1
|
Gatto CC, Cavalcante CDQO, Lima FC, Nascimento ÉCM, Martins JBL, Santana BLO, Gualberto ACM, Pittella-Silva F. Structural Design, Anticancer Evaluation, and Molecular Docking of Newly Synthesized Ni(II) Complexes with ONS-Donor Dithiocarbazate Ligands. Molecules 2024; 29:2759. [PMID: 38930825 PMCID: PMC11206525 DOI: 10.3390/molecules29122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.
Collapse
Affiliation(s)
- Claudia C. Gatto
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Cássia de Q. O. Cavalcante
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Francielle C. Lima
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Érica C. M. Nascimento
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - João B. L. Martins
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - Brunna L. O. Santana
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Ana C. M. Gualberto
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Fabio Pittella-Silva
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| |
Collapse
|
2
|
Zhao X, Zhou D, Ma S, Zheng K, Li Y, Huang B. Purification and properties of a novel trypsin inhibitor from ginkgo fruits and its antiproliferative effect in triple-negative breast cancer cells. Nat Prod Res 2022; 36:6165-6169. [PMID: 35357253 DOI: 10.1080/14786419.2022.2058501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A novel low molecular mass ginkgo biloba trypsin inhibitor (GBTI) was isolated from ginkgo fruits (GF) by trypsin inhibitory activity-guided fractionation by using ammonium sulphate precipitation, followed by ultra-filtration, affinity chromatography and RP-HPLC. The molecular mass and amino acid sequence of GBTI was determined using ESI-MS and ESI-MS/MS, respectively. The structure of GBTI was identified as MKNLTVIPPICLKFPN, with a molecular mass of 1826 Da. GBTI was stable in the pH range of 4-8 and in the temperature range of 0-80 °C for 30 min. However, the inhibitory activity of the GBTI reduced when incubated with various metalions (K+, Na+, Fe2+, Mg2+ and Ca2+) . Finally, GBTI exhibited significant antiproliferative effect in human MDA-MB-231 and mouse 4 T-1 triple-negative breast cancer cells and without toxicity to MCF-10A normal breast cells. Our results suggest that GBTI could be exploited as a natural and hyperstable anticancer agent for triple-negative breast cancer patients.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dayu Zhou
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, China.,College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Shiliang Ma
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Kexin Zheng
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Ying Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bo Huang
- Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
3
|
de Freitas MAG, Amaral NO, Álvares ADCM, de Oliveira SA, Mehdad A, Honda DE, Bessa ASM, Ramada MHS, Naves LM, Pontes CNR, Castro CH, Pedrino GR, de Freitas SM. Blood pressure-lowering effects of a Bowman-Birk inhibitor and its derived peptides in normotensive and hypertensive rats. Sci Rep 2020; 10:11680. [PMID: 32669617 PMCID: PMC7363796 DOI: 10.1038/s41598-020-66624-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Bioactive plant peptides have received considerable interest as potential antihypertensive agents with potentially fewer side effects than antihypertensive drugs. Here, the blood pressure-lowering effects of the Bowman-Birk protease inhibitor, BTCI, and its derived peptides, PepChy and PepTry, were investigated using normotensive (Wistar-WR) and spontaneously hypertensive rats (SHR). BTCI inhibited the proteases trypsin and chymotrypsin, respectively, at 6 µM and 40 µM, a 10-fold greater inhibition than observed with PepTry (60 µM) and PepChy (400 µM). These molecules also inhibited angiotensin converting enzyme (ACE) with IC50 values of 54.6 ± 2.9; 24.7 ± 1.1; and 24.4 ± 1.1 µM, respectively, occluding its catalytic site, as indicated by molecular docking simulation, mainly for PepChy and PepTry. Gavage administration of BTCI and the peptides promoted a decrease of systolic and diastolic blood pressure and an increase of renal and aortic vascular conductance. These effects were more expressive in SHR than in WR. Additionally, BTCI, PepChy and PepTry promoted coronary vasodilation and negative inotropic effects in isolated perfused hearts. The nitric oxide synthase inhibitor blunted the BTCI and PepChy, with no cardiac effects on PepTry. The findings of this study indicate a therapeutic potential of BTCI and its related peptides in the treatment of hypertension.
Collapse
Affiliation(s)
- Maria Alzira Garcia de Freitas
- Biology Institute, Department of Cell Biology, Laboratory of Biophysics, University of Brasília (UnB), Quadra 604, Asa Norte, Bloco J 1° andar, Brasília, DF, 70910-900, Brazil
| | - Nathalia Oda Amaral
- Center of Neuroscience and Cardiovascular Physiology; Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Alice da Cunha Morales Álvares
- Biology Institute, Department of Cell Biology, Laboratory of Biophysics, University of Brasília (UnB), Quadra 604, Asa Norte, Bloco J 1° andar, Brasília, DF, 70910-900, Brazil
| | - Sandriele Aires de Oliveira
- Biology Institute, Department of Cell Biology, Laboratory of Biophysics, University of Brasília (UnB), Quadra 604, Asa Norte, Bloco J 1° andar, Brasília, DF, 70910-900, Brazil
| | - Azadeh Mehdad
- Biology Institute, Department of Cell Biology, Laboratory of Biophysics, University of Brasília (UnB), Quadra 604, Asa Norte, Bloco J 1° andar, Brasília, DF, 70910-900, Brazil
| | - Diego Elias Honda
- Biology Institute, Department of Cell Biology, Laboratory of Biophysics, University of Brasília (UnB), Quadra 604, Asa Norte, Bloco J 1° andar, Brasília, DF, 70910-900, Brazil
| | - Amanda Sá Martins Bessa
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology; Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Marcelo Henrique Soller Ramada
- Graduate Program in Genomic Science and Biotechnology, and Graduate Program in Gerontology, Catholic University of Brasília, Brasília, DF, 70790-160, Brazil
| | - Lara Marques Naves
- Center of Neuroscience and Cardiovascular Physiology; Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Carolina Nobre Ribeiro Pontes
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology; Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Carlos Henrique Castro
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology; Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Gustavo Rodrigues Pedrino
- Center of Neuroscience and Cardiovascular Physiology; Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Sonia Maria de Freitas
- Biology Institute, Department of Cell Biology, Laboratory of Biophysics, University of Brasília (UnB), Quadra 604, Asa Norte, Bloco J 1° andar, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
4
|
Zhou J, Li C, Chen A, Zhu J, Zou M, Liao H, Yu Y. Structural and functional relationship of Cassia obtusifolia trypsin inhibitor to understand its digestive resistance against Pieris rapae. Int J Biol Macromol 2020; 148:908-920. [PMID: 31981663 DOI: 10.1016/j.ijbiomac.2020.01.193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Although digestive resistance of Kunitz protease inhibitors has been reported extensively, the molecular mechanism is not well established. In the present study, the first X-ray structure of Cassia obtusifolia trypsin inhibitor (COTI), a member of Kunitz protease inhibitors, was solved at a resolution of 1.9 Å. The structure adopted a classic β-trefoil fold with the inhibitory loop protruding from the hydrophobic core. The role of Phe139, a unique residue in Kunitz protease inhibitors, and Arg63 in the COTI structure was verified by F139A and R63E mutants. COTI was a specific inhibitor of bovine trypsin and the result was also verified by COTI-trypsin complex formation. Meanwhile, COTI showed equivalent inhibitory activity with that of soybean trypsin inhibitor against bovine trypsin and midgut trypsin from Pieris rapae. The F139 and R63E mutants further indicated that inhibitory specificity and efficiency of COTI were closely related to the global framework, the conformation and the amino acid composition of reactive loop. Finally, a midgut trypsin from P. rapae (PrSP40), which might be involve in the food digestion, was proposed to be a potential target of COTI and might be a promising target for future crop-protection strategy. The results supported the digestive resistance of COTI.
Collapse
Affiliation(s)
- Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Chaolin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Anqi Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jianquan Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Meng Zou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Yamei Yu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Awosika T, Aluko RE. Enzymatic Pea Protein Hydrolysates Are Active Trypsin and Chymotrypsin Inhibitors. Foods 2019; 8:E200. [PMID: 31185637 PMCID: PMC6616451 DOI: 10.3390/foods8060200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
In this work, we report the potency of enzymatic hydrolysates of pea proteins against trypsin and chymotrypsin. Pea protein concentrate was digested with each of alcalase, chymotrypsin, pepsin, and trypsin, followed by membrane separation of the protein hydrolysates into peptide fractions (<1, 1-3, 3-5, and 5-10 kDa). Peptide size profiling with size-exclusion gel chromatography indicated the narrowest size range (0.85-4.98 kDa) for alcalase. Trypsin activity was strongly (p < 0.05) inhibited by the ultrafiltration fractions (mean IC50 = 2.2 mg/mL) obtained from the trypsin hydrolysate when compared to the unfractionated hydrolysate (IC50 = 6.8 mg/mL). Similarly, ultrafiltration also enhanced trypsin inhibition by the alcalase-digested peptides with an IC50 of 21.4 mg/mL for the unfractionated hydrolysate in comparison to 3.1-4.7 mg/mL for the fractions. However, ultrafiltration did not enhance trypsin inhibitory activity of chymotrypsin-digested peptides, while the peptide separation reduced efficacy of pepsin-digested peptides. In contrast, chymotrypsin inhibition by all the enzymatic digests was significantly (p < 0.05) enhanced by ultrafiltration, especially peptide sizes >3 kDa. Kinetics of enzyme inhibition indicate peptides were bound to the enzyme active site in a competitive mode that led to reduced catalysis. We conclude that the pea peptides could function as useful tools to promote human health and as a preservative during food processing and storage.
Collapse
Affiliation(s)
- Temitola Awosika
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|