1
|
Wang S, Wan L, Zhang X, Fang H, Zhang M, Li F, Yan D. ETS-1 in tumor immunology: implications for novel anti-cancer strategies. Front Immunol 2025; 16:1526368. [PMID: 40181983 PMCID: PMC11965117 DOI: 10.3389/fimmu.2025.1526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
ETS-1, a key member of the Erythroblast Transformation-Specific (ETS) transcription factor family, plays an important role in cell biology and medical research due to its wide expression profile and strong transcriptional regulation ability. It regulates fundamental biological processes, including cell proliferation, differentiation, and apoptosis, and is involved in tumorigenesis and metastasis, promoting malignant behaviors such as angiogenesis, matrix degradation, and cell migration. Given the association between ETS-1 overexpression and the aggressive characteristics of multiple malignancies, it represents a promising therapeutic target in cancer treatment. This study aims to systematically analyze the role of ETS-1 within the tumor immune microenvironment, elucidating its mechanisms in cancer initiation, progression, and metastasis. It also investigates the differential expression of ETS-1 across tumor tissues and adjacent normal tissues, exploring its potential as a molecular marker for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- SiYu Wang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - XiaoJun Zhang
- Academic Affairs Office, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - HaoXiang Fang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - MengYu Zhang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Feng Li
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - DaWei Yan
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| |
Collapse
|
2
|
Wang H, Liu C, Jiang C, Zhang Y, Zhao X, Jia Z, Huo J, Yang J. GRHL3 drives radiotherapy resistance and blocks the anti-tumor response of NK and CD4 + T cells in lung squamous cell carcinoma via RNF2. Biochem Pharmacol 2025; 233:116784. [PMID: 39880318 DOI: 10.1016/j.bcp.2025.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Grainyhead-like protein 3 homolog (GRHL3) has been identified as a top transcription factor associated with keratinization in lung squamous cell carcinoma (LUSC). We designed this study to elucidate the function of GRHL3 in radioresistance in LUSC and the mechanism involved. Transcriptome differences between radioresistant and parental cells were analyzed to identify the hub transcription factor. GRHL3 expression was overexpressed in radioresistant cells relative to parental cells, and the knockdown of GRHL3 conferred sensitivity to radioresistant LUSC cells, induced DNA damage, inhibited cell survival, and reduced tumor load in mice. GRHL3 promoted ring finger protein 2 (RNF2) transcription by binding to the RNF2 promoter. GRHL3 induced a radioresistant phenotype in parental cells and led to compromised anti-tumor immune responses of CD4+ T cells and NK cells. The GRHL3-promoted tumor progression was reversed by the knockdown of RNF2. The DNA methylation of GRHL3 was reduced in radioresistant cells. All in all, as GRHL3, helps LUSC cells escape from the immune surveillance and mediates radioresistance, it might be an attractive target for therapy-resistant LUSC.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Thoracic Surgery, Xingtai People's Hospital, Xingtai 054000 Hebei, PR China
| | - Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Chao Jiang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Yunjie Zhang
- Department of Surgical Oncology, Handan Central Hospital, Handan 056000 Hebei, PR China
| | - Xin Zhao
- School of Clinical Sciences, Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Zhongfei Jia
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Jingchen Huo
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China.
| |
Collapse
|
3
|
Ma Y, Zhang Y, Jiang X, Guan J, Wang H, Zhang J, Tong Y, Qiu X, Zhou R. KIFC3 promotes the proliferation, migration and invasion of non-small cell lung cancer through the PI3K/AKT signaling pathway. Sci Rep 2024; 14:20471. [PMID: 39227687 PMCID: PMC11372156 DOI: 10.1038/s41598-024-71602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
KIFC3 is a member of the Kinesin superfamily proteins (KIFs). The role of KIFC3 in non-small cell lung cancer (NSCLC) is unknown. This study aimed to elucidate the function of KIFC3 in NSCLC and the underlying mechanism. Immunohistochemistry indicated that KIFC3 was highly expressed in NSCLC tissues and correlated with the degree of differentiation, tumor size, lymph node metastasis and TNM stage. MTT, colony formation and Transwell assays demonstrated that KIFC3 overexpression promoted the proliferation, migration and invasion of NSCLC cells in vitro, while KIFC3 knockdown led to the opposite results. The protein expression levels of PI3Kp85α and p-Akt were increased after KIFC3 overexpression, meanwhile the downstream protein expression levels such as cyclin D1, CDK4, CDK6, RhoA, RhoC and MMP2 were increased. This promotion effect could be inhibited by a specific inhibitor of the PI3K/Akt pathway, LY294002. Co-immunoprecipitation assays confirmed the interaction between endogenous/exogenous KIFC3 and PI3Kp85α. Tumor formation experiments in nude mice confirmed that KIFC3 overexpression promoted the proliferation, migration and invasion of NSCLC cells in vivo and performed its biological function through the PI3K/Akt signaling pathway.In conclusion, KIFC3 promotes the malignant behavior of NSCLC cells through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China
| | - Xizi Jiang
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China
| | - Jingqian Guan
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanxi Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiameng Zhang
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China
| | - Yue Tong
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China
| | - Xueshan Qiu
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China.
| | - Renyi Zhou
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nan Jing North Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
4
|
Lu J, Rui J, Xu XY, Shen JK. Exploring the Role of Neutrophil-Related Genes in Osteosarcoma via an Integrative Analysis of Single-Cell and Bulk Transcriptome. Biomedicines 2024; 12:1513. [PMID: 39062086 PMCID: PMC11274533 DOI: 10.3390/biomedicines12071513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The involvement of neutrophil-related genes (NRGs) in patients with osteosarcoma (OS) has not been adequately explored. In this study, we aimed to examine the association between NRGs and the prognosis as well as the tumor microenvironment of OS. METHODS The OS data were obtained from the TARGET-OS and GEO database. Initially, we extracted NRGs by intersecting 538 NRGs from single-cell RNA sequencing (scRNA-seq) data between aneuploid and diploid groups, as well as 161 up-regulated differentially expressed genes (DEGs) from the TARGET-OS datasets. Subsequently, we conducted Least Absolute Shrinkage and Selection Operator (Lasso) analyses to identify the hub genes for constructing the NRG-score and NRG-signature. To assess the prognostic value of the NRG signatures in OS, we performed Kaplan-Meier analysis and generated time-dependent receiver operating characteristic (ROC) curves. Gene enrichment analysis (GSEA) and gene set variation analysis (GSVA) were utilized to ascertain the presence of tumor immune microenvironments (TIMEs) and immunomodulators (IMs). Additionally, the KEGG neutrophil signaling pathway was evaluated using ssGSEA. Subsequently, PCR and IHC were conducted to validate the expression of hub genes and transcription factors (TFs) in K7M2-induced OS mice. RESULTS FCER1G and C3AR1 have been identified as prognostic biomarkers for overall survival. The findings indicate a significantly improved prognosis for OS patients. The effectiveness and precision of the NRG signature in prognosticating OS patients were validated through survival ROC curves and an external validation dataset. The results clearly demonstrate that patients with elevated NRG scores exhibit decreased levels of immunomodulators, stromal score, immune score, ESTIMATE score, and infiltrating immune cell populations. Furthermore, our findings substantiate the potential role of SPI1 as a transcription factor in the regulation of the two central genes involved in osteosarcoma development. Moreover, our analysis unveiled a significant correlation and activation of the KEGG neutrophil signaling pathway with FCER1G and C3AR1. Notably, PCR and IHC demonstrated a significantly higher expression of C3AR1, FCER1G, and SPI1 in Balb/c mice induced with K7M2. CONCLUSIONS Our research emphasizes the significant contribution of neutrophils within the TIME of osteosarcoma. The newly developed NRG signature could serve as a good instrument for evaluating the prognosis and therapeutic approach for OS.
Collapse
Affiliation(s)
- Jing Lu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215025, China;
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China; (J.R.); (X.-Y.X.)
| | - Jiang Rui
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China; (J.R.); (X.-Y.X.)
| | - Xiao-Yu Xu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China; (J.R.); (X.-Y.X.)
| | - Jun-Kang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215025, China;
| |
Collapse
|
5
|
Zhang YM, Miao ZM, Chen YP, Song ZB, Li YY, Liu ZW, Zhou GC, Li J, Shi LL, Chen Y, Zhang SZ, Xu X, He JP, Wang JF, Zhang LY, Liu YQ. Ononin promotes radiosensitivity in lung cancer by inhibiting HIF-1α/VEGF pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155290. [PMID: 38308918 DOI: 10.1016/j.phymed.2023.155290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/12/2023] [Accepted: 12/16/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND In our previous study, we provided evidence that Astragalus mongholicus Bunge(AM) and its extracts possess a protective capability against radiation-induced damage, potentially mediated through the reduction of reactive oxygen species (ROS) and nitric oxide (NO). However, we were pleasantly surprised to discover during our experimentation that AM not only offers protection against radiation damage but also exhibits a radiation sensitization effect. This effect may be attributed to a specific small molecule present in AM known as ononin. Currently, radiation sensitizers are predominantly found in nitrazole drugs and nanomaterials, with no existing reports on the radiation sensitization properties of ononin, nor its underlying mechanism. PURPOSE This study aims to investigate the sensitization effect of the small molecule ononin derived from AM on lung cancer radiotherapy, elucidating its specific molecular mechanism of action. Additionally, the safety profile of combining astragalus small molecule ononin with radiation therapy will be evaluated. METHODS The effective concentration of ononin was determined through cell survival experiments, and the impact of ononin combined with varying doses of radiation on lung cancer cells was observed using CCK-8 and cell cloning experiments. The apoptotic effect of ononin combined with radiation on lung cancer cells was assessed using Hochester staining, flow cytometry, and WB assay. Additionally, WB and immunofluorescence analysis were conducted to investigate the influence of ononin on HIF-1α/VEGF pathway. Furthermore, Molecular Dynamics Simulation was employed to validate the targeted binding ability of ononin and HIF-1α. A lung cancer cell line was established to investigate the effects of knockdown and overexpression of HIF-1α. Subsequently, the experiment was repeated using tumor bearing nude mice and C57BL/6 mouse models in an in vivo study. Tumor volume was measured using a vernier caliper, while HE, immunohistochemistry, and immunofluorescence techniques were employed to observe the effects of ononin combined with radiation on tumor morphology, proliferation, and apoptosis. Additionally, Immunofluorescence was employed to examine the impact of ononin on HIF-1α/VEGF pathway in vivo, and its effect on liver function in mice was assessed through biochemistry analysis. RESULTS At a concentration of 25 μM, ononin did not affect the proliferation of lung epithelial cells but inhibited the survival of lung cancer cells. In vitro experiments demonstrated that the combination of ononin and radiation could effectively inhibit the growth of lung cancer cells, induce apoptosis, and suppress the excessive activation of the Hypoxia inducible factor 1 alpha/Vascular endothelial growth factor pathway. In vivo experiments showed that the combination of ononin and radiation reduced the size and proliferation of lung cancer tumors, promoted cancer cell apoptosis, mitigated abnormal activation of the Hypoxia inducible factor 1 alpha pathway, and protected against liver function damage. CONCLUSION This study provides evidence that the combination of AM and its small molecule ononin can enhance the sensitivity of lung cancer to radiation. Additionally, it has been observed that this combination can specifically target HIF-1α and exert its effects. Notably, ononin exhibits the unique ability to protect liver function from damage while simultaneously enhancing the tumor-killing effects of radiation, thereby demonstrating a synergistic and detoxifying role in tumor radiotherapy. These findings contribute to the establishment of a solid basis for the development of novel radiation sensitizers derived from traditional Chinese medicine.
Collapse
Affiliation(s)
- Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Zhi-Ming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Ya-Ping Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Zhang-Bo Song
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Zhi-Wei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Gu-Cheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Jing Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Liang-Liang Shi
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Shang-Zu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, PR China
| | - Jin-Peng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Ju-Fang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China.
| |
Collapse
|