1
|
Joung H, Jang GJ, Jeong JY, Lim G, Han SY. Evaluating the In Situ Effects of Whole Protein Coronas on the Biosensing of Antibody-Immobilized Nanoparticles Using Two-Color Fluorescence Nanoparticle Tracking Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:220. [PMID: 39940196 PMCID: PMC11820540 DOI: 10.3390/nano15030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
The formation of protein coronas around engineered nanoparticles (ENPs) in biological environments is critical in nanomedicine, as these coronas significantly influence the biological behavior of ENPs. Despite extensive research on protein coronas, understanding the in situ influence of whole (soft plus hard) protein coronas has remained challenging. In this study, we demonstrate a strategy to assess the in situ effects of whole coronas on the model biosensing of anti-IgG using IgG-conjugated gold nanoparticles (IgG-AuNPs) through fluorescence nanoparticle tracking analysis (F-NTA), which enables the selective tracking of fluorescent particles within complex media. In our approach, anti-IgG and IgG-AuNPs were labeled with distinct fluorescent dyes. The accordance in hydrodynamic diameter distributions observed at two different wavelengths verifies the successful capture of anti-IgG on the IgG-AuNPs. The counting of fluorescent anti-IgG within the size distribution allows for a quantitative assessment of biosensing efficiency. This method was applied to evaluate the effects of four protein coronas-human serum albumin, high-density lipoproteins, immunoglobulin G, and fibrinogen-as well as their mixture across varying incubation times and concentrations. The results suggest that the physical presence of whole protein coronas surrounding the IgG-AuNPs may assist the biosensing interaction in situ rather than screening it.
Collapse
Affiliation(s)
| | | | | | | | - Sang Yun Han
- Department of Chemistry, Gachon University, Seongnam 13120, Gyeonggi, Republic of Korea; (H.J.); (G.J.J.)
| |
Collapse
|
2
|
Moulahoum H, Ghorbanizamani F, Timur S. Laser-printed paper ELISA and hydroxyapatite immobilization for colorimetric congenital anomalies screening in saliva. Anal Chim Acta 2024; 1306:342617. [PMID: 38692789 DOI: 10.1016/j.aca.2024.342617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Alpha-fetoprotein (AFP) is a fetal protein that can indicate congenital anomalies such as Down syndrome and spinal canal blockage when detected at abnormal levels in pregnant women. Current AFP detection methods rely on invasive blood or serum samples, which require sophisticated equipment. From the many solutions proposed, colorimetric paper-based assays excel in point-of-care settings. The concept of paper-based ELISA (p-ELISA) enhances traditional methods, aligning with the ASSURED criteria for diagnostics in resource-limited regions. Despite success in microfluidic paper-based assay devices, laser printing remains underexplored for p-ELISA. Additionally, modifying the paper surface provides an additional layer of sensitivity enhancement. RESULTS In this study, we developed a novel laser-printed paper-based ELISA (LP-pELISA) for rapid, sensitive, and noninvasive detection of AFP in saliva samples. The LP-pELISA platform was fabricated by printing hydrophobic barriers on filter paper using a laser printer, followed by depositing hydroxyapatite (HAp) as an immobilization material for the antibodies. The colorimetric detection was achieved using AuNPs functionalized with anti-AFP antibodies and silver nitrate enhancement. The LP-pELISA exhibited a linear response for AFP detection in both buffer and saliva samples over a range of 1.0-800 ng mL-1, with a limit of detection (LOD) reaching 1.0 ng mL-1. The assay also demonstrated good selectivity, repeatability, reproducibility, and stability. The LP-pELISA was further validated by testing spiked human saliva samples, showing its potential for point-of-care diagnosis of congenital disabilities. SIGNIFICANCE The LP-pELISA is a noninvasive platform showcasing simplicity, cost-effectiveness, and user-friendliness, utilizing laser printing, hydroxyapatite modification, and saliva samples to efficiently detect AFP. Beyond its application for AFP, this method's versatility extends to other biomarkers, positioning it as a catalyst for the evolution of paper-based biosensors. The LP-pELISA holds promise as a transformative tool for point-of-care diagnostics, fostering advancements in healthcare with its innovative technology.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
3
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
4
|
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021; 26:5823. [PMID: 34641367 PMCID: PMC8510367 DOI: 10.3390/molecules26195823] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Dario Drommi
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| |
Collapse
|
5
|
Quantitative paper-based dot blot assay for spike protein detection using fuchsine dye-loaded polymersomes. Biosens Bioelectron 2021; 192:113484. [PMID: 34246807 DOI: 10.1016/j.bios.2021.113484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
Real-time reverse transcriptase-polymerase chain reaction (RT-PCR)-based assays are the gold standard for virus diagnosis. Point-of-care (POC) technologies have shown great progress during this period. Herein, we propose a novel fuchsine dye-loaded polymersome for a colorimetric paper-based dot blot spike protein diagnostic assay for COVID-19 via smartphone-assisted sensing. The prepared platform aimed to create an adaptable tool that competes with traditional nanoparticle-based assays employing gold and silver. Analytical characterization and application of the testing platform showed high sensitivity (10 times better than gold nanoparticles), stability, fast turnaround, and reproducibility. The potential and possibilities demonstrated by the current platform could be observed in its adaptability for different markers and pathologies. In addition, smartphone-assisted sensing emphasizes the ability to use the tool at home by common peoples which can lower the burden on the healthcare facilities and reach more underdeveloped regions.
Collapse
|
6
|
António M, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021; 230:122345. [PMID: 33934794 DOI: 10.1016/j.talanta.2021.122345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Urine is a biofluid easy to collect through a non-invasive technique that allows collecting a large volume of sample. The use of urine for disease diagnosis is not yet well explored. However, it has gained attention over the last three years. It has been applied in the diagnosis of several illnesses such as kidney disease, bladder cancer, prostate cancer and cardiovascular diseases. In the last decade, gold nanoparticles (Au NPs) have attracted attention in biosensors' development for the diagnosis of diseases due to their electrical and optical properties, ability to conjugate with biomolecules, high sensitivity, and selectivity. Therefore, this article aims to present a comprehensive view of state of the art on the advances made in the quantification of analytes in urinary samples using AuNPs based assays, with a focus on protein analysis. The type of diagnosis methods, the Au NPs synthesis approaches and the strategies for surface modification aiming at selectivity towards the different targets are highlighted.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal; Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal; LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Paranthaman S, Goravinahalli Shivananjegowda M, Mahadev M, Moin A, Hagalavadi Nanjappa S, Nanjaiyah ND, Chidambaram SB, Gowda DV. Nanodelivery Systems Targeting Epidermal Growth Factor Receptors for Glioma Management. Pharmaceutics 2020; 12:pharmaceutics12121198. [PMID: 33321953 PMCID: PMC7763629 DOI: 10.3390/pharmaceutics12121198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
A paradigm shift in treating the most aggressive and malignant form of glioma is continuously evolving; however, these strategies do not provide a better life and survival index. Currently, neurosurgical debulking, radiotherapy, and chemotherapy are the treatment options available for glioma, but these are non-specific in action. Patients invariably develop resistance to these therapies, leading to recurrence and death. Receptor Tyrosine Kinases (RTKs) are among the most common cell surface proteins in glioma and play a significant role in malignant progression; thus, these are currently being explored as therapeutic targets. RTKs belong to the family of cell surface receptors that are activated by ligands which in turn activates two major downstream signaling pathways via Rapidly Accelerating Sarcoma/mitogen activated protein kinase/extracellular-signal-regulated kinase (Ras/MAPK/ERK) and phosphatidylinositol 3-kinase/a serine/threonine protein kinase/mammalian target of rapamycin (PI3K/AKT/mTOR). These pathways are critically involved in regulating cell proliferation, invasion, metabolism, autophagy, and apoptosis. Dysregulation in these pathways results in uncontrolled glioma cell proliferation, invasion, angiogenesis, and cancer progression. Thus, RTK pathways are considered a potential target in glioma management. This review summarizes the possible risk factors involved in the growth of glioblastoma (GBM). The role of RTKs inhibitors (TKIs) and the intracellular signaling pathways involved, small molecules under clinical trials, and the updates were discussed. We have also compiled information on the outcomes from the various endothelial growth factor receptor (EGFR)-TKIs-based nanoformulations from the preclinical and clinical points of view. Aided by an extensive literature search, we propose the challenges and potential opportunities for future research on EGFR-TKIs-based nanodelivery systems.
Collapse
Affiliation(s)
- Sathishbabu Paranthaman
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
| | | | - Manohar Mahadev
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, Hail University, Hail PO BOX 2440, Saudi Arabia;
| | | | | | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
- Correspondence: ; Tel.: +91-9663162455
| |
Collapse
|
8
|
Zhang L, Mazouzi Y, Salmain M, Liedberg B, Boujday S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens Bioelectron 2020; 165:112370. [DOI: 10.1016/j.bios.2020.112370] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
|
9
|
Busch R, Karim F, Weis J, Sun Y, Zhao C, Vasquez ES. Optimization and Structural Stability of Gold Nanoparticle-Antibody Bioconjugates. ACS OMEGA 2019; 4:15269-15279. [PMID: 31552374 PMCID: PMC6751724 DOI: 10.1021/acsomega.9b02276] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 05/07/2023]
Abstract
Gold nanoparticles (AuNPs) bound with biomolecules have emerged as suitable biosensors exploiting unique surface chemistries and optical properties. Many efforts have focused on antibody bioconjugation to AuNPs resulting in a sensitive bioconjugate to detect specific types of bacteria. Unfortunately, bacteria thrive under various harsh environments, and an understanding of bioconjugate stability is needed. Here, we show a method for optimizing Listeria monocytogenes polyclonal antibodies bioconjugation mechanisms to AuNPs via covalent binding at different pH values, from 2 to 11, and 2-(N-morpholino)ethanesulfonic acid (MES), 3-(N-morpholino)propanesulfonic acid, NaOH, HCl conditions. By fitting Lorentz curves to the amide I and II regions, we analyze the stability of the antibody secondary structure. This shows an increase in the apparent breakdown of the antibody secondary structure during bioconjugation as pH decreases from 7.9 to 2. We find variable adsorption efficiency, measured as the percentage of antibody adsorbed to the AuNP surface, from 17 to 27% as pH increases from 2 to 6 before decreasing to 8 and 13% at pH 7.9 and 11, respectively. Transmission electron microscopy (TEM) analysis reveals discrepancies between size and morphological changes due to the corona layer assembly from antibody binding to single nanoparticles versus aggregation or cluster self-assembly into large aggregates. The corona layer formation size increases from 3.9 to 5.1 nm from pH 2 to 6, at pH 7.9, there is incomplete corona formation, whereas at pH 11, there is a corona layer formed of 6.4 nm. These results indicate that the covalent binding process was more efficient at lower pH values; however, aggregation and deactivation of the antibodies were observed. We demonstrate that optimum bioconjugation condition was determined at pH 6 and MES buffer-type by indicators of covalent bonding and stability of the antibody secondary structure using Fourier transform-infrared, the morphological characteristics and corona layer formation using TEM, and low wavelength shifts of ultraviolet-visible after bioconjugation.
Collapse
Affiliation(s)
- Robert
T. Busch
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - Farzia Karim
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - John Weis
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - Yvonne Sun
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - Chenglong Zhao
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - Erick S. Vasquez
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| |
Collapse
|
10
|
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40:2438-2461. [PMID: 31056767 DOI: 10.1002/elps.201900111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre-concentration, removal of interferences (purification), and pre-processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)-assisted sample preparation and pre-concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size-controlled synthesis, large surface-to-volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ-potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Groysbeck N, Stoessel A, Donzeau M, da Silva EC, Lehmann M, Strub JM, Cianferani S, Dembélé K, Zuber G. Synthesis and biological evaluation of 2.4 nm thiolate-protected gold nanoparticles conjugated to Cetuximab for targeting glioblastoma cancer cells via the EGFR. NANOTECHNOLOGY 2019; 30:184005. [PMID: 30650397 DOI: 10.1088/1361-6528/aaff0a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Therapeutic monoclonal antibodies benefit to patients and the conjugation to gold nanoparticles (AuNPs) might bring additional activities to these macromolecules. However, the behavior of the conjugate will largely depend on the bulkiness of the AuNP and small sizes are moreover preferable for diffusion. Water-soluble thiolate-protected AuNPs having diameters of 2-3 nm can be synthesized with narrow polydispersity and can selectively react with incoming organic thiols via a SN2-like mechanism. We therefore synthesized a mixed thionitrobenzoic acid- , thioaminobenzoic acid-monolayered AuNP of 2.4 nm in diameter and developed a site-selective conjugation strategy to link the AuNP to Cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody used in clinic. The water-soluble 80 kDa AuNP was fully characterized and then reacted to the hinge area of Cetuximab, which was selectively reduced using mild concentration of TCEP. The conjugation proceeded smoothly and could be analyzed by polyacrylamide gel electrophoresis, indicating the formation of a 1:1 AuNP-IgG conjugate as the main product. When added to EGFR expressing glioblastoma cells, the AuNP-Cetuximab conjugate selectively bound to the cell surface receptor, inhibited EGFR autophosphorylation and entered into endosomes like Cetuximab. Altogether, we describe a simple and robust protocol for a site-directed conjugation of a thiolate-protected AuNP to Cetuximab, which could be easily monitored, thereby allowing to assess the quality of the product formation. The conjugated 2.4 nm AuNP did not majorly affect the biological behavior of Cetuximab, but provided it with the electronic properties of the AuNP. This offers the ability to detect the tagged antibody and opens application for targeted cancer radiotherapy.
Collapse
Affiliation(s)
- Nadja Groysbeck
- Université de Strasbourg-CNRS, UMR 7242, Laboratoire de Biotechnologie et Signalisation Cellulaire, Boulevard Sébastien Brant, F-67400 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Liu S, Haller E, Horak J, Brandstetter M, Heuser T, Lämmerhofer M. Protein A- and Protein G-gold nanoparticle bioconjugates as nano-immunoaffinity platform for human IgG depletion in plasma and antibody extraction from cell culture supernatant. Talanta 2019; 194:664-672. [DOI: 10.1016/j.talanta.2018.10.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
|
14
|
Fresco-Cala B, Cárdenas S. Potential of nanoparticle-based hybrid monoliths as sorbents in microextraction techniques. Anal Chim Acta 2018; 1031:15-27. [DOI: 10.1016/j.aca.2018.05.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/29/2022]
|
15
|
Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S, Gulyás B, Padmanabhan P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; 13:5561-5576. [PMID: 30271147 PMCID: PMC6154717 DOI: 10.2147/ijn.s149022] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The preeminent treatments for neurodegenerative disease are often unavailable due to the poor accessibility of therapeutic drugs. Moreover, the blood–brain barrier (BBB) effectively blocks the transfer of cells, particles and large molecules, ie, drugs, across the brain. The most important challenge in the treatment of neurodegenerative diseases is the development of targeted drug delivery system. Theranostic strategies are known to combine therapeutic and diagnostic capabilities together. The aim of this review was to record the response to treatment and thereby improve drug safety. Nanotechnology offers a platform for designing and developing theranostic agents that can be used as an efficient nano-carrier system. This is achieved by the manipulation of some of the properties of nanoparticles (NPs), thereby enabling the attachment of suitable drugs onto their surface. The results provide revolutionary treatments by stimulation and thus interaction with targeted sites to promote physiological response with minimum side effects. This review is a brief discussion of the administration of drugs across the brain and the advantages of using NPs as an effective theranostic platform in the treatment of Alzheimer’s, Parkinson’s, epilepsy and Huntington’s disease.
Collapse
Affiliation(s)
- Sahana Ramanathan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ,
| | - Govindaraju Archunan
- Department of Animal Science, Centre for Pheromone Technology (CPT), Bharathidasan University, Tiruchirappalli, India
| | - Muthusamy Sivakumar
- Nanoscience and Technology, Anna University - BIT Campus, Tiruchirappalli, India
| | | | - A Lenin Fred
- Mar Ephraem College of Engineering and Technology, Kanyakumari, India
| | - Sundramurthy Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ,
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ,
| | | |
Collapse
|
16
|
Liu S, Horak J, Höldrich M, Lämmerhofer M. Accurate and reliable quantification of the protein surface coverage on protein-functionalized nanoparticles. Anal Chim Acta 2017; 989:29-37. [DOI: 10.1016/j.aca.2017.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023]
|
17
|
Nguyen LT, Muktabar A, Tang J, Dravid VP, Thaxton CS, Venkatraman S, Ng KW. Engineered nanoparticles for the detection, treatment and prevention of atherosclerosis: how close are we? Drug Discov Today 2017; 22:1438-1446. [DOI: 10.1016/j.drudis.2017.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023]
|
18
|
García-Fernández L, Garcia-Pardo J, Tort O, Prior I, Brust M, Casals E, Lorenzo J, Puntes VF. Conserved effects and altered trafficking of Cetuximab antibodies conjugated to gold nanoparticles with precise control of their number and orientation. NANOSCALE 2017; 9:6111-6121. [PMID: 28447703 DOI: 10.1039/c7nr00947j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gold nanoparticles (17 nm) have been functionalized with the antiangiogenic monoclonal antibody drug Cetuximab at a well-defined orientation and coverage density of antibodies. Functionalization has been carried out through site-directed chemistry via the selective oxidation of the carbohydrate moiety of antibodies linked to a thiolated hydrazide. A431 tumor cells have been exposed to these conjugates for in vitro evaluation of their effects. In addition to epithelial growth factor receptor blocking, trafficking and signaling alterations were also observed. Thus, the blocking effects of Cetuximab were increased and sustained for a longer time when associated with the nanoparticles. Enhancing antibody therapy effects by decreasing the needed dose and prolonging its effect by avoiding receptor recycling may serve to obtain increased therapeutic benefits for immunotherapy.
Collapse
|
19
|
Höldrich M, Liu S, Epe M, Lämmerhofer M. Taylor dispersion analysis, resonant mass measurement and bioactivity of pepsin-coated gold nanoparticles. Talanta 2017; 167:67-74. [DOI: 10.1016/j.talanta.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
|
20
|
Ahmadi M, Elmongy H, Madrakian T, Abdel-Rehim M. Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Anal Chim Acta 2017; 958:1-21. [PMID: 28110680 DOI: 10.1016/j.aca.2016.11.062] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 01/02/2023]
|
21
|
Papain-functionalized gold nanoparticles as heterogeneous biocatalyst for bioanalysis and biopharmaceuticals analysis. Anal Chim Acta 2017; 963:33-43. [PMID: 28335973 DOI: 10.1016/j.aca.2017.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 01/30/2023]
Abstract
Surface-modified gold nanoparticles (GNPs) were synthesized via layer-by-layer process with alternating cationic polyallylamine and anionic poly(acrylic acid) polyelectrolyte layers leading to a highly hydrophilic biocompatible shell supporting colloidal stability. Afterwards, papain was covalently immobilized on the modified GNPs via amide coupling between the amino groups on papain and the terminal carboxylic groups of the modified GNPs by using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysulfosuccinimide sodium as coupling agents. The resultant papain-functionalized gold nanoparticles were characterized by surface plasmon resonance, dynamic light scattering and zeta potential measurements. The new technology resonant mass measurement was applied for determining the average number of papain molecules immobilized per GNP by measurement of the single nanoparticle buoyant mass in the range of femtograms. The activity of the immobilized enzyme was estimated by determination of the kinetic parameters (Km, Vmax and kcat) with the standard chromogenic substrate Nα-benzoyl-dl-arginine-4-nitroanilide hydrochloride. It was found that Km of immobilized and free enzyme are in the same order of magnitude. On contrary, turnover numbers kcat were significantly higher for GNP-conjugated papain. Further, the gold nanobiocatalyst was applied for digestion of polyclonal human immunoglobulin G to yield protein fragments. The resultant fragment mixture was further analyzed by high-performance liquid chromatography-microelectrospray ionization-quadrupole-time-of-flight mass spectrometry, which demonstrated the applicability of the bioreactor based on papain functionalized GNPs. The immobilized papain not only has higher catalytic activity and better stability, but also can be easily isolated from the reaction medium by straightforward centrifugation steps for reuse.
Collapse
|
22
|
Baveghems CL, Pattammattel A, Kumar CV. Designer Histone Complexes: Controlling Protein-DNA Interactions with Protein Charge as an "All-or-None" Digital Switch. J Phys Chem B 2016; 120:11880-11887. [PMID: 27792341 DOI: 10.1021/acs.jpcb.6b08651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An artificial histone is synthesized that functions as a DNA-protein digital switch, where DNA binding is all or none, controlled by a sharp threshold of protein charge. A non-DNA-binding protein, glucose oxidase (GOx), was chemically modified by attaching an increasing number of triethylenetetramine (TETA) side chains to its glutamate/aspartate groups to obtain a small library of covalently modified GOx(n) derivatives. The parameter n denotes the net charge on the protein at pH 7, which was increased from -62 (pristine GOx) to +75 by attaching an increasing number of TETA residues to the protein. All GOx(n) derivatives retained their secondary structure to a good extent, as monitored by UV circular dichroism (CD) spectroscopy, and they also retained oxidase activities to a significant extent. The interaction of the GOx(n) with calf thymus DNA was examined by isothermal titration calorimetry (ITC). Pristine GOx of -62 charge at pH 7 in 10 mM Tris-HCl and 50 mM NaCl buffer had no affinity for the negatively charged DNA helix, and GOx(n) with n < +30 had no affinity for DNA either. However, binding has been turned on abruptly when n ≥ +30 with binding constants (Kb) ranging from (1.5 ± 0.7) × 107 to (7.3 ± 2.8) × 107 M-1 for n values of +30 and +75, respectively, and this type of "all-or-none" binding based on protein charge is intriguing. Furthermore, thermodynamic analysis of the titration data revealed that binding is entirely entropy-driven with ΔS ranging from 0.09 ± 0.007 to 0.19 ± 0.008 kcal/mol K with enthalpic penalties of 17.0 ± 2.3 and 46.1 ± 2.1 kcal/mol, respectively. The binding had intrinsic propensities (ΔG) ranging from -9.8 ± 0.14 to -10.7 ± 0.25 kcal/mol, independent of n. DNA binding distorted protein-DNA secondary structure, as evidenced by CD spectroscopy, but oxidase activity of GOx(n)/DNA complexes has been unaffected. This is the very first example of an artificial histone (GOx(n)) where the protein charge functioned as a DNA-binding switch; protein charge is in turn under complete chemical control while preserving the biological activity of the protein. The new insight gained here could be useful in the design of novel "on-off" protein switches.
Collapse
Affiliation(s)
- Clive L Baveghems
- Department of Chemistry, ‡Institute of Material Science, and §Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| | - Ajith Pattammattel
- Department of Chemistry, ‡Institute of Material Science, and §Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| | - Challa V Kumar
- Department of Chemistry, ‡Institute of Material Science, and §Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
23
|
Höldrich M, Sievers-Engler A, Lämmerhofer M. Gold nanoparticle-conjugated pepsin for efficient solution-like heterogeneous biocatalysis in analytical sample preparation protocols. Anal Bioanal Chem 2016; 408:5415-27. [DOI: 10.1007/s00216-016-9657-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/28/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022]
|
24
|
Dennis AM, Delehanty JB, Medintz IL. Emerging Physicochemical Phenomena along with New Opportunities at the Biomolecular-Nanoparticle Interface. J Phys Chem Lett 2016; 7:2139-50. [PMID: 27219278 DOI: 10.1021/acs.jpclett.6b00570] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Efforts to create new nanoparticle-biomolecule hybrids for diverse applications including biosensing, theranostics, drug delivery, and even biocomputation continue to grow at an unprecedented rate. As the composite designs become more sophisticated, new and unanticipated physicochemical phenomena are emerging at the nanomaterial-biological interface. These phenomena arise from two interrelated factors, namely, the novel architecture of nanoparticle bioconjugates and the unique physicochemical properties of their interfacial environment. Here we examine how the augmented functionality imparted by such hybrid structures, including accessing concentric energy transfer, enhanced enzymatic activity, and sensitivity to electric fields, is leading to new applications. We discuss some lesser-understood phenomena that arise at the nanoparticle interface, such as the complex and confounding issue of protein corona formation, along with their unexpected benefits. Overall, understanding these complex phenomena will improve the design of composite materials while uncovering new opportunities for their application.
Collapse
Affiliation(s)
- Allison M Dennis
- Department of Biomedical Engineering, Boston University , 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory , 4555 Overlook Avenue, Southwest, Washington, District of Columbia 20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory , 4555 Overlook Avenue, Southwest, Washington, District of Columbia 20375, United States
| |
Collapse
|
25
|
Valera E, Hernández-Albors A, Marco MP. Electrochemical coding strategies using metallic nanoprobes for biosensing applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
A simple graphene-based pipette tip solid-phase extraction of malondialdehyde from human plasma and its determination by spectrofluorometry. Anal Bioanal Chem 2016; 408:4907-15. [DOI: 10.1007/s00216-016-9577-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
27
|
Abstract
The term composite refers to a class of synthetic materials made from different constituents which exhibit final properties which are different from those of the individual components. Composites have been extensively used in the sample treatment context as sorbents since the resulting solid presents better extraction efficiency. In this realm, polymeric nanocomposites are raised as a powerful alternative. They can be tailored-synthesized for selectivity enhancement or include a magnetic core to simplify the extraction/elution process. This review article points out the relevance of such nanomaterials in bioanalysis. Several synergic combinations of nanoparticles (magnetic, carbon-based) as well as polymeric coatings (conventional, conductive or molecularly imprinted) are commented on. Finally, the potential of biopolymers in the microextraction field is briefly highlighted.
Collapse
|