Arizona, Tucson, AZ
| |
Collapse
|
6
|
Zarzycka W, Kobak KA, King CJ, Peelor FF, Miller BF, Chiao YA. Hyperactive mTORC1/4EBP1 Signaling Dysregulates Proteostasis and Accelerates Cardiac Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594044. [PMID: 38798509 PMCID: PMC11118374 DOI: 10.1101/2024.05.13.594044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses the age-related decline in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. TORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The aim of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We utilized a whole-body 4EBP1 KO mouse model, which mimics a hyperactive 4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements revealed that young 4EBP1 KO mice have no difference in cardiac function at baseline compared to WT mice. Interestingly, middle-aged (14-15-month-old) 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and their diastolic function and myocardial performance are at similar levels as 24-month-old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further declines in systolic and diastolic function compared to middle-aged 4EBP1 KO mice and have worse systolic and diastolic function than age-matched old WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT mice at these advanced ages. However, ribosomal biogenesis and overall protein ubiquitination are significantly increased in 4EBP1 KO mice when compared to WT, which suggests dysregulated proteostasis. Together, these results show that a hyperactive 4EBP1/eIF4E axis accelerates cardiac aging, potentially by dysregulating proteostasis.
Collapse
|
7
|
Hou MN, Zong GJ, Sun Y, Jiang JJ, Ding J. LncRNA NEAT1/miR-211/IL-10 Axis Regulates Inflammation of Peripheral Blood Mononuclear Cells in Acute Myocardial Infarction. Int Heart J 2024; 65:498-505. [PMID: 38825494 DOI: 10.1536/ihj.23-368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This study aimed to explore the expression of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in patients with acute myocardial infarction (AMI) and its inflammatory regulation mechanism through miR-211/interleukin 10 (IL-10) axis.A total of 75 participants were enrolled in this study: 25 healthy people in the control group, 25 patients with stable angina pectoris (SAP) in the SAP group, and 25 patients with AMI in the AMI group. Real-time qPCR was used to detect mRNA expression levels of NEAT1, miR-211, and IL-10. The interaction between miR-211, NEAT1, and IL-10 was confirmed by dual-luciferase reporter assay, and protein expression was detected using western blot.High expression of NEAT1 in peripheral blood mononuclear cells (PBMCs) of patients with AMI was negatively related to serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), IL-6, and IL-1β and was positively correlated with left ventricular ejection fraction (LVEF). In THP-1 cells, miR-211 was confirmed to target and inhibit IL-10 expression. NEAT1 knockdown and miR-211-mimic markedly decreased IL-10 protein levels, whereas anti-miR-211 markedly increased IL-10 protein levels. Importantly, miR-211 level was negatively related to NEAT1 and IL-10 levels, whereas IL-10 level was positively related to the level of NEAT1 expression in PBMCs of patients with AMI.LncRNA NEAT1 was highly expressed in PBMCs of patients with AMI, and NEAT1 suppressed inflammation via miR-211/IL-10 axis in PBMCs of patients with AMI.
Collapse
Affiliation(s)
- Min-Na Hou
- Department of Cardiovascular Medicine, Affiliated Hospital of Jiangnan University
| | - Gang-Jun Zong
- Department of Cardiovascular Medicine, No. 904 Hospital of the Joint Logistics Support Force of PLA
| | - Ying Sun
- Department of Cardiovascular Medicine, Affiliated Hospital of Jiangnan University
| | - Jia-Jia Jiang
- Department of Cardiovascular Medicine, Affiliated Hospital of Jiangnan University
| | - Jun Ding
- Department of Urology, No. 904 Hospital of the Joint Logistics Support Force of PLA
| |
Collapse
|
8
|
Schwarz R, Hofmann B, Gergs U, Neumann J. Cantharidin increases the force of contraction and protein phosphorylation in isolated human atria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2613-2625. [PMID: 37097333 PMCID: PMC10497697 DOI: 10.1007/s00210-023-02483-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Cantharidin, an inhibitor of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A), is known to increase the force of contraction and shorten the time to relaxation in human ventricular preparations. We hypothesized that cantharidin has similar positive inotropic effects in human right atrial appendage (RAA) preparations. RAA were obtained during bypass surgery performed on human patients. These trabeculae were mounted in organ baths and electrically stimulated at 1 Hz. For comparison, we studied isolated electrically stimulated left atrial (LA) preparations and isolated spontaneously beating right atrial (RA) preparations from wild-type mice. Cumulatively applied (starting at 10 to 30 µM), cantharidin exerted a positive concentration-dependent inotropic effect that plateaued at 300 µM in the RAA, LA, and RA preparations. This positive inotropic effect was accompanied by a shortening of the time to relaxation in human atrial preparations (HAPs). Notably, cantharidin did not alter the beating rate in the RA preparations. Furthermore, cantharidin (100 µM) increased the phosphorylation state of phospholamban and the inhibitory subunit of troponin I in RAA preparations, which may account for the faster relaxation observed. The generated data indicate that PP1 and/or PP2A play a functional role in human atrial contractility.
Collapse
Affiliation(s)
- R. Schwarz
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112 Halle (Saale), Germany
| | - B. Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Halle (Saale), Germany
| | - U. Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112 Halle (Saale), Germany
| | - J. Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112 Halle (Saale), Germany
| |
Collapse
|
9
|
Lynn ML, Jimenez J, Castillo RL, Klass MM, Vasquez C, Baldo A, Gibson C, Murphy AM, Tardiff JC. The HCM - Linked Mutation Arg92Leu in TNNT2 Allosterically Alters the cTnC - cTnI Interface and Disrupts the PKA-mediated Regulation of Myofilament Relaxation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549569. [PMID: 37503299 PMCID: PMC10370115 DOI: 10.1101/2023.07.18.549569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca 2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort which suggests potential involvement of myofilament regulators of relaxation. Yet, a molecular level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cardiac troponin C-cardiac troponin I (cTnC-cTnI) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. Methods HCM mutations R92L-cTnT (Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo , in vitro, and in silico via 2D echocardiography, western blotting, ex vivo hemodynamics, stopped-flow kinetics, time resolved fluorescence resonance energy transfer (TR-FRET), and molecular dynamics simulations. Results The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset of diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D 23 D 24 ) was sufficient to recover diastolic function to Non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca 2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D 23 D 24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via TR-FRET revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing TR-FRET distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. Conclusion These data indicate that the early diastolic dysfunction observed in a subset of HCM is likely attributable to structural changes at the cTnC-cTnI interface that impair accessibility of PKA thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
Collapse
|
10
|
Hanft LM, Robinett JC, Kalogeris TJ, Campbell KS, Biesiadecki BJ, McDonald KS. Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts. J Gen Physiol 2023; 155:e202213290. [PMID: 37000170 PMCID: PMC10067705 DOI: 10.1085/jgp.202213290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
The heart's pumping capacity is determined by myofilament power generation. Power is work done per unit time and measured as the product of force and velocity. At a sarcomere level, these contractile properties are linked to the number of attached cross-bridges and their cycling rate, and many signaling pathways modulate one or both factors. We previously showed that power is increased in rodent permeabilized cardiac myocytes following PKA-mediated phosphorylation of myofibrillar proteins. The current study found that that PKA increased power by ∼30% in permeabilized cardiac myocyte preparations (n = 8) from human failing hearts. To address myofilament molecular specificity of PKA effects, mechanical properties were measured in rat permeabilized slow-twitch skeletal muscle fibers before and after exchange of endogenous slow skeletal troponin with recombinant human Tn complex that contains cardiac (c)TnT, cTnC and either wildtype (WT) cTnI or pseudo-phosphorylated cTnI at sites Ser23/24Asp, Tyr26Glu, or the combinatorial Ser23/24Asp and Tyr26Glu. We found that cTnI Ser23/24Asp, Tyr26Glu, and combinatorial Ser23/24Asp and Tyr26Glu were sufficient to increase power by ∼20%. Next, we determined whether pseudo-phosphorylated cTnI at Ser23/24 was sufficient to increase power in cardiac myocytes from human failing hearts. Following cTn exchange that included cTnI Ser23/24Asp, power output increased ∼20% in permeabilized cardiac myocyte preparations (n = 6) from the left ventricle of human failing hearts. These results implicate cTnI N-terminal phosphorylation as a molecular regulator of myocyte power and could serve as a regional target for small molecule therapy to unmask myocyte power reserve capacity in human failing hearts.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Abrams ST, Alhamdi Y, Zi M, Guo F, Du M, Wang G, Cartwright EJ, Toh CH. Extracellular Histone-Induced Protein Kinase C Alpha Activation and Troponin Phosphorylation Is a Potential Mechanism of Cardiac Contractility Depression in Sepsis. Int J Mol Sci 2023; 24:ijms24043225. [PMID: 36834636 PMCID: PMC9967552 DOI: 10.3390/ijms24043225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Reduction in cardiac contractility is common in severe sepsis. However, the pathological mechanism is still not fully understood. Recently it has been found that circulating histones released after extensive immune cell death play important roles in multiple organ injury and disfunction, particularly in cardiomyocyte injury and contractility reduction. How extracellular histones cause cardiac contractility depression is still not fully clear. In this work, using cultured cardiomyocytes and a histone infusion mouse model, we demonstrate that clinically relevant histone concentrations cause significant increases in intracellular calcium concentrations with subsequent activation and enriched localization of calcium-dependent protein kinase C (PKC) α and βII into the myofilament fraction of cardiomyocytes in vitro and in vivo. Furthermore, histones induced dose-dependent phosphorylation of cardiac troponin I (cTnI) at the PKC-regulated phosphorylation residues (S43 and T144) in cultured cardiomyocytes, which was also confirmed in murine cardiomyocytes following intravenous histone injection. Specific inhibitors against PKCα and PKCβII revealed that histone-induced cTnI phosphorylation was mainly mediated by PKCα activation, but not PKCβII. Blocking PKCα also significantly abrogated histone-induced deterioration in peak shortening, duration and the velocity of shortening, and re-lengthening of cardiomyocyte contractility. These in vitro and in vivo findings collectively indicate a potential mechanism of histone-induced cardiomyocyte dysfunction driven by PKCα activation with subsequent enhanced phosphorylation of cTnI. These findings also indicate a potential mechanism of clinical cardiac dysfunction in sepsis and other critical illnesses with high levels of circulating histones, which holds the potential translational benefit to these patients by targeting circulating histones and downstream pathways.
Collapse
Affiliation(s)
- Simon T. Abrams
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Coagulation Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Yasir Alhamdi
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Sheffield Teaching Hospital NHS Foundation Trust, Sheffield S5 7AU, UK
| | - Min Zi
- Institute of Cardiovascular Sciences, Centre for Cardiac Research, University of Manchester, Manchester M13 9PT, UK
| | - Fengmei Guo
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- The Medical School, Southeast University, Nanjing 210009, China
| | - Min Du
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Guozheng Wang
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Coagulation Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
- Correspondence: (G.W.); (C.-H.T.)
| | - Elizabeth J. Cartwright
- Institute of Cardiovascular Sciences, Centre for Cardiac Research, University of Manchester, Manchester M13 9PT, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
- Correspondence: (G.W.); (C.-H.T.)
| |
Collapse
|
12
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
13
|
De Lorenzi AB, Kaplinsky E, Zambrano MR, Chaume LT, Rosas JM. Emerging concepts in heart failure management and treatment: focus on SGLT2 inhibitors in heart failure with preserved ejection fraction. Drugs Context 2023; 12:2022-7-1. [PMID: 36660013 PMCID: PMC9828870 DOI: 10.7573/dic.2022-7-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023] Open
Abstract
The role of sodium-glucose cotransporter 2 inhibitors (SLTG2i), developed initially as glucose-lowering agents, has represented a novelty in patients with heart failure (HF) and reduced ejection fraction (HFrEF) since dapagliflozin (DAPA-HF study) and empagliflozin (EMPEROR-Reduced study) were able to reduce morbidity and mortality in this setting regardless of the presence or absence of diabetes. In previous large clinical trials (EMPA-REG OUTCOME study, CANVAS, DECLARE-TIMI 58), SGLT2i have been shown to attenuate HF progression expressed by reducing the risk of HF hospitalizations in patients with type 2 diabetes mellitus mostly without HF at baseline. This benefit was then corroborated with positive results in HF outcomes (cardiovascular mortality and HF hospitalizations) in patients with HF with preserved ejection fraction (HFpEF) in the EMPEROR-Preserved (empagliflozin) and DELIVER (dapagliflozin) trials. Several biological mechanisms apart from the glycosuria are attributed to these agents in this last context, including anti-inflammatory effects, reduction of fibrosis and apoptosis, improvement of myocardial metabolism, mitochondrial function optimization, and oxidative stress protection. Moreover, SGLT2i can also improve ventricular loading conditions by forcing diuresis and natriuresis, and by enhancing vascular and renal function. In addition, SGLT2i can reduce myocardial passive stiffness (diastolic function) by enforcing the phosphorylation of myofilament modulatory proteins. This article provided an overview of the main pathophysiological characteristics of HFpEF and of the diverse mechanisms of action of SGLT2i in this setting. The supporting clinical evidence of SGLT2i in HFpEF (EMPEROR-Preserved and DELIVER trials) is also reviewed. This article is part of the Emerging concepts in heart failure management and treatment Special Issue: https://www.drugsincontext.com/special_issues/emerging-concepts-in-heart-failure-management-and-treatment.
Collapse
Affiliation(s)
| | - Edgardo Kaplinsky
- Cardiology Unit, Medicine Department, Hospital Municipal de Badalona, Spain
| | | | - Laia Tomás Chaume
- Unitat de Cardiología, Hospital General de Granollers, Barcelona, Spain
| | - Joan Monell Rosas
- Unitat de Cardiología, Hospital General de Granollers, Barcelona, Spain
| |
Collapse
|
14
|
Kopylova GV, Matyushenko AM, Kochurova AM, Bershitsky SY, Shchepkin DV. Effects of Phosphorylation of Tropomyosin with Cardiomyopathic Mutations on Calcium Regulation of Myocardial Contraction. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Lv J, Pan Z, Chen J, Xu R, Wang D, Huang J, Dong Y, Jiang J, Yin X, Cheng H, Guo X. Phosphoproteomic Analysis Reveals Downstream PKA Effectors of AKAP Cypher/ZASP in the Pathogenesis of Dilated Cardiomyopathy. Front Cardiovasc Med 2021; 8:753072. [PMID: 34966794 PMCID: PMC8710605 DOI: 10.3389/fcvm.2021.753072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Dilated cardiomyopathy (DCM) is a major cause of heart failure worldwide. The Z-line protein Cypher/Z-band alternatively spliced PDZ-motif protein (ZASP) is closely associated with DCM, both clinically and in animal models. Our earlier work revealed Cypher/ZASP as a PKA-anchoring protein (AKAP) that tethers PKA to phosphorylate target substrates. However, the downstream PKA effectors regulated by AKAP Cypher/ZASP and their relevance to DCM remain largely unknown.Methods and Results: For the identification of candidate PKA substrates, global quantitative phosphoproteomics was performed on cardiac tissue from wild-type and Cypher-knockout mice with PKA activation. A total of 216 phosphopeptides were differentially expressed in the Cypher-knockout mice; 31 phosphorylation sites were selected as candidates using the PKA consensus motifs. Bioinformatic analysis indicated that differentially expressed proteins were enriched mostly in cell adhesion and mRNA processing. Furthermore, the phosphorylation of β-catenin Ser675 was verified to be facilitated by Cypher. This phosphorylation promoted the transcriptional activity of β-catenin, and also the proliferative capacity of cardiomyocytes. Immunofluorescence staining demonstrated that Cypher colocalised with β-catenin in the intercalated discs (ICD) and altered the cytoplasmic distribution of β-catenin. Moreover, the phosphorylation of two other PKA substrates, vimentin Ser72 and troponin I Ser23/24, was suppressed by Cypher deletion.Conclusions: Cypher/ZASP plays an essential role in β-catenin activation via Ser675 phosphorylation, which modulates cardiomyocyte proliferation. Additionally, Cypher/ZASP regulates other PKA effectors, such as vimentin Ser72 and troponin I Ser23/24. These findings establish the AKAP Cypher/ZASP as a signalling hub in the progression of DCM.
Collapse
Affiliation(s)
- Jialan Lv
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Yang Dong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Yin
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongqiang Cheng
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Xiaogang Guo
| |
Collapse
|
16
|
Zhang J, Ding G. Improved Cardiac Function and Attenuated Inflammatory Response by Additional Administration of Tirofiban during PCI for ST-Segment Elevation Myocardial Infarction Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8371996. [PMID: 34221091 PMCID: PMC8221867 DOI: 10.1155/2021/8371996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
ST-segment elevation myocardial infarction (STEMI) is one of the acute coronary syndromes, and it is the main cause of cardiac death worldwide. The purpose of this study was to investigate whether tirofiban improves cardiac function and attenuates inflammatory response in STEMI patients undergoing percutaneous coronary intervention (PCI). From May 2016 to May 2019, a total of 124 patients who admitted into our hospital due to STEMI fulfilled inclusion and exclusion criteria and were randomly assigned to PCI + tirofiban and PCI groups, 62 cases per groups. Intravenous administration of 10 μg kg-1 min-1 tirofiban was performed 30 min prior to PCI. During PCI, tirofiban infusion through a micropump with 0.15 μg kg-1 min-1 lasted for 48 h. It was found that the PCI + tirofiban group was significantly different from the PCI group in total corrected TIMI frame count (CTFC) after PCI (15.88 ± 5.11 vs. 22.47 ± 6.26, P < 0.001). At day 7 and day 30 post-PCI, a significant time-dependent decrease in the levels of brain natriuretic peptide (BNP), cardiac troponin I (cTnI), and creatine kinase isoenzyme (CK-MB) in both groups was observed after PCI (P < 0.001). More importantly, the patients in the PCI + tirofiban group had much lower levels of BNP, cTnI, and CK-MB compared with those in the PCI group at days 7 and 30 post-PCI (P < 0.001). At day 7 following PCI, the left ventricular ejection fraction (LVEF) was statistically higher in the PCI + tirofiban group than in the PCI group (P < 0.05). At day 30 post-PCI, increased LVEF concomitant with reduced left ventricular end diastolic diameter (LVEDD) and left ventricular end systolic diameter (LVESD) was observed in the PCI + tirofiban group compared with the PCI group. At day 7 and day 30 post-PCI, both groups displayed a time-dependent decline in the levels of C reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and procalcitonin (PCT) after PCI (P < 0.05). Additionally, the patients in the PCI + tirofiban group had lower levels of CRP, TNF-α, IL-6, and PCT compared with those in the PCI group at days 7 and 30 post-PCI (P < 0.05). All patients in the PCI + tirofiban and PCI groups were followed up for 12 months by outpatient or telephone after discharge. There were fewer patients with LVEF < 50% in the PCI + tirofiban group than the PCI group (P=0.044). Furthermore, it was found that the incidence rate of major adverse cardiovascular events (MACEs) in the PCI + tirofiban group was evidently lower than that in the PCI group (12.90% vs. 29.03%, P=0.028). Taken together, our data suggest that additional administration of tirofiban could improve cardiac function and attenuate inflammatory response in STEMI patients undergoing PCI, which is worthy of promotion in clinic.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, People's Hospital of Anji, Huzhou, China
| | - Guomin Ding
- Department of Cardiology, People's Hospital of Anji, Huzhou, China
| |
Collapse
|
17
|
Mahmud Z, Dhami PS, Rans C, Liu PB, Hwang PM. Dilated Cardiomyopathy Mutations and Phosphorylation disrupt the Active Orientation of Cardiac Troponin C. J Mol Biol 2021; 433:167010. [PMID: 33901537 DOI: 10.1016/j.jmb.2021.167010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Cardiac troponin (cTn) is made up of three subunits, cTnC, cTnI, and cTnT. The regulatory N-terminal domain of cTnC (cNTnC) controls cardiac muscle contraction in a calcium-dependent manner. We show that calcium-saturated cNTnC can adopt two different orientations, with the "active" orientation consistent with the 2020 cryo-EM structure of the activated cardiac thin filament by Yamada et al. Using solution NMR 15N R2 relaxation analysis, we demonstrate that the two domains of cTnC tumble independently (average R2 10 s-1), being connected by a flexible linker. However, upon addition of cTnI1-77, the complex tumbles as a rigid unit (R2 30 s-1). cTnI phosphomimetic mutants S22D/S23D, S41D/S43D and dilated cardiomyopathy- (DCM-)associated mutations cTnI K35Q, cTnC D75Y, and cTnC G159D destabilize the active orientation of cNTnC, with intermediate 15N R2 rates (R2 17-23 s-1). The active orientation of cNTnC is stabilized by the flexible tails of cTnI, cTnI1-37 and cTnI135-209. Surprisingly, when cTnC is incorporated into complexes lacking these tails (cTnC-cTnI38-134, cTnC-cTnT223-288, or cTnC-cTnI38-134-cTnT223-288), the cNTnC domain is still immobilized, revealing a new interaction between cNTnC and the IT-arm that stabilizes a "dormant" orientation. We propose that the calcium sensitivity of the cardiac troponin complex is regulated by an equilibrium between active and dormant orientations, which can be shifted through post-translational modifications or DCM-associated mutations.
Collapse
Affiliation(s)
- Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Prabhpaul S Dhami
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Caleb Rans
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Philip B Liu
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
18
|
Kachooei E, Cordina NM, Potluri PR, Guse JA, McCamey D, Brown LJ. Phosphorylation of Troponin I finely controls the positioning of Troponin for the optimal regulation of cardiac muscle contraction. J Mol Cell Cardiol 2020; 150:44-53. [PMID: 33080242 DOI: 10.1016/j.yjmcc.2020.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 12/01/2022]
Abstract
Troponin is the Ca2+ molecular switch that regulates striated muscle contraction. In the heart, troponin Ca2+ sensitivity is also modulated by the PKA-dependent phosphorylation of a unique 31-residue N-terminal extension region of the Troponin I subunit (NH2-TnI). However, the detailed mechanism for the propagation of the phosphorylation signal through Tn, which results in the enhancement of the myocardial relaxation rate, is difficult to examine within whole Tn. Several models exist for how phosphorylation modulates the troponin response in cardiac cells but these are mostly built from peptide-NMR studies and molecular dynamics simulations. Here we used a paramagnetic spin labeling approach to position and track the movement of the NH2-TnI region within whole Tn. Through paramagnetic relaxation enhancement (PRE)-NMR experiments, we show that the NH2-TnI region interacts with a broad surface area on the N-domain of the Troponin C subunit. This region includes the Ca2+ regulatory Site II and the TnI switch-binding site. Phosphorylation of the NH2-TnI both weakens and shifts this region to an adjacent site on TnC. Interspin EPR distances between NH2-TnI and TnC further reveal a phosphorylation induced re-orientation of the TnC N-domain under saturating Ca2+ conditions. We propose an allosteric model where phosphorylation triggered cooperative changes in both the interaction of the NH2-TnI region with TnC, and the re-orientation of the TnC interdomain orientation, together promote the release of the TnI switch-peptide. Enhancement of the myocardial relaxation rate then occurs. Knowledge of this unique role of phosphorylation in whole Tn is important for understanding pathological processes affecting the heart.
Collapse
Affiliation(s)
- Ehsan Kachooei
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nicole M Cordina
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Phani R Potluri
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Joanna A Guse
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dane McCamey
- School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| |
Collapse
|
19
|
Liu L, Zhang D, Li Y. LncRNAs in cardiac hypertrophy: From basic science to clinical application. J Cell Mol Med 2020; 24:11638-11645. [PMID: 32896990 PMCID: PMC7579708 DOI: 10.1111/jcmm.15819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac hypertrophy is a typical pathological phenotype of cardiomyopathy and a result from pathological remodelling of cardiomyocytes in humans. At present, emerging evidence demonstrated the roles of long non‐coding RNAs (lncRNAs) in regulating the pathophysiological process of cardiac hypertrophy. Herein, we would like to review the recent researches on this issue and try to analysis the potential therapeutic targets on lncRNA sites. Studies have revealed both genetic mutations related hypertrophic cardiomyopathy and the compensative cardiac hypertrophy due to pressure overload, inflammation, endocrine issues and other external stimulations, share a common molecular mechanism of ventricular hypertrophy. The emerging evidence identified the abnormal expression of lncRNAs would leading to the impairment the function of sarcomere, intracellular calcium handling and mitochondrial metabolisms. Several researches proved the therapeutic role of lncRNAs in preventing or reversing cardiac hypertrophy. With the development of delivery system for small pieces of oligonucleotide, clinicians could design gene therapy approaches to terminate the process of cardiac hypertrophy to provide better prognosis.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Lin YH, Schmidt W, Fritz KS, Jeong MY, Cammarato A, Foster DB, Biesiadecki BJ, McKinsey TA, Woulfe KC. Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. J Mol Cell Cardiol 2020; 139:135-147. [PMID: 31981571 DOI: 10.1016/j.yjmcc.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cardiac troponin I (cTnI) is an essential physiological and pathological regulator of cardiac relaxation. Significant to this regulation, the post-translational modification of cTnI through phosphorylation functions as a key mechanism to accelerate myofibril relaxation. Similar to phosphorylation, post-translational modification by acetylation alters amino acid charge and protein function. Recent studies have demonstrated that the acetylation of cardiac myofibril proteins accelerates relaxation and that cTnI is acetylated in the heart. These findings highlight the potential significance of myofilament acetylation; however, it is not known if site-specific acetylation of cTnI can lead to changes in myofilament, myofibril, and/or cellular mechanics. The objective of this study was to determine the effects of mimicking acetylation at a single site of cTnI (lysine-132; K132) on myofilament, myofibril, and cellular mechanics and elucidate its influence on molecular function. METHODS To determine if pseudo-acetylation of cTnI at 132 modulates thin filament regulation of the acto-myosin interaction, we reconstituted thin filaments containing WT or K132Q (to mimic acetylation) cTnI and assessed in vitro motility. To test if mimicking acetylation at K132 alters cellular relaxation, adult rat ventricular cardiomyocytes were infected with adenoviral constructs expressing either cTnI K132Q or K132 replaced with arginine (K132R; to prevent acetylation) and cell shortening and isolated myofibril mechanics were measured. Finally, to confirm that changes in cell shortening and myofibril mechanics were directly due to pseudo-acetylation of cTnI at K132, we exchanged troponin containing WT or K132Q cTnI into isolated myofibrils and measured myofibril mechanical properties. RESULTS Reconstituted thin filaments containing K132Q cTnI exhibited decreased calcium sensitivity compared to thin filaments reconstituted with WT cTnI. Cardiomyocytes expressing K132Q cTnI had faster relengthening and myofibrils isolated from these cells had faster relaxation along with decreased calcium sensitivity compared to cardiomyocytes expressing WT or K132R cTnI. Myofibrils exchanged with K132Q cTnI ex vivo demonstrated faster relaxation and decreased calcium sensitivity. CONCLUSIONS Our results indicate for the first time that mimicking acetylation of a specific cTnI lysine accelerates myofilament, myofibril, and myocyte relaxation. This work underscores the importance of understanding how acetylation of specific sarcomeric proteins affects cardiac homeostasis and disease and suggests that modulation of myofilament lysine acetylation may represent a novel therapeutic target to alter cardiac relaxation.
Collapse
Affiliation(s)
- Ying H Lin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - William Schmidt
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Mark Y Jeong
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
21
|
Biesiadecki BJ, Jin JP. Current and Future Directions of Myofilament Regulation. Arch Biochem Biophys 2019; 667:67-69. [PMID: 31051122 DOI: 10.1016/j.abb.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Brandon J Biesiadecki
- The Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University, 333 W. 10th Ave., Columbus, OH, 43210, USA.
| | - Jian-Ping Jin
- The Department of Physiology, Wayne State University, 5374 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|