1
|
Sagar NA, Kumar Y, Singh R, Nickhil C, Kumar D, Sharma P, Om Pandey H, Bhoj S, Tarafdar A. Onion waste based-biorefinery for sustainable generation of value-added products. BIORESOURCE TECHNOLOGY 2022; 362:127870. [PMID: 36049716 DOI: 10.1016/j.biortech.2022.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Waste derived from the onion processing sector can be harnessed for the production of organic acids, polyphenols, polysachharides, biofuels and pigments. To sustainably utilize onion processing residues, different biorefinery strategies such as enzymatic hydrolysis, fermentation and hydrothermal carbonization have been widely investigated. This review discusses the recent advances in the biorefinery approaches used for valorization of onion processing waste followed by the production of different value-added products from diverse classes of onion waste. The review also highlights the current challenges faced by the bioprocessing sector for the utilization of onion processing waste and perspectives to tackle them.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Yogesh Kumar
- Department of Food Technology, Faculty of Science and Humanities, SRM University, Sonipat, Haryana 131 029, India
| | - Ramveer Singh
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249 404, India
| | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784 028, India
| | - Deepak Kumar
- Division of Food Technology, Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana 121 004, India
| | - Praveen Sharma
- Department of Botany, Rotary Institute of Management and Technology, Chandausi, Uttar Pradesh 244 412, India
| | - Hari Om Pandey
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Suvarna Bhoj
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India.
| |
Collapse
|
2
|
Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Sagar NA, Pareek S, Benkeblia N, Xiao J. Onion (
Allium cepa
L.) bioactives: Chemistry, pharmacotherapeutic functions, and industrial applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Noureddine Benkeblia
- Department of Life Sciences/The Biotechnology Centre The University of the West Indies Kingston Jamaica
| | - Jianbo Xiao
- Nutrition and Bromatology Group Department of Analytical and Food Chemistry Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
4
|
A molecular dynamics simulations study of the ionic liquid effect on the β-glucosidase active site interactions with a flavonoid glycoside. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Manzoor MF, Hussain A, Sameen A, Sahar A, Khan S, Siddique R, Aadil RM, Xu B. Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review. ULTRASONICS SONOCHEMISTRY 2021; 78:105686. [PMID: 34358980 PMCID: PMC8350193 DOI: 10.1016/j.ultsonch.2021.105686] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
Quercetin (QUR) have got the attention of scientific society frequently due to their wide range of potential applications. QUR has been the focal point for research in various fields, especially in food development. But, the QUR is highly unstable and can be interrupted by using conventional assessment methods. Therefore, researchers are focusing on novel extraction and non-invasive tools for the non-destructive assessment of QUR. The current review elaborates the different novel extraction (ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, and enzyme-assisted extraction) and non-destructive assessment techniques (fluorescence spectroscopy, terahertz spectroscopy, near-infrared spectroscopy, hyperspectral imaging, Raman spectroscopy, and surface-enhanced Raman spectroscopy) for the extraction and identification of QUR in agricultural products. The novel extraction approaches facilitate shorter extraction time, involve less organic solvent, and are environmentally friendly. While the non-destructive techniques are non-interruptive, label-free, reliable, accurate, and environmental friendly. The non-invasive spectroscopic and imaging methods are suitable for the sensitive detection of bioactive compounds than conventional techniques. QUR has potential therapeutic properties such as anti-obesity, anti-diabetes, antiallergic, antineoplastic agent, neuroprotector, antimicrobial, and antioxidant activities. Besides, due to the low bioavailability of QUR innovative drug delivery strategies (QUR loaded gel, QUR polymeric micelle, QUR nanoparticles, glucan-QUR conjugate, and QUR loaded mucoadhesive nanoemulsions) have been proposed to improve its bioavailability and providing novel therapeutic approaches.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad 38000, Pakistan
| | - Abid Hussain
- Department of Agriculture and Food Technology, Karakoram International University Gilgit, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sipper Khan
- University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstrasse 9, 70593 Stuttgart, Germany
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
6
|
Effect of storage, food processing and novel extraction technologies on onions flavonoid content: A review. Food Res Int 2019; 132:108953. [PMID: 32331665 DOI: 10.1016/j.foodres.2019.108953] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/29/2022]
Abstract
Onions play an important part in the daily diet for most populations around the world owing to their nutritional composition and their unique capacity to naturally flavor dishes. Onions contain quercetin and its derivatives - the predominant flavonoid in onions that exert a great contribution to the effective bioactive properties of onion, including its derived products. The present paper comprehensively reviewed flavonoids (with a specific focus on quercetin in onions): their chemical composition, distribution, bioactivities in onion, and impacting factors with a focus on how they can be affected by various post-harvest conditions (storage and food processing). In addition, research on the extraction of flavonoid compounds from onions using a number of novel technologies was also reviewed.
Collapse
|
7
|
Herrero M, Ibañez E. Green extraction processes, biorefineries and sustainability: Recovery of high added-value products from natural sources. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Chamizo-González F, Monago-Maraña O, Galeano-Díaz T. Determination of Quercetin and Luteolin in Paprika Samples by Voltammetry and Partial Least Squares Calibration. ELECTROANAL 2017. [DOI: 10.1002/elan.201700403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Olga Monago-Maraña
- Department of Analytical Chemistry; University of Extremadura; Badajoz 06006 Spain
- Research Institute on Water, Climate Change and Sustainability (IACYS); University of Extremadura; Badajoz 06006 Spain
| | - Teresa Galeano-Díaz
- Department of Analytical Chemistry; University of Extremadura; Badajoz 06006 Spain
- Research Institute on Water, Climate Change and Sustainability (IACYS); University of Extremadura; Badajoz 06006 Spain
| |
Collapse
|
9
|
Plaza M, Turner C. Pressurized Hot Water Extraction of Bioactives. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Ravber M, Pečar D, Goršek A, Iskra J, Knez Ž, Škerget M. Hydrothermal Degradation of Rutin: Identification of Degradation Products and Kinetics Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9196-9202. [PMID: 27933992 DOI: 10.1021/acs.jafc.6b03191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The model glycoside compound quercetin-3-O-rutinoside (rutin) was subjected to subcritical water within the temperature range of 120-220 °C, and the hydrothermal degradation products were analyzed. Two kinetic models describing the degradation of this compound in two different atmospheres (N2 and CO2), used for pressure establishment in the reactor, have been developed and compared. Reaction was considered a successive one with three irreversible steps. We confirmed that rutin degradation to quercetin follows first-order kinetics. At higher temperatures quercetin is further degraded in two degradation steps. Formations of 3,4-dihydroxybenzoic acid and catechol were described with the zero-order kinetic models. Reaction rate constants for hydrolysis of glycoside to aglycone in a CO2 atmosphere are higher compared to those in a N2 atmosphere, whereas at higher temperatures reaction rate constants for further two successive reactions of aglycone degradation are slightly lower in the presence of CO2. The difference in reaction activation energies is practically negligible for both gases. Furthermore, degradation products of sugar moieties, that is, 5-hydroxymethylfurfural and 5-methylfurfural, were also detected and analyzed.
Collapse
Affiliation(s)
- Matej Ravber
- Faculty of Chemistry and Chemical Engineering, University of Maribor , Smetanova 17, SI-2000 Maribor, Slovenia
| | - Darja Pečar
- Faculty of Chemistry and Chemical Engineering, University of Maribor , Smetanova 17, SI-2000 Maribor, Slovenia
| | - Andreja Goršek
- Faculty of Chemistry and Chemical Engineering, University of Maribor , Smetanova 17, SI-2000 Maribor, Slovenia
| | - Jernej Iskra
- Faculty of Chemistry and Chemical Engineering, University of Maribor , Smetanova 17, SI-2000 Maribor, Slovenia
- Jožef Štefan Institute , Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor , Smetanova 17, SI-2000 Maribor, Slovenia
| | - Mojca Škerget
- Faculty of Chemistry and Chemical Engineering, University of Maribor , Smetanova 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
11
|
SANTOS DT, MEIRELES MADA. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives. FOOD SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1590/1678-457x.6786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Optimization of hydrolysis of rutin in subcritical water using response surface methodology. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
|
15
|
de Dicastillo CL, Navarro R, Guarda A, Galotto MJ. Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose. Antioxidants (Basel) 2015; 4:533-47. [PMID: 26783842 PMCID: PMC4665429 DOI: 10.3390/antiox4030533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/15/2015] [Accepted: 07/22/2015] [Indexed: 12/30/2022] Open
Abstract
Antioxidant biocomposites have been successfully developed from cellulose acetate, eco-friendly triethyl citrate plasticizer and onion extract as a source of natural antioxidants. First, an onion extraction process was optimized to obtain the extract with highest antioxidant power. Extracts under absolute ethanol and ethanol 85% were the extracts with the highest antioxidant activity, which were the characterized through different methods, DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonate)), that measure radical scavenger activity, and polyphenolic and flavonoid content. Afterwards, the extract was incorporated in cellulose acetate as polymer matrix owing to develop an active material intended to oxidative sensitive food products packaging. Different concentrations of onion extract and plasticizer were statistically studied by using response surface methodology in order to analyze the influence of both factors on the release of active compounds and therefore the antioxidant activity of these materials.
Collapse
Affiliation(s)
- Carol López de Dicastillo
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA)-Food Packaging Laboratory (LABEN-CHILE), Department of Science and Food Technology, Faculty of Technology, University of Santiago de Chile, Santiago 9170201, Chile.
| | - Rosa Navarro
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA)-Food Packaging Laboratory (LABEN-CHILE), Department of Science and Food Technology, Faculty of Technology, University of Santiago de Chile, Santiago 9170201, Chile.
| | - Abel Guarda
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA)-Food Packaging Laboratory (LABEN-CHILE), Department of Science and Food Technology, Faculty of Technology, University of Santiago de Chile, Santiago 9170201, Chile.
| | - Maria José Galotto
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA)-Food Packaging Laboratory (LABEN-CHILE), Department of Science and Food Technology, Faculty of Technology, University of Santiago de Chile, Santiago 9170201, Chile.
| |
Collapse
|
16
|
Mnayer D, Fabiano-Tixier AS, Petitcolas E, Ruiz K, Hamieh T, Chemat F. Simultaneous Extraction of Essential Oils and Flavonoids from Onions Using Turbo Extraction-Distillation. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9884-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Liu F, Xi X, Wang M, Fan L, Geng Y, Wang X. Isolation and purification of arctigenin from Fructus Arctii
by enzymatic hydrolysis combined with high-speed counter-current chromatography. J Sep Sci 2014; 37:376-81. [DOI: 10.1002/jssc.201301061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Feng Liu
- Shandong Analysis and Test Center; Shandong Academy of Sciences; Jinan Shandong China
| | - Xingjun Xi
- China National Institute of Standardization; Beijing China
| | - Mei Wang
- College of Lishan; Shandong Normal University; Jinan Shandong China
| | - Li Fan
- Shandong Analysis and Test Center; Shandong Academy of Sciences; Jinan Shandong China
| | - Yanling Geng
- Shandong Analysis and Test Center; Shandong Academy of Sciences; Jinan Shandong China
| | - Xiao Wang
- Shandong Analysis and Test Center; Shandong Academy of Sciences; Jinan Shandong China
| |
Collapse
|
18
|
Xu MS, Chen S, Wang WQ, Liu SQ. Employing bifunctional enzymes for enhanced extraction of bioactives from plants: flavonoids as an example. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7941-7948. [PMID: 23869387 DOI: 10.1021/jf402125y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A cost-effective and environmentally friendly approach was developed to improve the extraction of active ingredients from plants, in which a bifunctional enzyme was employed for not only facilitating cell wall degradation but also increasing the bioactivity of target compounds in the extract. In the aqueous extraction of flavonoids from Glycyrrhizae radix, Trichoderma viride cellulase, a commercial cell-wall-degrading enzyme, was found to efficiently deglycosylate liquiritin and isoliquiritin, which are of high content but low bioactivity, into their aglycones that have much higher physiological activities for dietary and medicinal uses. Under optimized conditions, the extraction yield of liquiritigenin and isoliquiritigenin aglycones reached 4.23 and 0.39 mg/g of dry weight (dw) with 6.51- and 3.55-fold increases, respectively. The same approach was expanded to the extraction of flavonoids from Scutellariae radix using Penicillium decumbens naringinase, where enhanced production of more bioactive bacalein and wogonin was achieved via enzymatic deglycosylation of bacalin and wogonoside.
Collapse
Affiliation(s)
- Ming-Shu Xu
- Marine College, Shandong University at Weihai, Weihai 264209, People's Republic of China
| | | | | | | |
Collapse
|