1
|
Muñoz-Osses M, Navarrete E, Morales P, Quiroz J, Silva M, Torres-González S, Vásquez-Martínez Y, Godoy F, Mascayano C. Substituted aryl piperazine ligands as new dual 5-hLOX/COX-2 inhibitors. Synthesis, biological and computational studies. Bioorg Chem 2025; 159:108398. [PMID: 40174530 DOI: 10.1016/j.bioorg.2025.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Two series of cyano (1a-l) and amino (2a-l) aryl piperazines were synthesized and evaluated for their inhibitory activity against 5-lipoxygenase (5-hLOX) and cyclooxygenase-2 (COX-2). The newly designed derivatives feature diphenyl methyl (a-d), phenyl (e-h), or methoxyphenyl (i-l) groups, respectively, and demonstrated significant inhibition of 5-hLOX. Noteworthy were compounds 1b, 1 g, 1 k, 2f, and 2 g, exhibiting IC50 values ranging from 2.2 to 3.3 μM. The most potent inhibitors (1b, 1 g, 1 k, 2c, and 2f) were characterized by a competitive inhibition mechanism, with Ki values ranging between 1.77 μM and 9.50 μM. Additionally, compounds 2a, 2b, 2 g, and 2 h displayed promising dual inhibition of 5-hLOX and COX-2, with IC50 values below 15 μM. Cytotoxicity assessments against HEK293 cells revealed that the cyano derivatives (1a-l) were non-cytotoxic (CC50 > 200 μM), whereas the amino derivatives (2a-l) exhibited moderate cytotoxicity (CC50 < 50 μM). Notably, the most active derivatives against both targets were non-cytotoxic at their respective inhibitory concentrations. Computational studies, including docking and molecular dynamics simulations, indicated that compound 1 g demonstrated greater stability within the catalytic site of 5-hLOX compared to compound 2f, correlating with the higher affinity observed in kinetic assays. Furthermore, quantitative structure-activity relationship (QSAR) analyses revealed strong correlations between theoretical and experimental IC50 values (97 % for 1a-l and 93 % for 2a-l). These findings, combined with absorption, distribution, metabolism, and excretion (ADME) predictions, suggest that these derivatives are promising candidates as dual inhibitors of 5-hLOX and COX-2.
Collapse
Affiliation(s)
| | | | - Pilar Morales
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile
| | - Javiera Quiroz
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile
| | - Maite Silva
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile
| | | | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile
| | - Fernando Godoy
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile
| | - Carolina Mascayano
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile
| |
Collapse
|
2
|
Liu M, Ye J, Yang F, Dai X, Xing C, Chang H, Gao F, Chen H, Chen J, Cao H. Based on the Sam50-MICOS-ATAD3-mtDNA axis: Exploring oligomeric proanthocyanidins to alleviate molybdenum and cadmium co-induced liver inflammation in sheep. Int J Biol Macromol 2025; 304:141035. [PMID: 39954884 DOI: 10.1016/j.ijbiomac.2025.141035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Molybdenum (Mo) and cadmium (Cd), well-defined hazardous pollutants in the environment, exhibit potential toxic effects on liver tissues by inducing oxidative stress and inflammatory responses. This study aims to investigate the role of the Sam50-MICOS-ATAD3-mtDNA axis in mediating the inflammatory response in liver inflammation induced by co-exposure to Mo and Cd in sheep, as well as the protective effects of oligomeric proanthocyanidins (OPC). The findings indicated that co-exposure to Mo and Cd induced cellular degeneration, rupture of hepatic mitochondrial membranes and mitochondrial dysfunction that was accompanied by the levels of ATP, SDH and GSH-Px reduced in the sheep liver tissue. Furthermore, the co-exposure downregulated the expression levels of mitochondrial membrane proteins (Sam50, MICOS and ATAD3) and degree of co-localization between Sam50 and Mic60. In addition, co-exposure to Mo and Cd elicited an increase in mtDNA content and promoted the upregulation of inflammation-related factor levels, which resulted in an augmentation of TNF-α, CRP, and IL-18 contents. However, OPC alleviated the above changes induced by the combination of Mo and Cd. In conclusion, co-exposure to Mo and Cd decreases mtDNA stability by disrupting the Sam50-MICOS-ATAD3 axis, thereby inducing liver inflammation in sheep. Nevertheless, OPC could alleviate this damage.
Collapse
Affiliation(s)
- Maokang Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Junhua Ye
- Medicine College, Nanchang Institute of Technology, No. 901 Yingxiong Avenue, Economic and Technological Development District, Nanchang 330044, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huifeng Chang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Feiyan Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huawei Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
3
|
Radu A, Tit DM, Endres LM, Radu AF, Vesa CM, Bungau SG. Naturally derived bioactive compounds as precision modulators of immune and inflammatory mechanisms in psoriatic conditions. Inflammopharmacology 2025; 33:527-549. [PMID: 39576422 PMCID: PMC11842495 DOI: 10.1007/s10787-024-01602-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 02/22/2025]
Abstract
Psoriasis represents a chronic autoimmune skin condition defined by various clinical forms, including inverse, erythrodermic, pustular, guttate, plaque types. While current therapies, including topical treatments but also systemic through conventional synthetic drugs and biologics, have improved symptom management, no treatment completely cures the disease, and numerous options are linked to considerable adverse effects, including immunosuppression and carcinogenic risks. Therefore, there is growing interest in bioactive compounds from natural sources due to their potential to reduce inflammation and oxidative stress in psoriasis with fewer adverse effects. The present narrative review aimed to address the limitations of current psoriasis therapies by exploring the therapeutic potential of bioactive compounds in the classes of flavonoids, terpenoids, omega-3 fatty acids, and alkaloids assessed through complex experimental models, focusing on their immunomodulatory and anti-inflammatory properties. Recent studies highlight the efficacy of natural bioactive compounds in reducing psoriasis symptoms, either as standalone treatments or in combination with conventional therapies. While these compounds show promise in alleviating psoriasis-related inflammation, further research is needed to optimize their therapeutic use, understand their mechanisms of action, and assess long-term safety. Future studies should focus on clinical trials to establish standardized protocols for incorporating bioactive compounds into psoriasis management and explore their potential role in personalized treatment strategies. Continued research is essential to develop more effective, safer, and affordable therapeutic options for psoriasis patients.
Collapse
Affiliation(s)
- Ada Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
| | - Laura Maria Endres
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
| |
Collapse
|
4
|
Lei W, Zhiqi H, You P, Peiling T, Yanze G, Qiru L, Mingjie T, Tao L. Based on UHPLC-Q-TOF-MS and bioinformatics strategies, the potential allergens and mechanisms of allergic reactions caused by Danshen injection were explored. Biomed Chromatogr 2024; 38:e5985. [PMID: 39138643 DOI: 10.1002/bmc.5985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
The aim is to investigate the potential allergens and mechanisms underlying allergic-like reactions induced by Danshen injection (DSI). Utilizing ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS), metabolomics, and bioinformatics, we identified the key allergens, targets, and metabolic pathways involved in DSI-induced allergic-like reactions, validating binding efficiency through molecular docking and molecular dynamics. A total of 45 compounds were identified within DSI, with 24 compounds exhibiting strong binding activity to the MrgprX2 activation site. DSI was found to cause changes in 89 endogenous metabolites, including arachidonic acid, prostaglandins, and leukotrienes, primarily affecting pathways such as phenylalanine metabolism and arachidonic acid metabolism. The key allergens identified were Cryptotanshinone, Miltipolone, Neocryptotanshinone, Salvianolic acid B, and Isosalvianolic acid C, which primarily trigger allergic-like reactions by regulating upstream signaling targets such as ALOX5, PTGS1, PPARD, and LTB4R. Validation confirmed the high binding affinity and stability between key allergens and targets. These findings indicate that the allergic components in DSI primarily induce allergic-like reactions by modulating the aforementioned signaling targets, activating the AA metabolic pathway, promoting mast cell degranulation, and releasing downstream endogenous inflammatory mediators, subsequently eliciting allergic-like reactions.
Collapse
Affiliation(s)
- Wu Lei
- School of Pharmacy, Chengdu University, Chengdu, China
| | - He Zhiqi
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Peng You
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Tian Peiling
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Guo Yanze
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Li Qiru
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Tian Mingjie
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Liu Tao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
5
|
Wang S, Li Y, Lin X, Fu X, Zhong H, Ren K, Liu C, Yao W. Rapid Screening of Phenolic Compounds with Anti-Enteritis Activity from Camellia oleifera Oil Using a Smurf Drosophila Model and Molecular Docking Methods. Molecules 2023; 29:76. [PMID: 38202658 PMCID: PMC10780214 DOI: 10.3390/molecules29010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Screening and identifying the active compounds in foods are important for the development and utilization of functional foods. In this study, the anti-enteritis activity of ethanol extract from Camellia oleifera oil (PECS) was quickly evaluated using a Smurf Drosophila model and the metabolomics approach, combined with molecular docking techniques, were performed to rapidly screen and identify compounds with potential anti-enteritis activity in PECS. PECS showed good anti-enteritis activity and inhibited the activity of 5-lipoxygenase (LOX), cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). In particular, wighteone and p-octopamine were newly identified in C. oleifera oil and were proven to have good anti-enteritis activity. The inhibitory activity of kaempferitrin (IC50 = 0.365 mmol L-1) was higher than that of wighteone (IC50 = 0.424 mmol L-1) and p-octopamine (IC50 = 0.402 mmol L-1). Of note, the IC50 value of salazosulfapyridine was 0.810 mmol L-1. Inhibition of LOX activity is likely one of the anti-enteritis mechanisms of PECS. These new findings lay the foundation for further investigations into the underlying mechanisms of anti-enteritis activity in C. oleifera oil.
Collapse
Affiliation(s)
- Shuhao Wang
- Hunan Provincial Key Laboratory of Forest Edible Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha 410004, China
- Commodity Quality Inspection Institute of Hunan Province, Changsha 410004, China
| | - Yang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangjin Fu
- Hunan Provincial Key Laboratory of Forest Edible Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha 410004, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyan Zhong
- Hunan Provincial Key Laboratory of Forest Edible Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha 410004, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kangzi Ren
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Cheng Liu
- Yi-Feng Agriculture and Forestry Technology Co., Ltd., Shaoyang 422300, China
| | - Wen Yao
- Hunan Ju Xiong Institute of Camellia oleifera Oil, Yueyang 414000, China;
| |
Collapse
|
6
|
Matos Leitão M, Euclides Silva-Filho S, Arena AC, Heredia-Vieira SC, Cardoso CAL, Kassuya CAL. Antinociceptive and anti-inflammatory properties of aqueous extract obtained from Serjania marginata Casar leaves. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116018. [PMID: 36496043 DOI: 10.1016/j.jep.2022.116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Serjania marginata Casar (Sapindaceae Family) Leaves are popularly used against abdominal pain. Antiulcer properties of S. marginata were scientifically described, however rare studies showed the antinociceptive effects of this plant. AIM OF STUDY In this study, we investigated the antinociceptive and anti-inflammatory effects of aqueous extract obtained from Serjania marginata leaves (AESM) in nociception/inflammation models. MATERIAL AND METHODS AESM was analyzed in FIA-ESI-IT-MS and Mass spectrometer LTQ XL. AESM oral administration (p.o.) (30, 100 and 300 mg/kg), dexamethasone subcutaneous injection (1 mg/kg, s.c.) and morphine (5 mg/kg, s.c.) were tested against the acetic acid-induced nociception, carrageenan-induced acute inflammatory paw edema/hyperalgesia, formalin-induced nociception and carrageenan-induced pleurisy in Swiss mice. RESULTS Flavonoids rutin was detected in the phytochemical analysis of this extract. Oral treatment of AESM 300 mg/kg significantly reduced the number of acetic acid-induced abdominal writhing. AESM (100 and 300 mg/kg) significantly inhibited formalin-induced nociception, mechanical hyperalgesia and paw edema in carrageenan-model. Furthermore, AESM significantly inhibited leukocyte migration and protein exudation in the carrageenan-induced pleurisy test. CONCLUSION This study confirms the antinociceptive, and anti-inflammatory activity of AESM, which may explain, in part, the popular use of this plant as a natural antinociceptive agent. This pharmacological action can be caused by flavonoids such as rutin and other compounds present in AESM.
Collapse
Affiliation(s)
- Maicon Matos Leitão
- Federal University of Grande Dourados, Faculty of Health Sciences, Dourados, Mato Grosso do Sul State, Brazil; School of Health Sciences, Unigran Capital University Center, Campo Grande, Mato Grosso do Sul State, Brazil.
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul State, Brazil.
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo State, Brazil.
| | - Silvia Cristina Heredia-Vieira
- Environment and Regional Development Postgraduate Program, Anhanguera-Uniderp University, Campo Grande, Mato Grosso do Sul State, Brazil.
| | - Cláudia Andrea Lima Cardoso
- Center of Studies in Natural Resources, State University of Mato Grosso do Sul, Dourados, Mato Grosso do Sul State, Brazil.
| | | |
Collapse
|
7
|
Health benefits of proanthocyanidins linking with gastrointestinal modulation: An updated review. Food Chem 2023; 404:134596. [DOI: 10.1016/j.foodchem.2022.134596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
8
|
Huang F, Zhang T, Li B, Wang S, Xu C, Huang C, Lin D. NMR-based metabolomic analysis for the effects of moxibustion on imiquimod-induced psoriatic mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115626. [PMID: 36049653 DOI: 10.1016/j.jep.2022.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/15/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moxibustion is a traditional medical intervention of traditional Chinese medicine. It refers to the direct or indirect application of ignited moxa wool made of mugwort leaves to acupuncture points or other specific parts of the body for either treating or preventing diseases. Moxibustion has been proven to be effective in treating skin lesions of psoriasis. AIM OF THE STUDY This study was performed to elucidate molecular mechanisms underlying the effects of moxibustion treatment on imiquimod-induced psoriatic mice. MATERIALS AND METHODS We established an imiquimod (IMQ)-induced psoriatic mice (Model) and assessed the effects of moxibustion (Moxi) treatment on skin lesions of psoriatic mice by the PASI scores and expressions of inflammation-related factors relative to normal control mice (NC). We then performed nuclear magnetic resonance (NMR)-based metabolomic analysis on the skin tissues of the NC, Model and Moxi-treated mice to address metabolic differences among the three groups. RESULTS Moxi mice showed reduced PASI scores and decreased expressions of the pro-inflammatory cytokines IL-8, IL-17A and IL-23 relative to Model mice. Compared with the Model group, the NC and Moxi groups shared 9 characteristic metabolites and 4 significantly altered metabolic pathways except for taurine and hypotaurine metabolism uniquely identified in the NC group. To a certain extent, moxibustion treatment improved metabolic disorders of skin lesions of psoriatic mice by decreasing glucose, valine, asparagine, aspartate and alanine-mediated cell proliferation and synthesis of scaffold proteins, alleviating histidine-mediated hyperproliferation of blood vessels, and promoting triacylglycerol decomposition. CONCLUSIONS This study reveals the molecular mechanisms underlying the effects of moxibustion treatment on the skin lesions of psoriasis, potentially improving the clinical efficacy of moxibustion.
Collapse
Affiliation(s)
- Feng Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Tong Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Shaosong Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Chang Xu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, 361024, China
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
9
|
Tsukayama I, Kawakami Y, Tamenobu A, Toda K, Maruoka S, Nagasaki Y, Mori Y, Sawazumi R, Okamoto K, Kanzaki K, Ito H, Takahashi Y, Miki Y, Yamamoto K, Murakami M, Suzuki-Yamamoto T. Malabaricone C derived from nutmeg inhibits arachidonate 5-lipoxygenase activity and ameliorates psoriasis-like skin inflammation in mice. Free Radic Biol Med 2022; 193:1-8. [PMID: 36183930 DOI: 10.1016/j.freeradbiomed.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
As pro-inflammatory lipid mediators, leukotrienes have pathophysiological activities in several inflammatory diseases, including psoriasis. In the biosynthesis of leukotrienes from arachidonic acid, 5-lipoxygenase catalyzes the first two steps. In the present study, we showed that nutmeg (Myristica fragrans) strongly inhibited the catalytic activity of 5-lipoxygenase. To characterize the bioactive component(s) of nutmeg, we performed 5-lipoxygenase inhibitory activity-guided fractionation of aqueous ethanol extract of nutmeg, resulting in the isolation of malabaricone C having antioxidant activity. Malabaricone C exhibited potent competitive inhibition of 5-lipoxygenase with an IC50 value of 0.2 μM. In mice with imiquimod-induced psoriasis-like skin lesions, topical application of 2 mM malabaricone C significantly ameliorated hyperplasia and inflammatory cell infiltration, and suppressed the expression of the psoriasis-associated genes S100a9, Krt1, Il17a, and Il22. Lipid metabolome analysis of these psoriasis-like skin lesions showed that malabaricone C markedly decreased the level of leukotriene B4 but did not significantly increase the other pro-inflammatory lipid mediators. These findings suggest that malabaricone C decreases LTB4 by the 5-lipoxygenase inhibition and ameliorates the symptoms of psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Izumi Tsukayama
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Asako Tamenobu
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Keisuke Toda
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Saya Maruoka
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuki Nagasaki
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshiko Mori
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Risa Sawazumi
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Kensuke Okamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Keita Kanzaki
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Hideyuki Ito
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, 2-1, Minami-jyosanjima-cho, Tokushima, 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan.
| |
Collapse
|
10
|
Xu J, Chen H, Qian H, Wang F, Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J Nanobiotechnology 2022; 20:448. [PMID: 36242051 PMCID: PMC9569062 DOI: 10.1186/s12951-022-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic therapies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limitations of nanotherapeutic application for transdermal administration, as well as update an insight into potential future directions for nanotherapies in ROS-related skin diseases.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Her Y, Lee TK, Sim H, Lee JC, Kim DW, Choi SY, Hong JK, Lee JW, Kim JD, Won MH, Kim SS. Pinus thunbergii bark extract rich in flavonoids promotes hair growth in dorsal skin by regulating inflammatory cytokines and increasing growth factors in mice. Mol Med Rep 2022; 25:100. [PMID: 35088884 PMCID: PMC8822878 DOI: 10.3892/mmr.2022.12616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Korean maritime pine bark (Pinus thunbergii) has been used as an alternative medicine due to its beneficial properties, including anti-inflammatory effects. To date, the anti-inflammatory and hair growth-promoting effects of Pinus densiflora bark extract have remained elusive. Therefore, in the present study, Pinus thunbergii bark was extracted with pure water (100°C) and the extract was examined to determine its polyphenol and flavonoid content. C57BL/6 mice were used to assess the effects of the extract to promote hair growth. The extract (1, 2 and 4%) was topically applied onto shaved dorsal skin and hair growth was observed for 17 days. A significant increase in hair growth was observed with 2 and 4% extract. Based on this finding, the optimal dose of the extract for effective hair growth promotion was determined to be 2%. The mechanisms of hair growth promotion were investigated via immunohistochemical analysis of changes in inflammatory cytokines and growth factors in the hair follicles following treatment with 2% extract. The treatment reduced the levels of TNF-α and IL-1β, which are pro-inflammatory cytokines, while it enhanced the levels of IL-4 and IL-13, which are anti-inflammatory cytokines, in the hair follicles. In addition, elevated insulin-like growth factor I and vascular epidermal growth factor were detected in hair follicles following treatment. Based on these findings, it was suggested that the extract of Pinus thunbergii bark may be utilized for hair loss prevention and/or hair growth promotion.
Collapse
Affiliation(s)
- Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Gangnung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jun Kee Hong
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Ji-Won Lee
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sung-Su Kim
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| |
Collapse
|
12
|
Yao D, Qiao F, Song C, Lv Y. Matrix stiffness regulates bone repair by modulating 12-lipoxygenase-mediated early inflammation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112359. [PMID: 34474906 DOI: 10.1016/j.msec.2021.112359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Lipid metabolism in macrophages has been increasingly emphasized in exerting an anti-inflammatory effect and accelerating fracture healing. 12-lipoxygenase (12-LOX) is expressed in several cell types, including macrophages, and oxidizes polyunsaturated fatty acids (PUFAs) to generate both pro- and anti-inflammatory lipid mediators, of which the n-3 PUFAs play an important part in tissue homeostasis/fibrosis. Although mechanical factor regulates the lipid metabolic axis of inflammatory cells, specifically matrix stiffness influences macrophages metabolic responses, little is known about how matrix stiffness affects the 12-LOX-mediated early inflammation in bone repair. In the present study, demineralized bone matrix (DBM) scaffolds with different matrix stiffness were constructed by controlling the duration of decalcification (0 h (control), 1 h (high), 12 h (medium), and 5 d (low)) to repair the defected rat skull. The expression of inflammatory cytokines and macrophages polarization were analyzed. The lipid metabolites and lipid mediators' biosynthesis by matrix stiffness-regulated were further detected. The results showed that the low matrix stiffness could polarize macrophages into an anti-inflammatory phenotype, promote the expression of anti-inflammatory cytokines and specialized pro-resolving lipid mediators (SPMs) biosynthesis beneficial for the osteogenesis of mesenchymal stem cells (MSCs). After treated with ML355, the expression of anti-inflammatory cytokines/proteins and SPMs biosynthesis in macrophages cultured on low-matrix stiffness scaffolds were repressed, and there were almost no statistical differences among all groups. Findings from this study support that matrix stiffness regulates bone repair by modulating 12-LOX-mediated early inflammation, which suggest a direct mechanical impact of matrix stiffness on macrophages lipid metabolism and provide a new insight into the clinical application of SPMs for bone regeneration.
Collapse
Affiliation(s)
- Dongdong Yao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Fangyu Qiao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Chenchen Song
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
13
|
Xie J, Huang S, Huang H, Deng X, Yue P, Lin J, Yang M, Han L, Zhang DK. Advances in the Application of Natural Products and the Novel Drug Delivery Systems for Psoriasis. Front Pharmacol 2021; 12:644952. [PMID: 33967781 PMCID: PMC8097153 DOI: 10.3389/fphar.2021.644952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Psoriasis, an incurable autoimmune skin disease, is one of the most common immune-mediated disorders. Presently, numerous clinical research studies are underway, and treatment options are available. However, these treatments focus on improving symptoms of the disease and fail to achieve a radical cure; they also have certain toxic side effects. In recent years, natural products have increasingly gained attention because of their high efficiency and low toxicity. Despite their obvious therapeutic effects, natural products’ biological activity was limited by their instability, poor solubility, and low bioavailability. Novel drug delivery systems, including liposomes, lipospheres, nanostructured lipid carriers, niosomes, nanoemulsions, nanospheres, microneedles, ethosomes, nanocrystals, and foams could potentially overcome the limitations of poor water solubility and permeability in traditional drug delivery systems. Thus, to achieve a therapeutic effect, the drug can reach the epidermis and dermis in psoriatic lesions to interact with the immune cells and cytokines.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Yue
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
14
|
Muñoz-Osses M, Quiroz J, Vásquez-Martínez Y, Flores E, Navarrete E, Godoy F, Torrent C, Cortez-San Martín M, Gómez A, Mascayano C. Evaluation of cyrhetrenyl and ferrocenyl precursors as 5-lipoxygenase inhibitors – biological and computational studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01336j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and biological evaluation of precursors derived from ferrocene and cyrhetrene as inhibitors of enzyme 5-hLOX.
Collapse
Affiliation(s)
| | - Javiera Quiroz
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP)
- Escuela de Medicina
- Facultad de Ciencias Médicas
- Universidad de Santiago de Chile
- Chile
| | - Erick Flores
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | | - Fernando Godoy
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | - Claudia Torrent
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | | | - Alejandra Gómez
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | |
Collapse
|
15
|
Sarango-Granda P, Silva-Abreu M, Calpena AC, Halbaut L, Fábrega MJ, Rodríguez-Lagunas MJ, Díaz-Garrido N, Badia J, Espinoza LC. Apremilast Microemulsion as Topical Therapy for Local Inflammation: Design, Characterization and Efficacy Evaluation. Pharmaceuticals (Basel) 2020; 13:484. [PMID: 33371334 PMCID: PMC7767333 DOI: 10.3390/ph13120484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Apremilast (APR) is a selective phosphodiesterase 4 inhibitor administered orally in the treatment of moderate-to-severe plaque psoriasis and active psoriatic arthritis. The low solubility and permeability of this drug hinder its dermal administration. The purpose of this study was to design and characterize an apremilast-loaded microemulsion (APR-ME) as topical therapy for local skin inflammation. Its composition was determined using pseudo-ternary diagrams. Physical, chemical and biopharmaceutical characterization were performed. Stability of this formulation was studied for 90 days. Tolerability of APR-ME was evaluated in healthy volunteers while its anti-inflammatory potential was studied using in vitro and in vivo models. A homogeneous formulation with Newtonian behavior and droplets of nanometric size and spherical shape was obtained. APR-ME released the incorporated drug following a first-order kinetic and facilitated drug retention into the skin, ensuring a local effect. Anti-inflammatory potential was observed for its ability to decrease the production of IL-6 and IL-8 in the in vitro model. This effect was confirmed in the in vivo model histologically by reduction in infiltration of inflammatory cells and immunologically by decrease of inflammatory cytokines IL-8, IL-17A and TNFα. Consequently, these results suggest that this formulation could be used as an attractive topical treatment for skin inflammation.
Collapse
Affiliation(s)
- Paulo Sarango-Granda
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María-José Fábrega
- Department of Experimental and Health Sciences, Parc de Recerca Biomèdica de Barcelona, University Pompeu Fabra (UPF), 08005 Barcelona, Spain;
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.J.R.-L.); (N.D.-G.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.J.R.-L.); (N.D.-G.); (J.B.)
- Institute of Biomedicine of the University of Barcelona (IBUB), Sant Joan de Déu Research Institute, 08028 Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.J.R.-L.); (N.D.-G.); (J.B.)
| | - Lupe Carolina Espinoza
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| |
Collapse
|