1
|
Li C, Pan Y, Xiao T, Xiang L, Li Q, Tian F, Manners I, Mai Y. Metal Organic Framework Cubosomes. Angew Chem Int Ed Engl 2023; 62:e202215985. [PMID: 36647212 DOI: 10.1002/anie.202215985] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
We demonstrate a general strategy for the synthesis of ordered bicontinuous-structured metal organic frameworks (MOFs) by using polymer cubosomes (PCs) with a double primitive structure (Im 3 ‾ ${\bar{3}}$ m symmetry) as the template. The filling of MOF precursors in the open channel of PCs, followed by their coordination and removal of the template, generates MOF cubosomes with a single primitive topology (Pm 3 ‾ ${\bar{3}}$ m) and average mesopore diameters of 60-65 nm. Mechanism study reveals that the formation of ZIF-8 cubosomes undergoes a new MOF growth process, which involves the formation of individual MOF seeds in the template, their growth and eventual fusion into the cubosomes. Their growth kinetics follows the Avrami equation with an Avrami exponent of n=3 and a growth rate of k=1.33×10-4 , indicating their fast 3D heterogeneous growth mode. Serving as a bioreactor, the ZIF-8 cubosomes show high loading of trypsin enzyme, leading to a high catalytic activity in the proteolysis of bovine serum albumin.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianyu Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Ian Manners
- Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Duan Y, Cheng H. Preparation of immobilized pepsin for extraction of collagen from bovine hide. RSC Adv 2022; 12:34548-34556. [PMID: 36545603 PMCID: PMC9713359 DOI: 10.1039/d2ra05744a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
In the extraction of collagens from mammalian tissues, the free pepsin used in the acid-pepsin extraction system is hard to recycle, and there is a risk of enzyme protein contamination in the extracted collagen products, which limits their applications. To solve this problem, an immobilized pepsin was successfully prepared via the covalent crosslinking of glutaraldehyde using a 3-aminopropyltriethoxysilane (APTES) surface modified silica clay as the support. The immobilized pepsin was applied for the extraction of collagen from bovine hide. The optimal immobilization process involves incubating pepsin with an initial concentration of 35 mg mL-1 and glutaraldehyde with 5% activated APTES modified silica clay at 25 °C for 60 min, by which the loading amount of pepsin was 220 mg g-1 and the activity of the immobilized pepsin was 4.2 U mg-1. The collagen extracted using acetic acid and the immobilized pepsin method retained its complete triple helix structure. This research thus details an effective separation method using pepsin for extraction of collagen via an acetic acid-enzyme method, where the extracted collagen may be a candidate for use in biomaterial applications.
Collapse
Affiliation(s)
- Youdan Duan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan UniversityChengdu610065China
| | - Haiming Cheng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan UniversityChengdu610065China,National Engineering Research Center of Clean Technology in Leather Industry, Sichuan UniversityChengdu 610065China
| |
Collapse
|
3
|
Rezaei S, Landarani-Isfahani A, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I. Hierarchical Gold Mesoflowers in Enzyme Engineering: An Environmentally Friendly Strategy for the Enhanced Enzymatic Performance and Biodiesel Production. ACS APPLIED BIO MATERIALS 2020; 3:8414-8426. [PMID: 35019613 DOI: 10.1021/acsabm.0c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To expand the field of nanomaterial and engineering of enzyme in eco-friendly processes, gold mesoflower (Au-MF) nanostructure was applied for preparation of three series of immobilized lipase (Au-MF/SAM 1-3) through biofunctionalization of surface by Ugi multicomponent reaction. The synthesized Au-MF/SAM 1-3/lipase as unique biocatalysts was confirmed by different analytical tools and techniques. Compared to the free lipase, the Au-MF/SAM 1-3/lipase showed more stability at high temperature and pH. Also, these biocatalysts showed high storage stability and reusability after 2 months and eight cycles, respectively. Moreover, the kinetic behavior was investigated and the results showed a minimal impairment of catalytic activity of immobilized lipase. The kinetic constants of the immobilized lipase, Au-MF/SAM 2/lipase, are Km = 0.37 mM, Vmax = 0.22 mM min-1, and kcat = 154 min-1. The immobilized lipase showed smaller activation energy (Ea) than that of free enzyme, indicating that the immobilized enzyme is less sensitive to temperature. In the following, the biodiesel production from palmitic acid was studied in the presence of Au-MF/SAM 2/lipase as an efficient biocatalyst. The influence of different reaction parameters such as temperature, molar ratio of alcohol to palmitic acid, water content, and lipase amount was deeply investigated.
Collapse
Affiliation(s)
- Saghar Rezaei
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Valiollah Mirkhani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | |
Collapse
|
4
|
AZHAR I, LIU X, HE HY, QU QS, YANG L. A Syringe-Filter-based Portable Microreactor for Size-selective Proteolysis of Low Molecular-weight Proteins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60061-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Rapid proteolytic digestion and peptide separation using monolithic enzyme microreactor coupled with capillary electrophoresis. J Pharm Biomed Anal 2019; 165:129-134. [DOI: 10.1016/j.jpba.2018.11.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022]
|
6
|
BRAF protein immunoprecipitation, elution, and digestion from cell extract using a microfluidic mixer for mutant BRAF protein quantification by mass spectrometry. Anal Bioanal Chem 2019; 411:1085-1094. [PMID: 30604035 DOI: 10.1007/s00216-018-1536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/23/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
This study utilized a microfluidic mixer for the sample pretreatment of cell extracts for target protein quantification by mass spectrometers, including protein immunoprecipitation and protein enzymatic digestion. The time of sample pretreatment was reduced and thus the throughput of quantitative mutant proteins was increased by using the proposed method. Whole cell lysates of the cancer cell line HT-29 with gene mutations were used as the sample. The target protein BRAF was immunoprecipitated using magnetic beads in a pneumatic micromixer. Purified protein was then eluted and digested by trypsin in another two micromixers to yield peptide fragments in the solution. Using stable isotope-labeled standard as the internal control, wild-type and mutant BRAF proteins were quantified using mass spectrometry, which could be used for cancer screening. Compared with conventional methods in which protein immunoprecipitation lasts overnight, the micromixer procedure takes only 1 h, likely improving the throughput of mutant BRAF protein quantification by mass spectrometry. Graphical abstract Three micromixers were used to reduce the sample pretreatment time of cell extracts for target protein quantification by mass spectrometers, including protein immunoprecipitation, protein elution, and protein enzymatic digestion.
Collapse
|
7
|
Wang Y, Wang Q, Song X, Cai J. Hydrophilic polyethylenimine modified magnetic graphene oxide composite as an efficient support for dextranase immobilization with improved stability and recyclable performance. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Atacan K, Kursunlu AN, Ozmen M. Preparation of pillar[5]arene immobilized trypsin and its application in microwave-assisted digestion of Cytochrome c. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:886-893. [DOI: 10.1016/j.msec.2018.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/06/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
|
9
|
Yao J, Sun N, Deng C. Recent advances in mesoporous materials for sample preparation in proteomics research. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Core-shell silica microsphere-based trypsin nanoreactor for low molecular-weight proteome analysis. Anal Chim Acta 2017; 985:194-201. [DOI: 10.1016/j.aca.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 07/01/2017] [Indexed: 11/16/2022]
|
11
|
Atacan K, Çakıroğlu B, Özacar M. Efficient protein digestion using immobilized trypsin onto tannin modified Fe 3 O 4 magnetic nanoparticles. Colloids Surf B Biointerfaces 2017; 156:9-18. [DOI: 10.1016/j.colsurfb.2017.04.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/24/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
|
12
|
Atacan K, Çakıroğlu B, Özacar M. Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion. Int J Biol Macromol 2017; 97:148-155. [DOI: 10.1016/j.ijbiomac.2017.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022]
|
13
|
Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device. Anal Bioanal Chem 2017; 409:3573-3585. [DOI: 10.1007/s00216-017-0295-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
|
14
|
Wang H, Jiao F, Gao F, Zhao X, Zhao Y, Shen Y, Zhang Y, Qian X. Covalent organic framework-coated magnetic graphene as a novel support for trypsin immobilization. Anal Bioanal Chem 2017; 409:2179-2187. [DOI: 10.1007/s00216-016-0163-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/01/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
15
|
Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chem 2016; 212:460-8. [DOI: 10.1016/j.foodchem.2016.06.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/26/2016] [Accepted: 06/05/2016] [Indexed: 01/05/2023]
|
16
|
Cheng G, Wang ZG, Denagamage S, Zheng SY. Graphene-Templated Synthesis of Magnetic Metal Organic Framework Nanocomposites for Selective Enrichment of Biomolecules. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10234-10242. [PMID: 27046460 DOI: 10.1021/acsami.6b02209] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Successful control of homogeneous and complete coating of graphene or graphene-based composites with well-defined metal organic framework (MOF) layers is a great challenge. Herein, novel magnetic graphene MOF composites were constructed via a simple strategy for self-assembly of well-distributed, dense, and highly porous MOFs on both sides of graphene nanosheets. Graphene functionalized with magnetic nanoparticles and carboxylic groups on both sides was explored as the backbone and template to direct the controllable self-assembly of MOFs. The prepared composite materials have a relatively high specific surface area (345.4 m(2) g(-1)), and their average pore size is measured to be 3.2 nm. Their relatively high saturation magnetization (23.8 emu g(-1)) indicates their strong magnetism at room temperature. Moreover, the multifunctional composite was demonstrated to be a highly effective affinity material in selective extraction and separation of low-concentration biomolecules from biological samples, in virtue of the size-selection property of the unique porous structure and the excellent affinity of the composite materials. Besides providing a solution for the construction of well-defined functional graphene-based MOFs, this work could also contribute to selective extraction of biomolecules, in virtue of the universal affinity between immobilized metal ions and biomolecules.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Biomedical Engineering, ‡Material Research Institute, and §Department of Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Zhi-Gang Wang
- Department of Biomedical Engineering, ‡Material Research Institute, and §Department of Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Sachira Denagamage
- Department of Biomedical Engineering, ‡Material Research Institute, and §Department of Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Si-Yang Zheng
- Department of Biomedical Engineering, ‡Material Research Institute, and §Department of Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Ruan G, Wu Z, Huang Y, Wei M, Su R, Du F. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions. Biochem Biophys Res Commun 2016; 473:54-60. [DOI: 10.1016/j.bbrc.2016.03.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
|
18
|
Zhao Q, Fang F, Wu C, Wu Q, Liang Y, Liang Z, Zhang L, Zhang Y. imFASP: An integrated approach combining in-situ filter-aided sample pretreatment with microwave-assisted protein digestion for fast and efficient proteome sample preparation. Anal Chim Acta 2016; 912:58-64. [DOI: 10.1016/j.aca.2016.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 01/02/2023]
|
19
|
Jiang S, Zhang Z, Li L. A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies. J Chromatogr A 2015; 1412:75-81. [PMID: 26300481 DOI: 10.1016/j.chroma.2015.07.121] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/25/2015] [Accepted: 07/31/2015] [Indexed: 01/02/2023]
Abstract
Mass spectrometry (MS) coupled to sample preparation and separation techniques has become a primary tool for proteomics studies. However, due to sample complexity, it is often challenging to achieve fast and efficient sample preparation prior to MS analysis. In recent decades, monolithic materials have been developed not only as chromatographic media, but also as efficient solid supports for immobilizing multiple types of affinity reagents. Herein, the N-acryloxysuccinimide-co-acrylamide-co-N,N'-methylenebisacrylamide (NAS-AAm-Bis) monolith was fabricated within silanized 200 μm i.d. fused-silica capillaries and was used as an immobilized enzyme reactor (IMER). The column was conjugated with trypsin/Lys-C and Lys-N enzymes to allow enzymatic digestions to occur while protein mixture was loaded onto the IMER column followed by MS-based proteomics analysis. Similar MS signal and protein sequence coverage were observed using protein standard bovine serum albumin (BSA) compared to in-solution digestion. Furthermore, mouse serum, yeast, and human cell lysate samples were also subjected to enzymatic digestion by both IMER (in seconds to minutes) and conventional in solution digestion (overnight) for comparison in large-scale proteomics studies. Comparable protein identification results obtained by the two methods highlighted the potential of employing NAS-based IMER column for fast and highly efficient sample preparation for MS analysis in proteomics studies.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Zichuan Zhang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, United States.
| |
Collapse
|
20
|
Pepsin immobilization on an aldehyde-modified polymethacrylate monolith and its application for protein analysis. J Biosci Bioeng 2015; 119:505-10. [DOI: 10.1016/j.jbiosc.2014.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022]
|
21
|
Cheng G, Hao SJ, Yu X, Zheng SY. Nanostructured microfluidic digestion system for rapid high-performance proteolysis. LAB ON A CHIP 2015; 15:650-4. [PMID: 25511010 PMCID: PMC4304898 DOI: 10.1039/c4lc01165a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel microfluidic protein digestion system with a nanostructured and bioactive inner surface was constructed by an easy biomimetic self-assembly strategy for rapid and effective proteolysis in 2 minutes, which is faster than the conventional overnight digestion methods. It is expected that this work would contribute to rapid online digestion in future high-throughput proteomics.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
22
|
Qiao L, Gan N, Wang J, Gao H, Hu F, Wang H, Li T. Novel molecularly imprinted stir bar sorptive extraction based on an 8-electrode array for preconcentration of trace exogenous estrogens in meat. Anal Chim Acta 2015; 853:342-350. [DOI: 10.1016/j.aca.2014.10.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/01/2022]
|
23
|
Abstract
Sample preparation has lagged far behind the evolution of instrumentation used in mass-linked protein analysis. Trypsin digestion, for example, still takes a day, as it did 50 years ago, while mass spectral analyses are achieved in seconds. Higher order structure of proteins is frequently modified by varying digestion conditions: shifting the initial points of trypsin cleavage, changing digestion pathways, accelerating peptide bond demasking and altering the distribution of miscleaved products at the completion of proteolysis. Reduction and alkylation are even circumvented in many cases. This review focuses on immobilized enzyme reactor technology as a means to achieve accelerated trypsin digestion by exploiting these phenomena.
Collapse
|