1
|
Serizawa M, van Delft P, Schoenmakers PJ, Peters RAH, Gargano AFG. Size-Exclusion Chromatography-Electrospray-Ionization Mass Spectrometry To Characterize End Group and Chemical Distribution of Poly(lactide- co-glycolide) Copolymers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 40162665 DOI: 10.1021/jasms.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The characterization of the microstructure of in vivo degradable polyesters is gaining increased interest thanks to their high-performance applications, such as drug delivery systems. The design of such material requires a high level of understanding of the critical material attributes of the polyesters, such as molecular-weight distribution (MWD), chemical-composition distribution (CCD), and end-groups (functionality-type distribution, FTD). Size-exclusion chromatography (SEC) hyphenated with mass spectrometry (MS) is an effective method for analyzing the microstructure of polymers. While the MWD can be determined by size-exclusion chromatography hyphenated with ultraviolet spectrometry and refractive index, the CCD and FTD can be determined by SEC-MS. However, previous applications of SEC-MS have not assessed if polymer fragmentation can occur during the analysis process. In order to correctly interpret CCD and FTD, it is important to establish whether SEC-MS methods can be applied to biodegradable polymers and to recognize if fragmentation processes occur. In this study, we investigate whether SEC-MS methods can be applied to PLGA biodegradable polyesters. The research demonstrates that the choice of alkali metal salt used during ionization can influence the stability of PLGA during SEC-MS analysis. CsI was found to minimize fragmentations during ESI-MS, simplifying the MS spectra and allowing isomeric PLGA structures to be distinguished. The resulting method facilitates FTD and CCD determination. Additionally, when combined with selective degradation, the described method can provide insights into the "blockiness" of the polymer and support the development of sequence-controlled PLGA synthesis.
Collapse
Affiliation(s)
- Masashi Serizawa
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Material Characterization Laboratory, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan
| | | | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ron A H Peters
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Covestro, TAP, Group Innovation and Sustainibility, Sluisweg 12, 5145 PE Waalwijk, The Netherlands
| | - Andrea F G Gargano
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
2
|
Froom ZSCS, Medd K, Wheeler BP, Osborne ND, Rempe CN, Woodworth KE, Charron C, Davenport Huyer L. Antifibrotic Function of Itaconate-Based Degradable Polyester Materials. ACS Biomater Sci Eng 2025; 11:1549-1561. [PMID: 39961606 DOI: 10.1021/acsbiomaterials.4c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Pathological fibrosis is a chronic disease, characterized by excessive extracellular matrix deposition, that remains a significant global health challenge. Despite its prevalence, current antifibrotic therapies are limited due to the complex interplay and signaling of profibrotic macrophages and fibroblast cells that underlies fibrotic tissue microenvironments. This study investigates a novel approach to combat fibrosis, harnessing the antifibrotic properties of the endogenous metabolite itaconate (IA) to target the pathological activation of the macrophage-fibroblast axis in fibrotic disease. To achieve therapeutic delivery relevant to the chronic nature of fibrotic conditions, we incorporated IA into the backbone of biodegradable polyester polymers, poly(dodecyl itaconate) (poly[IA-DoD]), capable of long-term localized release of IA. Degradation characterization of poly(IA-DoD) revealed that IA, as well as water-soluble IA-containing oligomeric groups, is released in a sustained manner. Treatment of murine bone marrow-derived macrophages and human dermal fibroblasts demonstrated that the degradation products of poly(IA-DoD) effectively modulated profibrotic behavior. Macrophages exposed to the degradation products exhibited reduced profibrotic responses, while fibroblasts showed decreased proliferation and myofibroblast α-smooth muscle actin expression. These findings suggest that poly(IA-DoD) has the potential to disrupt the fibrotic cycle by targeting key cellular players. This polymer-based delivery system offers a promising strategy for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kyle Medd
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Brenden P Wheeler
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Natasha D Osborne
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian N Rempe
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kaitlyn E Woodworth
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Carlie Charron
- Department of Chemistry, Faculty of Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health, Halifax, NS B3S 0H6, Canada
| |
Collapse
|
3
|
Gammino M, Gioia C, Maio A, Scaffaro R, Lo Re G. Chemical-free Reactive Melt Processing of Biosourced Poly(butylene-succinate-adipate) for Improved Mechanical Properties and Recyclability. ACS APPLIED POLYMER MATERIALS 2024; 6:5866-5877. [PMID: 38807952 PMCID: PMC11129176 DOI: 10.1021/acsapm.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Biosourced and biodegradable polyesters like poly(butylene succinate-co-butylene adipate) (PBSA) are gaining traction as promising alternatives to oil-based thermoplastics for single-use applications. However, the mechanical and rheological properties of PBSA are affected by its thermomechanical sensitivity during its melt processing, also hindering PBSA mechanical recycling. Traditional reactive melt processing (RP) methods use chemical additives to counteract these drawbacks, compromising sustainability. This study proposes a green reactive method during melt compounding for PBSA based on a comprehensive understanding of its thermomechanical degradative behavior. Under the hypothesis that controlled degradative paths during melt processing can promote branching/recombination reactions without the addition of chemical additives, we aim to enhance PBSA rheological and mechanical performance. An in-depth investigation of the in-line rheological behavior of PBSA was conducted using an internal batch mixer, exploring parameters such as temperature, screw rotation speed, and residence time. Their influence on PBSA chain scissions, branching/recombination, and cross-linking reactions were evaluated to identify optimal conditions for effective RP. Results demonstrate that specific processing conditions, for example, twelve minutes processing time, 200 °C temperature, and 60 rpm screw rotation speed, promote the formation of the long chain branched structure in PBSA. These structural changes resulted in a notable enhancement of the reacted PBSA rheological and mechanical properties, exhibiting a 23% increase in elastic modulus, a 50% increase in yield strength, and an 80% increase in tensile strength. The RP strategy also improved PBSA mechanical recycling, thus making it a potential replacement for low-density polyethylene (LDPE). Ultimately, this study showcases how finely controlling the thermomechanical degradation during reactive melt processing can improve the material's properties, enabling reliable mechanical recycling, which can serve as a green approach for other biodegradable polymers.
Collapse
Affiliation(s)
- Michele Gammino
- Department
of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Claudio Gioia
- Department
of Physics, University of Trento, via Sommarive 14, Povo, 38123 Trento, Italy
| | - Andrea Maio
- Department
of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Roberto Scaffaro
- Department
of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Giada Lo Re
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Rannvagen 2A, 41258 Gothenburg, Sweden
- Wallenberg
Wood Science Centre, Kemigården 4, 41258 Gothenburg, Sweden
| |
Collapse
|
4
|
Zhang K, Huang J, Wang D, Wan X, Wang Y. Covalent polyphenols-proteins interactions in food processing: formation mechanisms, quantification methods, bioactive effects, and applications. Front Nutr 2024; 11:1371401. [PMID: 38510712 PMCID: PMC10951110 DOI: 10.3389/fnut.2024.1371401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins and polyphenols are abundant in the daily diet of humans and their interactions influence, among other things, the texture, flavor, and bioaccessibility of food. There are two types of interactions between them: non-covalent interactions and covalent interactions, the latter being irreversible and more powerful. In this review, we systematically summarized advances in the investigation of possible mechanism underlying covalent polyphenols-proteins interaction in food processing, effect of different processing methods on covalent interaction, methods for characterizing covalent complexes, and impacts of covalent interactions on protein structure, function and nutritional value, as well as potential bioavailability of polyphenols. In terms of health promotion of the prepared covalent complexes, health effects such as antioxidant, hypoglycemic, regulation of intestinal microbiota and regulation of allergic reactions have been summarized. Also, the possible applications in food industry, especially as foaming agents, emulsifiers and nanomaterials have also been discussed. In order to offer directions for novel research on their interactions in food systems, nutritional value, and health properties in vivo, we considered the present challenges and future perspectives of the topic.
Collapse
Affiliation(s)
- Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Stutzman JR, Hutchins PD, Bain RM. Online Bipolar Dual Spray for the Charge State Reduction and Characterization of Complex Synthetic Polymers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2840-2848. [PMID: 38053368 DOI: 10.1021/jasms.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Charge reduction mass spectrometry (CR/MS) hyphenated to liquid chromatography (LC) couples liquid-phase compound separation and mass spectral decompression to resolve and characterize multicomponent systems. LC/CR/MS has proven to be effective for complex mixture analysis, particularly synthetic polymers. A newer charge manipulation approach called bipolar dual spray has previously been demonstrated to reduce the observed charge state distribution of ammoniated polyethene glycol. In this approach, two electrospray emitters, in close proximity and of opposite polarity, fuse droplets from their electrospray plumes, which allows the subsequent chemistry. In this work, we investigate the ability of bipolar dual spray to reduce the charge of synthetic polyols, thereby simplifying complex mixture analysis and generating new compositional information only available through the coupling of charge reduction with LC/MS analysis. This work also represents the first demonstration of online charge reduction via dual spray. Polyethylene glycol (PEG) 7.2K subjected to LC/MS with dual spray reduced the average charge state from 8.2+ to 4.4+. LC/MS with dual spray was also applied to the characterization of an end-group-modified PEG 10K (i.e., aminated) containing several reaction impurities. This approach allowed for the identification of low-level starting material, tosylated PEG, and PEG mono(amine), where both LC/MS and direct infusion dual spray did not detect the impurities. Overall, the results demonstrated that bipolar dual spray can be incorporated into an LC/MS analysis and affords the ability to reduce the charge state distribution of PEG cations, decompress the m/z axis, lower spectra complexity, and enable/simplify data interpretation.
Collapse
Affiliation(s)
- John R Stutzman
- Analytical Sciences, Dow Inc., Midland, Michigan 48640, United States
| | - Paul D Hutchins
- Analytical Sciences, Dow Inc., Midland, Michigan 48640, United States
| | - Ryan M Bain
- Analytical Sciences, Dow Inc., Midland, Michigan 48640, United States
| |
Collapse
|
6
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
7
|
Rizzarelli P, Rapisarda M. Matrix-Assisted Laser Desorption and Electrospray Ionization Tandem Mass Spectrometry of Microbial and Synthetic Biodegradable Polymers. Polymers (Basel) 2023; 15:polym15102356. [PMID: 37242931 DOI: 10.3390/polym15102356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The in-depth structural and compositional investigation of biodegradable polymeric materials, neat or partly degraded, is crucial for their successful applications. Obviously, an exhaustive structural analysis of all synthetic macromolecules is essential in polymer chemistry to confirm the accomplishment of a preparation procedure, identify degradation products originating from side reactions, and monitor chemical-physical properties. Advanced mass spectrometry (MS) techniques have been increasingly applied in biodegradable polymer studies with a relevant role in their further development, valuation, and extension of application fields. However, single-stage MS is not always sufficient to identify unambiguously the polymer structure. Thus, tandem mass spectrometry (MS/MS) has more recently been employed for detailed structure characterization and in degradation and drug release monitoring of polymeric samples, among which are biodegradable polymers. This review aims to run through the investigations carried out by the soft ionization technique matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) MS/MS in biodegradable polymers and present the resulting information.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Institute for Polymers, Composites and Biomaterials, Consiglio Nazionale delle Ricerche (CNR), Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Marco Rapisarda
- Institute for Polymers, Composites and Biomaterials, Consiglio Nazionale delle Ricerche (CNR), Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
8
|
Tian R, Li K, Lin Y, Lu C, Duan X. Characterization Techniques of Polymer Aging: From Beginning to End. Chem Rev 2023; 123:3007-3088. [PMID: 36802560 DOI: 10.1021/acs.chemrev.2c00750] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Biodegradable polymers – research and applications. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
The major concern in ecology we are facing in this era of modernization is environmental pollution due to non-biodegradable plastics. Because of its low cost, readily available nature, light weight, corrosion resistance, and added additives, it is adaptable and suitable for a wide range of applications. But the problem is that most of the petroleum-based plastics are not recyclable. Recycling and degradation of plastics are time-consuming and also release harmful chemicals, which pose a great threat to the environment. It is the need of the modern era to focus on the production of biodegradable and eco-friendly polymers as alternatives to these plastics. Nowadays, plant-based polymers are coming onto the market, which are easily degraded into soil with the help of microorganisms. However, commercialization is less due to its high production costs and the requirement for large agricultural lands for production, and their degradation also necessitated the use of special composting techniques. It is urgently needed to produce good quality and a high quantity of biodegradable polymers. The microorganisms are often searched for and screened from the carbon-rich and nutrient-deficient environment, but the commercial value of the polymers from microorganisms is very costly. Moreover, the currently explored microbes like Ralstonia eutropha, Aspergillus eutrophus, Cupriavidus necator, etc. are producing polymers naturally as a carbon reserve. But the quality as well as quantity of production are low, which means they cannot meet our requirements. So, the main aim of this chapter is to focus on the wide applications of different biodegradable polymers from plants, animals and even microbes and recent advancements in their production and improvement of biopolymers to increase their quality and quantity from natural sources, as well as their applications in packaging, the medical field, aquaculture, and other various fields for the commercialization of the product.
Collapse
|
10
|
Torres I, González-Tobío B, Ares P, Gómez-Herrero J, Zamora F. Evaluation of the degradation of the graphene-polypropylene composites of masks in harsh working conditions. MATERIALS TODAY. CHEMISTRY 2022; 26:101146. [PMID: 36159446 PMCID: PMC9481924 DOI: 10.1016/j.mtchem.2022.101146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 05/12/2023]
Abstract
The recent COVID-19 outbreak has led health authorities to recommend at least the use of surgical masks, most preferably respirators (FFP2 or KN95), to prevent the spread of the virus. Non-woven fabrics have been chosen as the best option to manufacture the face masks, due to their filtration efficiency, low cost, and versatility. Modifying the mask filters with graphene has been of great interest due to its potential use as antibacterial and virucidal properties. Indeed, some companies have commercialized face masks in which graphene is coated and/or embedded. However, the Canadian sanitary authorities advised against using the Shandong Shengquan New Materials Co. graphene masks because of the possibility of pulmonary damage produced by graphene inhalation. Thus, we have analyzed the stability of the graphene filter of these masks and compared it with two other commercially available graphene mask filters, evaluating the morphological and spectroscopical change of the fibers, as well as the particles released during the endurance tests. Our work introduces the necessary tools and methodology to evaluate the potential degradation of face masks under extreme working conditions. These methods complement the present standard tests ensuring the security of the new filters based on composites or nanomaterials.
Collapse
Affiliation(s)
- I Torres
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - B González-Tobío
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - P Ares
- Departamento de Física de La Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - J Gómez-Herrero
- Departamento de Física de La Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - F Zamora
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
11
|
Pagar RR, Musale SR, Pawar G, Kulkarni D, Giram PS. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials. ACS Biomater Sci Eng 2022; 8:2161-2195. [PMID: 35522605 DOI: 10.1021/acsbiomaterials.1c01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent decades there has been growing interest of material chemists in the successful development of functional materials for drug delivery, tissue engineering, imaging, diagnosis, theranostic, and other biomedical applications with advanced nanotechnology tools. The efficacy and safety of functional materials are determined by their pharmacological, toxicological, and immunogenic effects. It is essential to consider all degradation pathways of functional materials and to assess plausible intermediates and final products for quality control. This review provides a brief insight into chemical degradation mechanisms of functional materials like oxidation, photodegradation, and physical and enzymatic degradation. The intermediates and products of degradation were confirmed with analytical methods such as proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), UV-vis spectroscopy (UV-vis), infrared spectroscopy (IR), differential scanning calorimetry (DSC), mass spectroscopy, and other sophisticated analytical methods. These analytical methods are also used for regulatory, quality control, and stability purposes in industry. The assessment of degradation is important to predetermine the behavior of functional materials in specific storage conditions and can be relevant to their behavior during in vivo applications. Another important aspect is the evaluation of the toxicity of functional materials. Toxicity can be accessed with various methods using in vitro, in vivo, ex vivo, and in silico models. In vitro cell culture methods are used to determine mitochondrial damage, reactive oxygen species, stress responses, and cellular toxicity. In vitro cellular toxicity can be measured by MTT assay, LDH leakage assay, and hemolysis. In vivo studies are performed using various animal models involving zebrafish, rodents (mice and rats), and nonhuman primates. Ex vivo studies are also used for efficacy and toxicity determinations of functional materials like ex vivo potency assay and precision-cut liver slice (PCLS) models. The in silico tools with computational simulations like quantitative structure-activity relationships (QSAR), pharmacokinetics (PK) and pharmacodynamics (PD), dose and time response, and quantitative cationic-activity relationships ((Q)CARs) are used for prediction of the toxicity of functional materials. In this review, we studied the principle methods used for degradation studies, different degradation pathways, and mechanisms of functional material degradation with prototype examples. We discuss toxicity assessments with different toxicity approaches used for estimation of the safety and efficacy of functional materials.
Collapse
Affiliation(s)
- Roshani R Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Shubham R Musale
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Ganesh Pawar
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Deepak Kulkarni
- Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra 431136, India
| | - Prabhanjan S Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.,Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
12
|
Lin H, Yuan Y, Hang T, Wang P, Lu S, Wang H. Matrix-assisted laser desorption/ionization mass spectrometric imaging the spatial distribution of biodegradable vascular stents using a self-made semi-quantitative target plate. J Pharm Biomed Anal 2022; 219:114888. [PMID: 35752027 DOI: 10.1016/j.jpba.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
In recent years, the development and optimization of biodegradable coronary stents have become the research focus of many medical device manufacturers and scientific research institutions since they can be completely degraded and absorbed, and they restore vascular function. However, there is a lack of in situ quantification of these stents spatially in tissue in vivo. In this study, matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT ICR) and time-of-flight (TOF) mass spectrometric imaging (MSI) were used to analyze the time-dependent distributions of a biodegradable vascular scaffold, which consisted of copolymers of lactic acid and glycolic acid (PLGA) and its degradation products in cross-sections and longitudinal sections of blood vessels. The MALDI-MSI methods for analyzing the distribution of PLGA and its derivatives in vivo were established by optimizing the conditions of sample pretreatment and mass spectrometry (MS). In order to semi-quantify the contents of PLGA degradation products in blood vessels, self-made stainless-steel and indium tin oxide (ITO) target plates were developed to compare and establish the standard curves for semi-quantitative analysis. The target plate can be placed on the target carrier of MS simultaneously with the conductive slide, which can simultaneously carry out vapor deposition or spray on the substrate, to ensure the parallelism of the pretreatment experiments between the standards and the actual vascular samples. The proposed method provided a powerful tool for evaluating the distributions and degradation process of biological stent materials in the coronary artery, as well as provided technical support for the research and development of degradable biological stents and product optimization.
Collapse
Affiliation(s)
- Houwei Lin
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Yinlian Yuan
- Department of Paediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tian Hang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Peng Wang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Shijiao Lu
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Hang Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Rizzarelli P, La Carta S, Mirabella EF, Rapisarda M, Impallomeni G. Sequencing Biodegradable and Potentially Biobased Polyesteramide of Sebacic Acid and 3-Amino-1-propanol by MALDI TOF-TOF Tandem Mass Spectrometry. Polymers (Basel) 2022; 14:polym14081500. [PMID: 35458250 PMCID: PMC9032766 DOI: 10.3390/polym14081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
Biodegradable and potentially biobased polyesteramide oligomers (PEA-Pro), obtained from melt condensation of sebacic acid and 3-amino-1-propanol, were characterized by nuclear magnetic resonance (NMR), matrix assisted laser desorption/ionization-time of flight/time of flight-mass spectrometry/mass spectrometry (MALDI-TOF/TOF-MS/MS), thermogravimetric analysis (TGA), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). NMR analysis showed the presence of hydroxyl and amino terminal groups as well as carboxylic groups of the sebacate moiety. Hydroxyl and carboxyl termination had the same abundance, while the amine termination was 2.7-times less frequent. Information regarding the fragmentation pathways and ester/amide bond sequences was obtained by MALDI-TOF/TOF-MS/MS analysis performed on sodiated adducts of cyclic species and linear oligomers. Different end groups did not influence the observed fragmentation. Three fragmentation pathways were recognized. The β-hydrogen-transfer rearrangement, which leads to the selective scission of the –O–CH2– bonds, was the main mechanism. Abundant product ions originating from –CH2–CH2– (β–γ) bond cleavage in the sebacate moiety and less abundant ions formed by –O–CO– cleavages were also detected. TGA showed a major weight loss (74%) at 381 °C and a second degradation step (22% weight loss) at 447 °C. Py-GC/MS performed in the temperature range of 350–400 °C displayed partial similarity between the degradation products and the main fragments detected in the MALDI-TOF/TOF-MS/MS experiments. Degradation products derived from amide bonds were related to the formation of CN groups, in agreement with the literature.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (E.F.M.); (M.R.); (G.I.)
- Correspondence:
| | - Stefania La Carta
- STMicroelectronics Srl, Stradale Primosole, 50, 95121 Catania, Italy;
| | - Emanuele Francesco Mirabella
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (E.F.M.); (M.R.); (G.I.)
| | - Marco Rapisarda
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (E.F.M.); (M.R.); (G.I.)
| | - Giuseppe Impallomeni
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (E.F.M.); (M.R.); (G.I.)
| |
Collapse
|
14
|
Blaj DA, Balan-Porcarasu M, Petre BA, Harabagiu V, Peptu C. MALDI mass spectrometry monitoring of cyclodextrin-oligolactide derivatives synthesis. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Loskot J, Jezbera D, Bezrouk A, Doležal R, Andrýs R, Francová V, Miškář D, Myslivcová Fučíková A. Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation. MATERIALS 2021; 14:ma14185462. [PMID: 34576686 PMCID: PMC8467320 DOI: 10.3390/ma14185462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
Polydioxanone (PPDX), as an FDA approved polymer in tissue engineering, is an important component of some promising medical devices, e.g., biodegradable stents. The hydrolytic degradation of polydioxanone stents plays a key role in the safety and efficacy of treatment. A new fast and convenient method to quantitatively evaluate the hydrolytic degradation of PPDX stent material was developed. PPDX esophageal stents were degraded in phosphate-buffered saline for 24 weeks. For the first time, the changes in Raman spectra during PPDX biodegradation have been investigated here. The level of PPDX hydrolytic degradation was determined from the Raman spectra by calculating the area under the 1732 cm-1 peak shoulder. Raman spectroscopy, unlike Fourier transform infrared (FT-IR) spectroscopy, is also sensitive enough to monitor the decrease in the dye content in the stents during the degradation. Observation by a scanning electron microscope showed gradually growing cracks, eventually leading to the stent disintegration. The material crystallinity was increasing during the first 16 weeks, suggesting preferential degradation of the amorphous phase. Our results show a new easy and reliable way to evaluate the progression of PPDX hydrolytic degradation. The proposed approach can be useful for further studies on the behavior of PPDX materials, and for clinical practice.
Collapse
Affiliation(s)
- Jan Loskot
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.); (D.M.)
| | - Daniel Jezbera
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.); (D.M.)
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
- Correspondence:
| | - Rafael Doležal
- Department of Chemistry, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (R.D.); (R.A.)
| | - Rudolf Andrýs
- Department of Chemistry, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (R.D.); (R.A.)
| | - Vendula Francová
- ELLA-CS, s.r.o., Milady Horákové 504/45, 500 06 Hradec Králové, Czech Republic;
| | - Dominik Miškář
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.); (D.M.)
| | - Alena Myslivcová Fučíková
- Department of Biology, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
| |
Collapse
|
16
|
Influence of photo-oxidation on the performance and soil degradation of oxo- and biodegradable polymer-based items for agricultural applications. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Vieira LDS, Montagna LS, Silva APBD, Verginio GEA, Passador FR. Effect of glassy carbon addition and photodegradation on the biodegradation in aqueous medium of poly (
3‐hydroxybutyrate
‐
co
‐
3‐hydroxyvalerate
)/glassy carbon green composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leonardo de Souza Vieira
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos Brazil
| | - Larissa Stieven Montagna
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos Brazil
| | - Ana Paula Bernardo da Silva
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos Brazil
| | - Gleice Ellen Almeida Verginio
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos Brazil
| | - Fabio Roberto Passador
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos Brazil
| |
Collapse
|
18
|
Yoo HJ, Kim DH, Shin D, Oh Y, Lee S, Lee JY, Choi YJ, Lee SH, Lee KS, Kim Y, Cho K. Recent developments in pre-treatment and analytical techniques for synthetic polymers by MALDI-TOF mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5767-5800. [PMID: 33241791 DOI: 10.1039/d0ay01729a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A great deal of effort has been expended to develop accurate means of determining the properties of synthetic polymers using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Many studies have focused on the importance of sample pre-treatment to obtain accurate analysis results. This review discusses the history of synthetic polymer characterization and highlights several applications of MALDI-TOF MS that recognize the importance of pre-treatment technologies. The subject area is of significance in the field of analytical chemistry, especially for users of the MALDI technique. Since the 2000s, many such technologies have been developed that feature improved methods and conditions, including solvent-free systems. In addition, the recent diversification of matrix types and the development of carbon-based matrix materials are described herein together with the current status and future directions of MALDI-TOF MS hardware and software development. We provide a summary of processes used for obtaining the best analytical results with synthetic polymeric materials using MALDI-TOF MS.
Collapse
Affiliation(s)
- Hee-Jin Yoo
- Center for Research Equipment, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28119, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Haneef INHM, Buys YF, Shaffiar NM, Haris NA, Hamid AMA, Shaharuddin SIS. Mechanical, morphological, thermal properties and hydrolytic degradation behavior of polylactic acid/polypropylene carbonate blends prepared by solvent casting. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Intan Najwa Humaira Mohamed Haneef
- Department of Manufacturing and Materials, Kulliyyah of Engineering International Islamic University Malaysia (IIUM) Gombak Selangor Malaysia
| | - Yose Fachmi Buys
- Department of Mechanical Engineering University of Malaya Kuala Lumpur Malaysia
| | - Norhashimah Mohd Shaffiar
- Department of Manufacturing and Materials, Kulliyyah of Engineering International Islamic University Malaysia (IIUM) Gombak Selangor Malaysia
| | - Nurul Assadiqah Haris
- Department of Manufacturing and Materials, Kulliyyah of Engineering International Islamic University Malaysia (IIUM) Gombak Selangor Malaysia
| | - Abdul Malek Abdul Hamid
- Department of Manufacturing and Materials, Kulliyyah of Engineering International Islamic University Malaysia (IIUM) Gombak Selangor Malaysia
| | - Sharifah Imihezri Syed Shaharuddin
- Department of Manufacturing and Materials, Kulliyyah of Engineering International Islamic University Malaysia (IIUM) Gombak Selangor Malaysia
| |
Collapse
|
20
|
Vieira L, Montagna LS, Marini J, Passador FR. Influence of particle size and glassy carbon content on the thermal, mechanical, and electrical properties of
PHBV
/glassy carbon composites. J Appl Polym Sci 2020. [DOI: 10.1002/app.49740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Leonardo Vieira
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos São Paulo Brazil
| | - Larissa Stieven Montagna
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos São Paulo Brazil
| | - Juliano Marini
- Department of Materials Engineering Federal University of São Carlos (UFSCar) São Carlos São Paulo Brazil
| | - Fabio Roberto Passador
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos São Paulo Brazil
| |
Collapse
|
21
|
Borrowman CK, Bücking M, Göckener B, Adhikari R, Saito K, Patti AF. LC-MS analysis of the degradation products of a sprayable, biodegradable poly(ester-urethane-urea). Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Rizzarelli P, Rapisarda M, Valenti G. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8697. [PMID: 31834664 DOI: 10.1002/rcm.8697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A detailed characterization of polymeric matrices and appropriate degradation monitoring techniques are required to sustain the development of new materials as well as to enlarge the applications of the old ones. In fact, polymer analysis is essential for the clarification of the intrinsic relationship between structure and properties that ascertains the industrial applications in diverse fields. In bioresorbable and biodegradable polymers, the role of analytical methods is dual since it is pointed both at the polymeric matrices and at degradation tracking. The structural architectures, the mechanical and morphological properties, and the degradation rate, are of outstanding importance for a specific application. In some cases, the complexity of the polymer structure, the processes of decomposition or the low concentration of the degradation products need the concurrent use of different complementary analytical techniques to give detailed information of the reactions taking place. Several analytical methods are used in bioresorbable polymer development and degradation tracking. Among them, mass spectrometry (MS) plays an essential role and it is used to refine polymer syntheses, for its high sensitivity, to highlight degradation mechanism by detecting compounds present in trace amounts, or to track the degradation product profile and to study drug release. In fact, elucidation of reaction mechanisms and polymer structure, attesting to the purity and detecting defects as well as residual catalysts, in biodegradable and bioresorbable polymers, requires sensitive analytical characterization methods that are essential in providing an assurance of safety, efficacy and quality. This review aims to provide an overview of the MS strategies used to support research and development of resorbable polymers as well as to investigate their degradation mechanisms. It is focused on the most significant studies concerning synthetic bioresorbable matrices (polylactide, polyglycolide and their copolymers, polyhydroxybutyrate, etc.), published in the last ten years.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Marco Rapisarda
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Graziella Valenti
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| |
Collapse
|
23
|
Fu W, Min J, Jiang W, Li Y, Zhang W. Separation, characterization and identification of microplastics and nanoplastics in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137561. [PMID: 32172100 DOI: 10.1016/j.scitotenv.2020.137561] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) have globally been detected in aquatic and marine environments, which has raised scientific interests and public health concerns during the past decade. MPs are those polymeric particles with at least one dimension <5 mm. MPs possess complex physicochemical properties that vary their mobility, bioavailability and toxicity toward organisms and interactions with their surrounding pollutants. Similar to nanomaterials and nanoparticles, accurate and reliable detection and measurement of MPs or nanoplastics and their characteristics are important to warrant a comprehensive understanding of their environmental and ecological impacts. This review elaborates the principles and applications of diverse analytical instruments or techniques for separation, characterization and quantification of MPs in the environment. The strength and weakness of different instrumental methods in separation, morphological, physical classification, chemical characterization and quantification for MPs are critically compared and analyzed. There is a demand for standardized experimental procedures and characterization analysis due to the complex transformation, cross-contamination and heterogeneous properties of MPs in size and chemical compositions. Moreover, this review highlights emerging and promising characterization techniques that may have been overlooked by research communities to study MPs. The future research efforts may need to develop and implement new analytical tools and combinations of hyphenated technologies to complement respective limitations of detection and yield reliable characterization information for MPs. The goal of this critical review is to facilitate the research of plastic particles and pollutants in the environment and understanding of their environmental and human health effects.
Collapse
Affiliation(s)
- Wanyi Fu
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Jiacheng Min
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Weiyu Jiang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China.
| |
Collapse
|
24
|
Naddeo M, D'Auria I, Viscusi G, Gorrasi G, Pellecchia C, Pappalardo D. Tuning the thermal properties of poly(ethylene)‐like poly(esters) by copolymerization of ε‐caprolactone with macrolactones, in the presence of a pyridylamidozinc(II) complex. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marco Naddeo
- Dipartimento di Scienze e TecnologieUniversità del Sannio via de Sanctis snc, 82100 Benevento Italy
| | - Ilaria D'Auria
- Dipartimento di Chimica e Biologia “A. Zambelli”Università di Salerno via Giovanni Paolo II 132, 84084, Fisciano Salerno Italy
| | - Gianluca Viscusi
- Dipartimento di Ingegneria IndustrialeUniversità di Salerno via Giovanni Paolo II 132, 84084 Fisciano Salerno Italy
| | - Giuliana Gorrasi
- Dipartimento di Ingegneria IndustrialeUniversità di Salerno via Giovanni Paolo II 132, 84084 Fisciano Salerno Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “A. Zambelli”Università di Salerno via Giovanni Paolo II 132, 84084, Fisciano Salerno Italy
| | - Daniela Pappalardo
- Dipartimento di Scienze e TecnologieUniversità del Sannio via de Sanctis snc, 82100 Benevento Italy
| |
Collapse
|
25
|
Bedor PBA, Caetano RMJ, Souza Júnior FGD, Leite SGF. Advances and perspectives in the use of polymers in the environmental area: a specific case of PBS in bioremediation. POLIMEROS 2020. [DOI: 10.1590/0104-1428.02220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
|
27
|
Tapia JB, Haines J, Yapor JP, Reynolds MM. Identification of the degradation products of a crosslinked polyester using LC-MS. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
The Effect of the Thermosensitive Biodegradable PLGA⁻PEG⁻PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement. Int J Mol Sci 2019; 20:ijms20020391. [PMID: 30658476 PMCID: PMC6359562 DOI: 10.3390/ijms20020391] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 11/17/2022] Open
Abstract
The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA⁻PEG⁻PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA⁻PEG⁻PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA⁻PEG⁻PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.
Collapse
|
29
|
Jovic K, Nitsche T, Lang C, Blinco JP, De Bruycker K, Barner-Kowollik C. Hyphenation of size-exclusion chromatography to mass spectrometry for precision polymer analysis – a tutorial review. Polym Chem 2019. [DOI: 10.1039/c9py00370c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein we demonstrate how SEC-ESI-MS can be used to analyze complex polymers, a significant challenge in contemporary polymer chemistry.
Collapse
Affiliation(s)
- Kristina Jovic
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Tobias Nitsche
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christiane Lang
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Kevin De Bruycker
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| |
Collapse
|
30
|
|
31
|
Anis SNS, Mohamad Annuar MS, Simarani K. In vivo and in vitro depolymerizations of intracellular medium-chain-length poly-3-hydroxyalkanoates produced by Pseudomonas putida Bet001. Prep Biochem Biotechnol 2017. [DOI: 10.1080/10826068.2017.1342266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Siti Nor Syairah Anis
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Khanom Simarani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Rivas D, Zonja B, Eichhorn P, Ginebreda A, Pérez S, Barceló D. Using MALDI-TOF MS imaging and LC-HRMS for the investigation of the degradation of polycaprolactone diol exposed to different wastewater treatments. Anal Bioanal Chem 2017; 409:5401-5411. [DOI: 10.1007/s00216-017-0371-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
33
|
Badia J, Gil-Castell O, Ribes-Greus A. Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Polyák P, Rácz P, Rózsa P, Nagy GN, Vértessy BG, Pukánszky B. The novel technique of vapor pressure analysis to monitor the enzymatic degradation of PHB by HPLC chromatography. Anal Biochem 2017; 521:20-27. [DOI: 10.1016/j.ab.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
|
35
|
Weiss RM, Li J, Liu HH, Washington MA, Giesen JA, Grayson SM, Meyer TY. Determining Sequence Fidelity in Repeating Sequence Poly(lactic-co-glycolic acid)s. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ryan M. Weiss
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jian Li
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Han H. Liu
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Michael A. Washington
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Joseph A. Giesen
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Tara Y. Meyer
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
36
|
Rivas D, Ginebreda A, Elosegi A, Pozo J, Pérez S, Quero C, Barceló D. Using a polymer probe characterized by MALDI-TOF/MS to assess river ecosystem functioning: From polymer selection to field tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:532-540. [PMID: 27575360 DOI: 10.1016/j.scitotenv.2016.08.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Characterization of river ecosystems must take into consideration both structural and functional aspects. For the latter, a convenient and simple approach for routine monitoring is based on the decomposition of organic matter measured in terms of breakdown of natural organic substrates like leaf litter, wood sticks. Here we extended the method to a synthetic organic material using polymer probes characterized by MALDI-TOF/MS. We first characterized several commercial available polymers, and finally selected polycaprolactonediol 1250 (PCP 1250), a polyester oligomer, as the most convenient for further studies. PCP 1250 was first tested at mesocosms scale under conditions simulating those of the river, with and without nutrient addition for up to 4weeks. Differences to the starting material measured in terms of changes in the relative ion peak intensities were clearly observed. Ions exhibited a different pattern evolution along time depending on their mass. Greatest changes were observed at longest exposure time and in the nutrient addition treatment. At shorter times, the effect of nutrients (addition or not) was indistinguishable. Finally, we performed an experiment in 11 tributaries of the Ebro River during 97days of exposure. Principal Component Analysis confirmed the different behavior of ions, which were clustered according to their mass. Exposed samples were clearly different to the standard starting material, but could not be well distinguished among each other. Polymer mass loss rates, as well as some environmental variables such as conductivity, temperature and flow were correlated with some peak intensities. Overall, the interpretation of field results in terms of environmental conditions remains elusive, due to the influence of multiple concurrent factors. Nevertheless, breakdown of synthetic polymers opens an interesting field of research, which can complement more traditional breakdown studies to assess river ecosystem functioning.
Collapse
Affiliation(s)
- D Rivas
- Institute of Environmental Assessment and Water Research, Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - A Ginebreda
- Institute of Environmental Assessment and Water Research, Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - A Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - J Pozo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - S Pérez
- Institute of Environmental Assessment and Water Research, Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - C Quero
- Institute of Advanced Chemistry of Catalonia, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- Institute of Environmental Assessment and Water Research, Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, Scientific and Technologic Park of the UdG Emili Grahit, 101-17003 Girona, Spain
| |
Collapse
|
37
|
Gorrasi G, Meduri A, Rizzarelli P, Carroccio S, Curcuruto G, Pellecchia C, Pappalardo D. Preparation of poly(glycolide-co-lactide)s through a green process: Analysis of structural, thermal, and barrier properties. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Badia J, Ribes-Greus A. Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Liu F, Ma C, Gao Y, McClements DJ. Food-Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Compr Rev Food Sci Food Saf 2016; 16:76-95. [DOI: 10.1111/1541-4337.12229] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Fuguo Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural Univ; Beijing 100083 People's Republic of China
- Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst MA 01003 USA
| | - Cuicui Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural Univ; Beijing 100083 People's Republic of China
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural Univ; Beijing 100083 People's Republic of China
| | | |
Collapse
|
40
|
Rivas D, Ginebreda A, Pérez S, Quero C, Barceló D. MALDI-TOF MS Imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:27-33. [PMID: 27213667 DOI: 10.1016/j.scitotenv.2016.05.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 04/14/2023]
Abstract
Degradation of solid polymers in the aquatic environment encompasses a variety of biotic and abiotic processes giving rise to heterogeneous patterns across the surface of the material, which cannot be investigated using conventional Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that only renders an "average" picture of the sample. In that context, MALDI-TOF MS Imaging (MALDI MSI) provides a rapid and efficient tool to study 2D spatial changes occurred in the chemical composition of the polymer surface. Commercial polycaprolactone diol (average molecular weight of 1250Da) was selected as test material because it had been previously known to be amenable to biological degradation. The test oligomer probe was incubated under aerobic and denitrifying conditions using synthetic water and denitrifying mixed liquor obtained from a wastewater treatment plant respectively. After ca. seven days of exposure the mass spectra obtained by MALDI MSI showed the occurrence of chemical modifications in the sample surface. Observed heterogeneity across the probe's surface indicated significant degradation and suggested the contribution of biotic processes. The results were investigated using different image processing tools. Major changes on the oligomer surface were observed when exposed to denitrifying conditions.
Collapse
Affiliation(s)
- Daniel Rivas
- IDAEA-CSIC, Institute of Environmental Assessment and Water Research, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Antoni Ginebreda
- IDAEA-CSIC, Institute of Environmental Assessment and Water Research, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Sandra Pérez
- IDAEA-CSIC, Institute of Environmental Assessment and Water Research, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Carmen Quero
- IQAC-CSIC, Institute of Advanced Chemistry of Catalonia, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- IDAEA-CSIC, Institute of Environmental Assessment and Water Research, C/Jordi Girona, 18-26, 08034 Barcelona, Spain; ICRA, Catalan Institute for Water Research, Scientific and Technologic Park of the UdG, Emili Grahit, 101-17003 Girona, Spain
| |
Collapse
|
41
|
Ooya T, Sakata Y, Choi HW, Takeuchi T. Reflectometric interference spectroscopy-based sensing for evaluating biodegradability of polymeric thin films. Acta Biomater 2016; 38:163-7. [PMID: 27090591 DOI: 10.1016/j.actbio.2016.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 04/04/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Enzymatic degradation of poly(ε-caprolactone) (PCL) thin films was analyzed by reflectometric interference spectroscopy (RIfS)-based sensing system, and validated by attenuated total reflection infrared spectroscopy (ATR-IR) imaging. The degradation of the PCL thin film spin-coated on the silicon substrate on which 65-nm silicon nitride layer was deposited as an interference layer was easily monitored by shifting the peak bottom of reflectance spectra (Δλ) that is known to be proportional to the thickness of thin films. The Δλ values decreased with increasing the concentration of lipase from Pseudomonas cepacia, and the obtained sensorgrams were applied for kinetic analysis using a curve fitting software. ATR-IR spectra and imaging analysis on the surface of the PCL film revealed that carbonyl groups on the surface decreased with time, resulting from proceeding with the enzymatic hydrolysis, and importantly, extinction of the carbonyl group was declined with proportional to the decrease in the film thickness measured by the RIfS system. Consequently, the present RIfS-based label-free monitoring system can provide a simple and reliable way for evaluating biodegradability on synthetic materials. STATEMENT OF SIGNIFICANCE A RIfS-based sensing system in combination with ATR-IR measurements can be an analytical method for evaluation of biodegradability of polymeric thin films. This study demonstrates the utility of the RIfS-based sensing approach for analyzing the lipase-catalyzed degradation of PCL. Despite the RIfS is known as an inexpensive label-free detection method for biological interaction, the RIfS applications as monitoring methods for enzymatic degradation of biodegradable polymers had not been systematically explored. This study additionally demonstrated the capability of combined analysis of the biodegradation with ATR-IR spectra/imaging and RIfS measurements, which could be broadly applied towards evaluating biodegradability of various biodegradable polymers in environmental protection research.
Collapse
|
42
|
Hemalatha RG, Ganayee MA, Pradeep T. Electrospun Nanofiber Mats as “Smart Surfaces” for Desorption Electrospray Ionization Mass Spectrometry (DESI MS)-Based Analysis and Imprint Imaging. Anal Chem 2016; 88:5710-7. [DOI: 10.1021/acs.analchem.5b04520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R. G. Hemalatha
- DST Unit
on Nanoscience and
Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Mohd Azhardin Ganayee
- DST Unit
on Nanoscience and
Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - T. Pradeep
- DST Unit
on Nanoscience and
Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
43
|
Identification and quantification of oligomers as potential migrants in plastics food contact materials with a focus in polycondensates – A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.01.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Rizzarelli P, Cirica M, Pastorelli G, Puglisi C, Valenti G. Aliphatic poly(ester amide)s from sebacic acid and aminoalcohols of different chain length: Synthesis, characterization and soil burial degradation. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Loriot M, Linossier I, Vallée-Réhel K, Faÿ F. Syntheses, characterization, and hydrolytic degradation of P(ε-caprolactone-co-δ-valerolactone) copolymers: Influence of molecular weight. J Appl Polym Sci 2015. [DOI: 10.1002/app.43007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marion Loriot
- Laboratoire De Biotechnologie Et Chimie Marines EA 3884, Université De Bretagne-Sud; Lorient Cedex BP92116, 56321 France
| | - Isabelle Linossier
- Laboratoire De Biotechnologie Et Chimie Marines EA 3884, Université De Bretagne-Sud; Lorient Cedex BP92116, 56321 France
| | - Karine Vallée-Réhel
- Laboratoire De Biotechnologie Et Chimie Marines EA 3884, Université De Bretagne-Sud; Lorient Cedex BP92116, 56321 France
| | - Fabienne Faÿ
- Laboratoire De Biotechnologie Et Chimie Marines EA 3884, Université De Bretagne-Sud; Lorient Cedex BP92116, 56321 France
| |
Collapse
|
46
|
Enhancement of ionization efficiency of mass spectrometric analysis from non-electrospray ionization friendly solvents with conventional and novel ionization techniques. Anal Chim Acta 2015; 897:45-52. [DOI: 10.1016/j.aca.2015.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 11/21/2022]
|
47
|
Tijssen KCH, Blaakmeer ESM, Kentgens APM. Solid-state NMR studies of Ziegler-Natta and metallocene catalysts. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 68-69:37-56. [PMID: 25957882 DOI: 10.1016/j.ssnmr.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
Ziegler-Natta catalysts are the workhorses of polyolefin production. However, although they have been used and intensively studied for half a century, there is still no comprehensive picture of their mechanistic operation. New techniques are needed to gain more insight in these catalysts. Solid-state NMR has reached a high level of sophistication over the last few decades and holds great promise for providing a deeper insight in Ziegler-Natta catalysis. This review outlines the possibilities for solid-state NMR to characterize the different components and interactions in Ziegler-Natta and metallocene catalysts. An overview is given of some of the expected mechanisms and the resulting polymer microstructure and other characteristics. In the second part of this review we present studies that have used solid-state NMR to investigate the composition of Ziegler-Natta and metallocene catalysts or the interactions between their components.
Collapse
Affiliation(s)
- Koen C H Tijssen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, The Netherlands.
| | - E S Merijn Blaakmeer
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, The Netherlands.
| | - Arno P M Kentgens
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Liu F, Sun C, Wang D, Yuan F, Gao Y. Glycosylation improves the functional characteristics of chlorogenic acid–lactoferrin conjugate. RSC Adv 2015. [DOI: 10.1039/c5ra15261e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chlorogenic acid (CA)–lactoferrin (LF) conjugate prepared via alkali treatment was glycoslated with glucose (Glc) or polydextrose (PD) by the Maillard reaction, and the modification improved the functional properties of the conjugate.
Collapse
Affiliation(s)
- Fuguo Liu
- Beijing Laboratory for Food Quality and Safety
- College of Food Science & Nutritional Engineering
- China Agricultural University
- China
| | - Cuixia Sun
- Beijing Laboratory for Food Quality and Safety
- College of Food Science & Nutritional Engineering
- China Agricultural University
- China
| | - Di Wang
- Beijing Laboratory for Food Quality and Safety
- College of Food Science & Nutritional Engineering
- China Agricultural University
- China
| | - Fang Yuan
- Beijing Laboratory for Food Quality and Safety
- College of Food Science & Nutritional Engineering
- China Agricultural University
- China
| | - Yanxiang Gao
- Beijing Laboratory for Food Quality and Safety
- College of Food Science & Nutritional Engineering
- China Agricultural University
- China
| |
Collapse
|
49
|
Cicogna F, Coiai S, Rizzarelli P, Carroccio S, Gambarotti C, Domenichelli I, Yang C, Dintcheva NT, Filippone G, Pinzino C, Passaglia E. Functionalization of aliphatic polyesters by nitroxide radical coupling. Polym Chem 2014. [DOI: 10.1039/c4py00641k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|