1
|
Yen CC, Chen PCH, Chen SC, Wu WC, Yen CH, Lin YC, Wu PK, Chen CM, Wang JY, Chao TC, Yang MH, Fletcher JA. Ferroptosis as a therapeutic vulnerability in MDM2 inhibition in dedifferentiated liposarcoma. Oncol Lett 2025; 29:269. [PMID: 40247991 PMCID: PMC12005077 DOI: 10.3892/ol.2025.15015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025] Open
Abstract
Ferroptosis is a form of necrotic cell death characterized by phospholipid oxidation. The cystine-glutamate antiporter (xCT), composed of solute carrier family 7 member 11 (SLC7A11) and SLC3A2, imports cystine for glutathione synthesis. Glutathione peroxidase 4 (GPX4) requires glutathione to counteract lipid peroxidation and prevent ferroptosis. Erastin, an xCT inhibitor, and Ras-selective lethal small molecule 3 (RSL3), a GPX4 inhibitor, suppress GPX4 function and induce ferroptosis. Tumor protein p53 (TP53) has a paradoxical role in ferroptosis regulation. Mouse double minute 2 homolog (MDM2), a negative regulator of TP53, is a key oncogene in well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS). Therefore, the present study explored the role of ferroptosis in DDLPS treatment response and resistance. Publicly available expression profiles of WDLPS, DDLPS and adipose tissue were analyzed, and the differential expression of ferroptosis-related genes regulated by the MDM2-TP53 pathway was identified in WDLPS and DDLPS. In vitro experiments were performed to assess the effects of erastin and RSL3 on the viability, lipid peroxidation and apoptosis of DDLPS cell lines. The results revealed that erastin and RSL3 induced lipid peroxidation and apoptosis, thereby exerting cytotoxic effects. In addition, nutlin-3, an MDM2 inhibitor, was demonstrated to increase lipid peroxidation and cytotoxicity when applied prior to erastin treatment. Notably, nutlin-3 also upregulated SLC3A2 expression in DDLPS cell lines, thereby enhancing cystine uptake. This increase in cystine uptake was suppressed by erastin. In addition, nutlin-3-induced SLC3A2 upregulation was abolished by TP53 knockdown. Nutlin-3 combined with erastin or RSL3 reduced absolute p-4EBP-1 levels in NDDLS-1 cells and p-p70S6 levels in both cell lines, with no significant impact on the p-4EBP-1/4EBP-1 and p-p70S6/p70S6 ratios. These results indicate that ferroptosis is a therapeutic vulnerability in the response to MDM2 inhibition in DDLPS. Furthermore, combining MDM2 inhibitors with ferroptosis-inducing agents may provide a potential therapeutic strategy for DDLPS and the role of mTOR in the pro-apoptotic effect of these combinations deserve further investigation.
Collapse
Affiliation(s)
- Chueh-Chuan Yen
- Department of Medical Research, Division of Clinical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Paul Chih-Hsueh Chen
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - San-Chi Chen
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Wen-Chi Wu
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Chiao-Han Yen
- Department of Medical Research, Division of Clinical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - Yung-Chan Lin
- Department of Medical Research, Division of Clinical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - Po-Kuei Wu
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - Chao-Ming Chen
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - Jir-You Wang
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Ta-Chung Chao
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Muh-Hwa Yang
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | | |
Collapse
|
2
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
3
|
Chen S, Zhao W, Chen R, Sheng F, Gu Y, Hao S, Wu D, Lu B, Chen L, Wu Y, Xu Y, Han Y, Zhou L, Riazuddin SA, Fu Q, Yao K. FYCO1 regulates autophagy and senescence via PAK1/p21 in cataract. Arch Biochem Biophys 2024; 761:110180. [PMID: 39395618 DOI: 10.1016/j.abb.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND ARC (Age-related cataract) is one of the leading causes of vision impairment and blindness; however, its pathogenesis remains unclear. FYCO1 (FYVE and coiled-coil domain containing 1) serves as an autophagy adaptor. The present study investigated the role of FYCO1 in cataract. METHODS Ultraviolet-B (UVB) irradiation was used to establish a cataract mice model. Hematoxylin and eosin (H&E) assay were used to observe lens morphology. Cell models were constructed by cultivating SRA 01/04 cells with H2O2 and UVB. Cell counting kit-8 (CCK8) and Senescence-associated β-galactosidase (SA-β-Gal) assay were performed to explore proliferation and senescence. The gene and protein expression were assessed by quantitative real-time PCR (qRT-PCR), Western blot and immunofluorescence staining. RESULTS We demonstrated lens structural damage and downregulation of FYCO1 in mice with UVB-induced cataracts. In vitro results revealed a deletion in autophagy levels along with the decrease of FYCO1 expression in human lens epithelial cells (HLECs) after H2O2 treatment, which was confirmed in vivo. The knockout of FYCO1 in the HLECs did not change basal autophagy and senescence but suppressed HLECs response in the induction of both. Further investigation indicated that FYCO1 knockout inhibited senescence and p21 levels by suppressing the expression of p21 activated kinase 1 (PAK1) in cataract cell models. CONCLUSIONS This study has newly characterized the role of FYCO1 in UVB-induced cataracts and in oxidative stress, both of which are associated with ARCs. A novel association between FYCO1 and PAK1/p21 in lens epithelial cell autophagy, senescence, and cataractogenesis also appears to have been established.
Collapse
Affiliation(s)
- Shuying Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Wei Zhao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China; Eye Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, China
| | - Rongrong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Feiyin Sheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuzhou Gu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shengjie Hao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Di Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Bing Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Lu Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuhao Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yili Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yu Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiuli Fu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Gan X, Hu J, Pang Q, Yan R, Bao Y, Liu Y, Song J, Wang Z, Sun W, Huang F, Cai C, Wang L. LDHA-mediated M2-type macrophage polarization via tumor-derived exosomal EPHA2 promotes renal cell carcinoma progression. Mol Carcinog 2024; 63:1486-1499. [PMID: 38780182 DOI: 10.1002/mc.23737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Lactate dehydrogenase A (LDHA) is known to promote the growth and invasion of various types of tumors, affects tumor resistance, and is associated with tumor immune escape. But how LDHA reshapes the tumor microenvironment and promotes the progression of renal cell carcinoma (RCC) remains unclear. In this study, we found that LDHA was highly expressed in clear cell RCC (ccRCC), and this high expression was associated with macrophage infiltration, while macrophages were highly infiltrated in ccRCC, affecting patient prognosis via M2-type polarization. Our in vivo and in vitro experiments demonstrated that LDHA and M2-type macrophages could enhance the proliferation, invasion, and migration abilities of ccRCC cells. Mechanistically, high expression of LDHA in ccRCC cells upregulated the expression of EPHA2 in exosomes derived from renal cancer. Exosomal EPHA2 promoted M2-type polarization of macrophages by promoting activation of the PI3K/AKT/mTOR pathway in macrophages, thereby promoting the progression of ccRCC. All these findings suggest that EPHA2 may prove to be a potential therapeutic target for advanced RCC.
Collapse
Affiliation(s)
- Xinxin Gan
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiatao Hu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qingyang Pang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rui Yan
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Bao
- Department of Urology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiaao Song
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zheng Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weihao Sun
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fuzhao Huang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Cai
- Department of Special Clinic, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Qian Z, Zhang X, Huang J, Niu X, Zhu C, Tai Z, Zhu Q, Chen Z, Zhu T, Wu G. ROS-responsive MSC-derived Exosome Mimetics Carrying MHY1485 Alleviate Renal Ischemia Reperfusion Injury through Multiple Mechanisms. ACS OMEGA 2024; 9:24853-24863. [PMID: 38882096 PMCID: PMC11170644 DOI: 10.1021/acsomega.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Renal ischemia reperfusion (IR) injury is a prevalent inflammatory nephropathy in surgeries such as renal transplantation or partial nephrectomy, damaging renal function through inducing inflammation and cell death in renal tubules. Mesenchymal stromal/stem cell (MSC)-based therapies, common treatments to attenuate inflammation in IR diseases, fail to exhibit satisfying effects on cell death in renal IR. In this study, we prepared MSC-derived exosome mimetics (EMs) carrying the mammalian target of the rapamycin (mTOR) agonist to protect kidneys in proinflammatory environments under IR conditions. The thioketal-modified EMs carried the mTOR agonist and bioactive molecules in MSCs and responsively released them in kidney IR areas. MSC-derived EMs and mTOR agonists protected kidneys synergistically from IR through alleviating inflammation, apoptosis, and ferroptosis. The current study indicates that MSC-TK-MHY1485 EMs (MTM-EM) are promising therapeutic biomaterials for renal IR injury.
Collapse
Affiliation(s)
- Zhiyu Qian
- Department of Urology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai 200030, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200030, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Jiahua Huang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| | - Xinhao Niu
- Department of Urology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai 200030, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200030, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai 200030, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200030, China
| | - Guoyi Wu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| |
Collapse
|
6
|
Shi Y, Wu Z, Zeng P, Song J, Guo J, Yang X, Zhou J, Liu J, Hou L. Seneca valley virus 3C protease blocks EphA2-Mediated mTOR activation to facilitate viral replication. Microb Pathog 2024; 191:106673. [PMID: 38705218 DOI: 10.1016/j.micpath.2024.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.
Collapse
Affiliation(s)
- Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhi Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Penghui Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
7
|
Lv Y, Shao Y, Jiang C, Wang Y, Li Y, Li Y, Duan X, Dong S, Lin J, Zhang H, Shan H. Quantitative proteomics based on TMT revealed the response of PK15 cells infected PEDV wild strain. Microb Pathog 2024; 186:106503. [PMID: 38142905 DOI: 10.1016/j.micpath.2023.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Porcine epidemic diarrhea (PED), caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly contagious enteric disease with a high mortality rate in suckling piglets. Identification of proteins associated with PEDV infection may provide insights into the pathogenesis of this viral disease. In this study, we employed tandem mass tag (TMT) quantitative protein analysis to investigate proteomic changes in PK15 cells following PEDV infection, and differential protein expression profiles were obtained at 0 h, 24 h, and 48 h post-infection. Overall, a total of 6330 proteins were identified. Applying criteria for fold change >1.5 < 0.67 and p-values <0.05 resulted in the identification of 59 up-regulated proteins and 103 down-regulated proteins that exhibited significant alterations in the H24 group compared to the H0 group. The H48 group demonstrated significant upregulation of 110 proteins and downregulation of 144 proteins compared to the H0 group; additionally, there were also 10 upregulated and 30 downregulated proteins in the H48 group when compared to the H24 group. These differentially expressed proteins (DEPs) were involved in immune response regulation, signal transduction, lipid transport and metabolism processes as well as cell apoptosis pathways. Based on these DEPs, we propose that PEDV may disrupt signal transduction pathways along with lipid transport and metabolism processes leading to maximal viral replication, it may also trigger inflammatory cascades accordingly. These findings could provide valuable information for elucidating specific pathogenesis related to PEDV infection while contributing towards developing new antiviral strategies.
Collapse
Affiliation(s)
- Yuting Lv
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yu Shao
- Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chengyuan Jiang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yongming Wang
- Shandong Huahong Biological Engineering Co., LTD, Binzhou, Shandong, China
| | - Yingguang Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yan Li
- Qingdao Animal Disease Prevention and Control Center, Qingdao, Shandong, China
| | - Xiaoxiao Duan
- Qingdao Animal Disease Prevention and Control Center, Qingdao, Shandong, China
| | - Shaoming Dong
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiaxu Lin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| | - Hu Shan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Tian X, Wei J. Sestrin 2 protects human lens epithelial cells from oxidative stress and apoptosis induced by hydrogen peroxide by regulating the mTOR/Nrf2 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241234741. [PMID: 38379215 PMCID: PMC10880533 DOI: 10.1177/03946320241234741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells (HLECs). METHODS To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 μM hydrogen peroxide (H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay. RESULTS SESN2 was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treated with H2O2. Under treatment of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD and CAT, inhibited cell apoptosis, and reduced the levels of MDA, ROS, IL-1β, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bioinformatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2 group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in the H2O2 group. Additionally, H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2 group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction. CONCLUSION SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Ophthalmology, Jinan Aier Eye Hospital, Jinan, China
| | - Jie Wei
- Department of Ophthalmology, No. 960 Hospital of PLA Joint Logistic Support Force, Jinan, China
| |
Collapse
|
9
|
Wang L, Deng R, Chen S, Tian R, Guo M, Chen Z, Zhang Y, Li H, Liu Q, Tang S, Zhu H. Carboxypeptidase A4 negatively regulates HGS-ETR1/2-induced pyroptosis by forming a positive feedback loop with the AKT signalling pathway. Cell Death Dis 2023; 14:793. [PMID: 38049405 PMCID: PMC10696061 DOI: 10.1038/s41419-023-06327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
Pyroptosis, a mode of inflammatory cell death, has recently gained significant attention. However, the underlying mechanism remains poorly understood. HGS-ETR1/2 is a humanized monoclonal antibody that can bind to DR4/5 on the cell membrane and induce cell apoptosis by activating the death receptor signalling pathway. In this study, by using morphological observation, fluorescence double staining, LDH release and immunoblot detection, we confirmed for the first time that HGS-ETR1/2 can induce GSDME-mediated pyroptosis in hepatocellular carcinoma cells. Our study found that both inhibition of the AKT signalling pathway and silencing of CPA4 promote pyroptosis, while the overexpression of CPA4 inhibits it. Furthermore, we identified a positive regulatory feedback loop is formed between CPA4 and AKT phosphorylation. Specifically, CPA4 modulates AKT phosphorylation by regulating the expression of the AKT phosphatase PP2A, while inhibition of the AKT signalling pathway leads to a decreased transcription and translation levels of CPA4. Our study reveals a novel mechanism of pyroptosis induced by HGS-ETR1/2, which may provide a crucial foundation for future investigations into cancer immunotherapy.
Collapse
Affiliation(s)
- Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Shuishun Chen
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Mengmeng Guo
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Zihao Chen
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yingdan Zhang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, Institute of Pathogen Biology and Immunology, School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
10
|
Zhao W, Chen S, Lu B, Wu D, Gu Y, Hao S, Sheng F, Xu Y, Han Y, Chen R, Zhou L, Fu Q, Yao K. Upregulation of EphA2 is associated with apoptosis in response to H 2O 2 and UV radiation-induced cataracts. Arch Biochem Biophys 2023; 747:109756. [PMID: 37714253 DOI: 10.1016/j.abb.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
In this article, we examine the role of erythropoietin-producing hepatocellular receptor A2 (EphA2) in the apoptosis of lens epithelial cells (LECs) in H2O2 and UV radiation-induced cataracts. We treated SRA01/04 cells with H2O2 or ultraviolet (UV) radiation to create a cataract cell model. We constructed a cataract lens model by exposing mice to UV radiation. We used CCK8 assays, Annexin V-FITC analysis, and immunohistochemical staining to explore proliferation and apoptosis of the cataract model. Thereafter, we used quantitative real-time PCR (qPCR) analysis, Western blot assays, and immunofluorescence to determine gene and protein expression levels. We also employed Crispr/Cas9 gene editing to create an EphA2 knockout in SRA01/04 cells. Results: H2O2 or UV radiation induced SRA01/04 cells showed EphA2 gene upregulation. CCK8 and apoptosis assays showed that EphA2 over-expression (OE) reduced epithelial cell apoptosis, but knockout of EphA2 induced it in response to H2O2 and UV radiation, respectively. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on cell apoptosis. In vivo, the EphA2 protein level increased in the lenses of UV-treated mice. Our results showed that EphA2 was upregulated in SRA01/04 cells in response to H2O2 and UV radiation. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on H2O2 and UV radiation-induced cell apoptosis. We confirmed this change with an experiment on UV-treated mice. The present study established a novel association between EphA2 and LEC apoptosis.
Collapse
Affiliation(s)
- Wei Zhao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shuying Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Bing Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Di Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuzhou Gu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shengjie Hao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Feiyin Sheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yili Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yu Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Rongrong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Qiuli Fu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Xie Y, Lei X, Zhao G, Guo R, Cui N. mTOR in programmed cell death and its therapeutic implications. Cytokine Growth Factor Rev 2023; 71-72:66-81. [PMID: 37380596 DOI: 10.1016/j.cytogfr.2023.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Romero‐Gavilán F, Cerqueira A, García‐Arnáez I, Azkargorta M, Elortza F, Gurruchaga M, Goñi I, Suay J. Proteomic evaluation of human osteoblast responses to titanium implants over time. J Biomed Mater Res A 2023; 111:45-59. [PMID: 36054528 PMCID: PMC9804409 DOI: 10.1002/jbm.a.37444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 01/05/2023]
Abstract
Titanium is widely used in bone prostheses due to its excellent biocompatibility and osseointegration capacity. To understand the effect of sandblasted acid-etched (SAE) Ti implants on the biological responses of human osteoblast (HOb), their proteomic profiles were analyzed using nLC-MS/MS. The cells were cultured with the implant materials, and 2544 distinct proteins were detected in samples taken after 1, 3, and 7 days. Comparative analyses of proteomic data were performed using Perseus software. The expression of proteins related to EIF2, mTOR, insulin-secretion and IGF pathways showed marked differences in cells grown with SAE-Ti in comparison with cells cultured without Ti. Moreover, the proteomic profiles obtained with SAE-Ti were compared over time. The affected proteins were related to adhesion, immunity, oxidative stress, coagulation, angiogenesis, osteogenesis, and extracellular matrix formation functions. The proliferation, mineralization and osteogenic gene expression in HObs cultured with SAE-Ti were characterized in vitro. The results showed that the osteoblasts exposed to this material increase their mineralization rate and expression of COLI, RUNX2, SP7, CTNNB1, CAD13, IGF2, MAPK2, and mTOR. Overall, the observed proteomic profiles can explain the SAE-Ti osteogenic properties, widening our knowledge of key signaling pathways taking part in the early stages of the osseointegration process in this type of implantations.
Collapse
Affiliation(s)
- Francisco Romero‐Gavilán
- Department of Industrial Systems Engineering and DesignUniversitat Jaume ICastellón de la PlanaSpain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and DesignUniversitat Jaume ICastellón de la PlanaSpain
| | - Iñaki García‐Arnáez
- Department of Polymers and Advanced Materials: Physics, Chemistry and TechnologyUniversidad del País VascoSan SebastiánSpain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed‐ISCIIIBizkaia Science and Technology ParkDerioSpain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed‐ISCIIIBizkaia Science and Technology ParkDerioSpain
| | - Mariló Gurruchaga
- Department of Polymers and Advanced Materials: Physics, Chemistry and TechnologyUniversidad del País VascoSan SebastiánSpain
| | - Isabel Goñi
- Department of Polymers and Advanced Materials: Physics, Chemistry and TechnologyUniversidad del País VascoSan SebastiánSpain
| | - Julio Suay
- Department of Industrial Systems Engineering and DesignUniversitat Jaume ICastellón de la PlanaSpain
| |
Collapse
|
13
|
Li H, Gao L, Du J, Ma T, Ye Z, Li Z. Differentially expressed gene profiles and associated ceRNA network in ATG7-Deficient lens epithelial cells under oxidative stress. Front Genet 2022; 13:1088943. [PMID: 36568386 PMCID: PMC9768497 DOI: 10.3389/fgene.2022.1088943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidation is an essential factor during cataract development. Autophagy, usually a cytoprotective process, is always found elevated in lens epithelial cells under oxidation, yet its roles and associated molecular mechanisms under such circumstances are rarely elucidated. Herein, we extracted and re-analyzed the RNA sequencing data of the GSE161701 dataset from the Gene Expression Omnibus database to identify the differentially expressed mRNAs and lncRNAs by using the R package "DESeq2". Further analyses of gene ontology and KEGG enrichment were implemented via the packages "clusterProfiler" and "enrichplot". We found that after the knockout of ATG7, differentially expressed genes were more associated with hemopoiesis, vasculature development, axonogenesis, and hypoxia regulation. When stimulated with H2O2, LECs displayed a gene expression profile correlating with apoptotic and proliferative pathways, such as the MAPK signaling pathway and FoxO signaling pathway. The differentially expressed gene profiles of the two types of LECs (wild type and ATG7 deficient) under oxidation were distinct to a large extent. Furthermore, 1,341 up-regulated and 1912 down-regulated differential mRNAs and 263 up-regulated and 336 down-regulated differential lncRNAs between these two types of LECs subjected to H2O2 were detected, among which 292 mRNAs and 24 lncRNAs possibly interacted with ten cataract-related miRNAs. A competing endogenous lncRNA-miRNA-mRNA network based on such interactions was finally constructed.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China,Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Jinlin Du
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Zi Ye, ; Zhaohui Li,
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China,Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Zi Ye, ; Zhaohui Li,
| |
Collapse
|
14
|
Lipofectamine 2000™ at transfection dose promotes EphA2 transcription in an HDAC4-dependent manner to reduce its cytotoxicity. Heliyon 2022; 8:e12118. [PMID: 36544821 PMCID: PMC9761724 DOI: 10.1016/j.heliyon.2022.e12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The cationic liposome is well-known as an efficient nucleic acid delivery tool; however, the stress responses induced by liposome per se have been rarely revealed. In this study, we found that Lipofectamine™ 2000 (lipo2000), a commonly used commercial cationic liposome transfection, could upregulate EphA2 mRNA expression in multiple cells at transfection dose. Furthermore, lipo2000 treatment could increase the level of EphA2 hnRNA (heterogeneous nuclear RNA). Lipo2000-induced EphA2 upregulation could be depleted upon global transcription inhibition, proving that lipo2000 upregulates EphA2 expression via activating its transcription. Moreover, HDAC4 depletion, a known EphA2 trans-acting regulatory factor, could eliminate the lipo2000-induced EphA2 upregulation, demonstrating that lipo2000 promotes EphA2 transcription in an HDAC4 dependent manner. Functionally, EphA2 knockdown did not affect GFP expression level and the interfering efficacy of siGAPDH, suggesting that EphA2 is unrelated to the nucleic acid delivery capacity of lipo2000. Nevertheless, EphA2 depletion significantly activated autophagy and apoptosis, increasing the cytotoxic effects of lipo2000, which could be rescued by EphA2 restoration, indicating that EphA2 is essential to overcome liposome-related cytotoxicity. Finally, we found that lipo2000 could activate EphA2 transcription in an HDAC4-dependent manner. EphA2 is not associated with the transfection efficiency of lipo2000, but it is vital to reduce lipo2000 cytotoxicity, suggesting that when conducting liposome-mediated gene function studies, especially for EphA2, the stress response of liposomes should be considered to obtain objective results.
Collapse
|
15
|
Zhao X, Liu J, Jin D, Ren C, Yang L, Zhu Y, Huang C, Ding L, Wu Z, Shen K, Zhang Z, Chen H, Wang N. EphA2 Promotes the Development of Cervical Cancer through the CXCL11/PD-L1 Pathway. JOURNAL OF ONCOLOGY 2022; 2022:4886907. [PMID: 36478746 PMCID: PMC9722304 DOI: 10.1155/2022/4886907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 10/29/2023]
Abstract
Erythropoietin-producing hepatoma receptor A2 (EphA2), receptor tyrosine kinase, the most widespread member of the largest receptor tyrosine kinase family, plays a critical role in physiological and pathological conditions. In recent years, the role of EphA2 in the occurrence and development of cancer has become a research hotspot and is considered a promising potential target. Our previous studies have shown that EphA2 has an indisputable cancer-promoting role in cervical cancer, but its related mechanism requires further research. In this study, high-throughput sequencing was performed on EphA2 knockdown cervical cancer cells and the control group. An analysis of differentially expressed genes revealed that EphA2 may exert its cancer-promoting effect through C-X-C motif chemokine ligand 11 (CXCL11). In addition, we found that EphA2 could further regulate programmed cell death ligand 1 (PD-L1) through CXCL11. This has also been further demonstrated in in vivo experiments. Our study demonstrated that EphA2 plays a tumor-promoting role in cervical carcinoma through the CXCL11/PD-L1 pathway, providing new guidance for the targeted therapy and combination therapy of cervical carcinoma.
Collapse
Affiliation(s)
- Xinyue Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Cervical Disease, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaxi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongdong Jin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Cervical Disease, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhang Zhu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Cervical Disease, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changhao Huang
- Organ Transplant Center, Xiangya Hospital, Central South University, Changsha, China
| | - Leilei Ding
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zimeng Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen'an Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nannan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|