1
|
Wang J, Zhang X, Zhan S, Han F, Wang Q, Liu Y, Huang Z. Possible Metabolic Remodeling based on de novo Biosynthesis of L-serine in Se-Subtoxic or -Deficient Mammals. J Nutr 2025; 155:9-26. [PMID: 39477017 DOI: 10.1016/j.tjnut.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
Current research studies point to an increased risk of diabetes with selenium (Se) intake beyond the physiological requirement used to prevent cancers. The existing hypothesis of "selenoprotein overexpression leads to intracellular redox imbalance" cannot clearly explain the U-shaped dose-effect relationship between Se intake and the risk of diabetes. In this review, it is speculated that metabolic remodeling based on the de novo biosynthesis of L-serine may occur in mammals at supranutritional or subtoxic levels of Se. It is also speculated that a large amount of L-serine is consumed by the body during insufficient Se intake, thus resulting in similar metabolic reprogramming. The increase in atypical ceramide and its derivatives due to the lack of L-serine may also play a role in the development of diabetes.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xue Zhang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Feng Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Qin Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China; Key Laboratory of Public Nutrition and Health, National Health Commission, Beijing, PR China.
| |
Collapse
|
2
|
Yen EC, Gilbert JD, Balard A, Afonso IO, Fairweather K, Newlands D, Lopes A, Correia SM, Taxonera A, Rossiter SJ, Martín-Durán JM, Eizaguirre C. DNA Methylation Carries Signatures of Sublethal Effects Under Thermal Stress in Loggerhead Sea Turtles. Evol Appl 2024; 17:e70013. [PMID: 39286762 PMCID: PMC11403127 DOI: 10.1111/eva.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
To date, studies of the impacts of climate warming on individuals and populations have mostly focused on mortality and thermal tolerance. In contrast, much less is known about the consequences of sublethal effects, which are more challenging to detect, particularly in wild species with cryptic life histories. This necessitates the development of molecular tools to identify their signatures. In a split-clutch field experiment, we relocated clutches of wild, nesting loggerhead sea turtles (Caretta caretta) to an in situ hatchery. Eggs were then split into two sub-clutches and incubated under shallow or deep conditions, with those in the shallow treatment experiencing significantly higher temperatures in otherwise natural conditions. Although no difference in hatching success was observed between treatments, hatchlings from the shallow, warmer treatment had different length-mass relationships and were weaker at locomotion tests than their siblings incubated in the deep, cooler treatment. To characterise the molecular signatures of these thermal effects, we performed whole genome bisulfite sequencing on blood samples collected upon emergence. We identified 287 differentially methylated sites between hatchlings from different treatments, including on genes with neurodevelopmental, cytoskeletal, and lipid metabolism functions. Taken together, our results show that higher incubation temperatures induce sublethal effects in hatchlings, which are reflected in their DNA methylation status at identified sites. These sites could be used as biomarkers of thermal stress, especially if they are retained across life stages. Overall, this study suggests that global warming reduces hatchling fitness, which has implications for dispersal capacity and ultimately a population's adaptive potential. Conservation efforts for these endangered species and similar climate-threatened taxa will therefore benefit from strategies for monitoring and mitigating exposure to temperatures that induce sublethal effects.
Collapse
Affiliation(s)
- Eugenie C Yen
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - James D Gilbert
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Alice Balard
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Inês O Afonso
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | | | - Débora Newlands
- Project Biodiversity, Mercado Municipal Santa Maria Ilha do Sal Cabo Verde
| | - Artur Lopes
- Project Biodiversity, Mercado Municipal Santa Maria Ilha do Sal Cabo Verde
| | - Sandra M Correia
- Instituto do Mar (IMar), Cova d'Ínglesa Mindelo Ilha do São Vicente Cabo Verde
| | - Albert Taxonera
- Project Biodiversity, Mercado Municipal Santa Maria Ilha do Sal Cabo Verde
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| |
Collapse
|
3
|
Ahmed Mohamed Z, Yang J, Wen J, Jia F, Banerjee S. SEPHS1 Gene: A new master key for neurodevelopmental disorders. Clin Chim Acta 2024; 562:119844. [PMID: 38960024 DOI: 10.1016/j.cca.2024.119844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The SEPHS1 (Selenophosphate Synthetase 1) gene encodes a critical enzyme for synthesizing selenophosphate, the active donor of selenium (Se) necessary for selenoprotein biosynthesis. Selenoproteins are vital for antioxidant defense, thyroid hormone metabolism, and cellular homeostasis. Mutations in SEPHS1 gene, are associated with neurodevelopmental disorders with developmental delay, poor growth, hypotonia, and dysmorphic features. Due to Se's critical role in brain development and function, SEPHS1 gene has taken center stage in neurodevelopmental research. This review explores the structure and function of the SEPHS1 gene, its role in neurodevelopment, and the implications of its dysregulation for neurodevelopmental disorders. Therapeutic strategies, including Se supplementation, gene therapy, and targeted therapies, are discussed as potential interventions to address SEPHS1 associated neurodevelopmental dysfunction. The study's findings reveal how SEPHS1 mutations disrupt neurodevelopment, emphasizing the gene's intolerance to loss of function. Future research should focus on functional characterization of SEPHS1 variants, broader genetic screenings, and therapeutic developments.
Collapse
Affiliation(s)
- Zakaria Ahmed Mohamed
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Qi Z, Duan A, Ng K. Selenoproteins in Health. Molecules 2023; 29:136. [PMID: 38202719 PMCID: PMC10779588 DOI: 10.3390/molecules29010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. The existing form of Se includes inorganic and organic. In contrast to the inorganic Se, which has low bioavailability and high cytotoxicity, organic Se exhibits higher bioavailability, lower toxicity, and has a more diverse composition and structure. This review presents the nutritional benefits of Se by listing and linking selenoprotein (SeP) functions to evidence of health benefits. The research status of SeP from foods in recent years is introduced systematically, particularly the sources, biochemical transformation and speciation, and the bioactivities. These aspects are elaborated with references for further research and utilization of organic Se compounds in the field of health.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
5
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
6
|
Floramo JS, Molchanov V, Liu H, Liu Y, Craig SEL, Yang T. An Integrated View of Stressors as Causative Agents in OA Pathogenesis. Biomolecules 2023; 13:721. [PMID: 37238590 PMCID: PMC10216563 DOI: 10.3390/biom13050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Cells in the body are exposed to dynamic external and internal environments, many of which cause cell damage. The cell's response to this damage, broadly called the stress response, is meant to promote survival and repair or remove damage. However, not all damage can be repaired, and sometimes, even worse, the stress response can overtax the system itself, further aggravating homeostasis and leading to its loss. Aging phenotypes are considered a manifestation of accumulated cellular damage and defective repair. This is particularly apparent in the primary cell type of the articular joint, the articular chondrocytes. Articular chondrocytes are constantly facing the challenge of stressors, including mechanical overloading, oxidation, DNA damage, proteostatic stress, and metabolic imbalance. The consequence of the accumulation of stress on articular chondrocytes is aberrant mitogenesis and differentiation, defective extracellular matrix production and turnover, cellular senescence, and cell death. The most severe form of stress-induced chondrocyte dysfunction in the joints is osteoarthritis (OA). Here, we summarize studies on the cellular effects of stressors on articular chondrocytes and demonstrate that the molecular effectors of the stress pathways connect to amplify articular joint dysfunction and OA development.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Yang
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| |
Collapse
|