1
|
Harmonis JA, Kusuma SAF, Rukayadi Y, Hasanah AN. Exploring Biomarkers for Malaria: Advances in Early Detection and Asymptomatic Diagnosis. BIOSENSORS 2025; 15:106. [PMID: 39997008 PMCID: PMC11853453 DOI: 10.3390/bios15020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Malaria is a tropical disease caused by the Plasmodium parasite, which was responsible for 249 million cases worldwide in 2022. Malaria is currently diagnosed using RDTs, PCR-based methods, or blood smear microscopy. Ideal biomarkers have been identified for malaria, with the potential for improving treatment, diagnosis, and overall clinical outcomes. This review discusses the types of existing biomarkers and the opportunities for new biomarkers to be used as diagnostic components in detecting Plasmodium, including in terms of sensitivity, detection limit, specificity, and the species of Plasmodium that can be detected. Following a comparison, five main ideal malaria biomarkers were identified, namely HRP2, pLDH, hemozoin, aldolase, and pGDH. These biomarkers distinguished themselves markedly from the others in terms of specificity in Plasmodium detection, sensitivity in analysis, and the use of non-invasive samples. Several other biomarkers, such as CRP, Ang-1, Ang-2, and PCT, show potential for malaria detection in terms of their ability to differentiate disease severity, and the levels of these biomarkers can be determined in the body for comparison with malaria parasitemia. Of the five ideal biomarkers, hemozoin and aldolase can still be developed regarding the types of samples used and their sensitivity to different Plasmodium species. Further research on the biomarkers CRP, Ang-1, Ang-2, and PCT is still needed to evaluate their potential.
Collapse
Affiliation(s)
- Jacko Abiwaqash Harmonis
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia;
| | - Sri Agung Fitri Kusuma
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia;
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia;
| |
Collapse
|
2
|
Cao Y, Chao Y, Shum HC. Affinity-Controlled Partitioning of Biomolecules at Aqueous Interfaces and Their Bioanalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409362. [PMID: 39171488 DOI: 10.1002/adma.202409362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 08/23/2024]
Abstract
All-aqueous phase separation systems play essential roles in bioanalytical and biochemical applications. Compared to conventional oil and organic solvent-based systems, these systems are characterized by their rich bulk and interfacial properties, offering superior biocompatibility. In particular, phase separation in all-aqueous systems facilitates the creation of compartments with specific physicochemical properties, and therefore largely enhances the accessibility of the systems. In addition, the all-aqueous compartments have diverse affinities, with an important property known as partitioning, which can concentrate (bio)molecules toward distinct immiscible phases. This partitioning affinity imparts all-aqueous interfaces with selective permeability, enabling the controlled enrichment of target (bio)molecules. This review introduces the basic principles and applications of partitioning-induced interfacial phenomena in a typical all-aqueous system, namely aqueous two-phase systems (ATPSs); these applications include interfacial chemical reactions, bioprinting, and assembly, as well as bio-sensing and detection. The primary challenges associated with designing all-aqueous phase separation systems and several future directions are also discussed, such as the stabilization of aqueous interfaces, the handling of low-volume samples, and exploration of suitable ATPSs compositions with the efficient protocol.
Collapse
Affiliation(s)
- Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Youchuang Chao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Kakkar S, Gupta P, Singh Yadav SP, Raj D, Singh G, Chauhan S, Mishra MK, Martín-Ortega E, Chiussi S, Kant K. Lateral flow assays: Progress and evolution of recent trends in point-of-care applications. Mater Today Bio 2024; 28:101188. [PMID: 39221210 PMCID: PMC11364909 DOI: 10.1016/j.mtbio.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Paper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits. The review highlights the synergistic aspects of assay designing, sample enrichment strategies, novel nanomaterials-based signal transducers, and high-end analytical techniques that contribute significantly towards sensitivity and specificity enhancement. Various recent studies are discussed supporting the innovations in LFA systems that focus upon the accuracy and reliability of rapid PoC testing. The review also provides a comprehensive overview of all the possible difficulties in commercialization of LFAs subjecting its applicability to pathogen surveillance, water and food testing, disease diagnostics, as well as to agriculture and environmental issues.
Collapse
Affiliation(s)
- Saloni Kakkar
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, India
| | - Shiv Pratap Singh Yadav
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Garima Singh
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Sakshi Chauhan
- Dept. of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Elena Martín-Ortega
- IFCAE, Research Institute of Physics and Aerospace Science, Universidade de Vigo, Ourense, 32004, Spain
| | - Stefano Chiussi
- CINTECX, Universidade de Vigo, New Materials Group, Vigo, 36310, Spain
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo, 36310, Spain
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, U.P., India
| |
Collapse
|
4
|
Gumus E, Bingol H, Zor E. Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal 2023; 225:115206. [PMID: 36586382 DOI: 10.1016/j.jpba.2022.115206] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Early diagnosis saves lives in many diseases. In this sense, monitoring of biomarkers is crucial for the diagnosis of diseases. Lateral flow assays (LFAs) have attracted great attention among paper-based point-of-care testing (POCT) due to their low cost, user-friendliness, and time-saving advantages. Developments in the field of health have led to an increase of interest in these rapid tests. LFAs are used in the diagnosis and monitoring of many diseases, thanks to biomarkers that can be observed in body fluids. This review covers the recent advances dealing with the design and strategies for the development of LFA for the detection of biomarkers used in clinical applications in the last 5 years. We focus on various strategies such as choosing the nanoparticle type, single or multiple test approaches, and equipment for signal transducing for the detection of the most common biomarkers in different diseases such as cancer, cardiovascular, infectious, and others including Parkinson's and Alzheimer's diseases. We expect that this study will contribute to the different approaches in LFA and pave the way for other clinical applications.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
5
|
Ince B, Sezgintürk MK. Lateral flow assays for viruses diagnosis: Up-to-date technology and future prospects. Trends Analyt Chem 2022; 157:116725. [PMID: 35815063 PMCID: PMC9252863 DOI: 10.1016/j.trac.2022.116725] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Bacteria, viruses, and parasites are harmful microorganisms that cause infectious diseases. Early detection of diseases is critical to prevent disease transmission and provide epidemic preparedness, as these can cause widespread deaths and public health crises, particularly in resource-limited countries. Lateral flow assay (LFA) systems are simple-to-use, disposable, inexpensive diagnostic devices to test biomarkers in blood and urine samples. Thus, LFA has recently received significant attention, especially during the pandemic. Here, first of all, the design principles and working mechanisms of existing LFA methods are examined. Then, current LFA implementation strategies are presented for communicable disease diagnoses, including COVID-19, zika and dengue, HIV, hepatitis, influenza, malaria, and other pathogens. Furthermore, this review focuses on an overview of current problems and accessible solutions in detecting infectious agents and diseases by LFA, focusing on increasing sensitivity with various detection methods. In addition, future trends in LFA-based diagnostics are envisioned.
Collapse
Affiliation(s)
- Bahar Ince
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
6
|
Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Khan MS, Shadman SA, Khandaker MMR. Advances and current trend of bioactive papers and paper diagnostics for health and biotechnological applications. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Alahmad W, Sahragard A, Varanusupakul P. Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: A review. Biosens Bioelectron 2021; 194:113574. [PMID: 34474275 DOI: 10.1016/j.bios.2021.113574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) have attracted much attention over the past decade. They embody many advantages, such as abundance, portability, cost-effectiveness, and ease of fabrication, making them superior for clinical diagnostics, environmental monitoring, and food safety assurance. Despite these advantages, μPADs lack the high sensitivity to detect many analytes at trace levels than other commercial analytical instruments such as mass spectrometry. Therefore, a preconcentration step is required to enhance their sensitivity. This review focuses on the techniques used to separate and preconcentrate the analytes onto the μPADs, such as ion concentration polarization, isotachophoresis, and field amplification sample stacking. Other separations and preconcentration techniques, including liquid-solid and liquid-liquid extractions coupled with μPADs, are also reviewed and discussed. In addition, the fabrication methods, advantages, disadvantages, and the performance evaluation of the μPADs concerning their precision and accuracy were highlighted and critically assessed. Finally, the challenges and future perspectives have been discussed.
Collapse
Affiliation(s)
- Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Ali Sahragard
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
Hoang TX, Phan LMT, Vo TAT, Cho S. Advanced Signal-Amplification Strategies for Paper-Based Analytical Devices: A Comprehensive Review. Biomedicines 2021; 9:540. [PMID: 34066112 PMCID: PMC8150371 DOI: 10.3390/biomedicines9050540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Paper-based analytical devices (PADs) have emerged as a promising approach to point-of-care (POC) detection applications in biomedical and clinical diagnosis owing to their advantages, including cost-effectiveness, ease of use, and rapid responses as well as for being equipment-free, disposable, and user-friendly. However, the overall sensitivity of PADs still remains weak, posing a challenge for biosensing scientists exploiting them in clinical applications. This review comprehensively summarizes the current applicable potential of PADs, focusing on total signal-amplification strategies that have been applied widely in PADs involving colorimetry, luminescence, surface-enhanced Raman scattering, photoacoustic, photothermal, and photoelectrochemical methods as well as nucleic acid-mediated PAD modifications. The advances in signal-amplification strategies in terms of signal-enhancing principles, sensitivity, and time reactions are discussed in detail to provide an overview of these approaches to using PADs in biosensing applications. Furthermore, a comparison of these methods summarizes the potential for scientists to develop superior PADs. This review serves as a useful inside look at the current progress and prospective directions in using PADs for clinical diagnostics and provides a better source of reference for further investigations, as well as innovations, in the POC diagnostics field.
Collapse
Affiliation(s)
- Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
10
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
11
|
Zhang Y, Liu X, Wang L, Yang H, Zhang X, Zhu C, Wang W, Yan L, Li B. Improvement in Detection Limit for Lateral Flow Assay of Biomacromolecules by Test-Zone Pre-enrichment. Sci Rep 2020; 10:9604. [PMID: 32541787 PMCID: PMC7295814 DOI: 10.1038/s41598-020-66456-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022] Open
Abstract
Lateral flow assay (LFA) is one of the most prevalent commercially available techniques for point-of-care tests due to its simplicity, celerity, low cost and robust operation. However, conventional colorimetric LFAs have inferior limits of detection (LODs) compared to sophisticated laboratory-based assays. Here, we report a simple strategy of test-zone pre-enrichment to improve the LOD of LFA by loading samples before the conjugate pad assembly. The developed method enables visual LODs of miR-210 mimic and human chorionic gonadotropin protein, to be improved by 10–100 fold compared with a conventional LFA setup without introducing any additional instrument and reagent except for phosphate running buffer, while no obvious difference occurred for Aflatoxin B1 (AFB1). It takes about 6–8 min to enrich every 50 μL of sample diluted with phosphate running buffer, therefore we can get visual results within 20 min. We identified a parameter by modeling the entire process, the concentration of probe-analyte conjugate at test zone when signaling unit being loaded, to be important for the improvement of visual limit of detection. In addition, the test-zone pre-enrichment did not impair the selectivity when miR-210 mimic was adopted as target. Integrated with other optimization, amplification and modification of LFAs, the developed test-zone pre-enrichment method can be applied to further improve LOD of LFAs.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China.
| | - Xiao Liu
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Lingling Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Hanjie Yang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaoxiao Zhang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Chenglong Zhu
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Wenlong Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative innovation center of food safety and quality control in Jiangsu Province, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Lijing Yan
- Jiangnan University Hospital, Wuxi, 214122, PR China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| |
Collapse
|
12
|
Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol Adv 2020; 39:107442. [DOI: 10.1016/j.biotechadv.2019.107442] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/04/2019] [Accepted: 08/26/2019] [Indexed: 01/23/2023]
|
13
|
Research and Application Progress of Paper-based Microfluidic Sample Preconcentration. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61203-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Ruiz-Vega G, Arias-Alpízar K, de la Serna E, Borgheti-Cardoso LN, Sulleiro E, Molina I, Fernàndez-Busquets X, Sánchez-Montalvá A, Del Campo FJ, Baldrich E. Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes. Biosens Bioelectron 2019; 150:111925. [PMID: 31818756 DOI: 10.1016/j.bios.2019.111925] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Malaria, a parasitic infection caused by Plasmodium parasites and transmitted through the bite of infected female Anopheles mosquitos, is one of the main causes of mortality in many developing countries. Over 200 million new infections and nearly half a million deaths are reported each year, and more than three billion people are at risk of acquiring malaria worldwide. Nevertheless, most malaria cases could be cured if detected early. Malaria eradication is a top priority of the World Health Organisation. However, achieving this goal will require mass population screening and treatment, which will be hard to accomplish with current diagnostic tools. We report an electrochemical point-of-care device for the fast, simple and quantitative detection of Plasmodiumfalciparum lactate dehydrogenase (PfLDH) in whole blood samples. Sample analysis includes 5-min lysis to release intracellular parasites, and stirring for 5 more min with immuno-modified magnetic beads (MB) along with an immuno-modified signal amplifier. The rest of the magneto-immunoassay, including sample filtration, MB washing and electrochemical detection, is performed at a disposable paper electrode microfluidic device. The sensor provides PfLDH quantitation down to 2.47 ng mL-1 in spiked samples and for 0.006-1.5% parasitemias in Plasmodium-infected cultured red blood cells, and discrimination between healthy individuals and malaria patients presenting parasitemias >0.3%. Quantitative malaria diagnosis is attained with little user intervention, which is not achieved by other diagnostic methods.
Collapse
Affiliation(s)
- Gisela Ruiz-Vega
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Kevin Arias-Alpízar
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Erica de la Serna
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Elena Sulleiro
- Microbiology Department, Vall d'Hebron University Hospital (VHUH), UAB, Barcelona, Spain; PROSICS (Catalan International Health Program), Barcelona, Spain
| | - Israel Molina
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, VHUH, UAB, PROSICS (Catalan International Health Program), Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, VHUH, UAB, PROSICS (Catalan International Health Program), Barcelona, Spain
| | | | - Eva Baldrich
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
15
|
Bradbury DW, Azimi M, Diaz AJ, Pan AA, Falktoft CH, Wu BM, Kamei DT. Automation of Biomarker Preconcentration, Capture, and Nanozyme Signal Enhancement on Paper-Based Devices. Anal Chem 2019; 91:12046-12054. [PMID: 31433941 DOI: 10.1021/acs.analchem.9b03105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases remain one of the leading causes of deaths in developing countries because of a lack of basic sanitation, healthcare clinics, and centralized laboratories. Paper-based rapid diagnostic tests, such as the lateral-flow immunoassay (LFA), provide a promising alternative to the traditional laboratory-based tests; however, they typically suffer from having a poor sensitivity. Biomarker preconcentration and signal enhancement are two common methods to improve the sensitivity of paper-based assays. While effective, these methods often require multiple liquid handling steps which are not ideal for use by untrained personnel in a point-of-care setting. Our lab previously discovered the phenomenon of an aqueous two-phase system (ATPS) separating on paper, which allowed for the seamless integration of concentration and detection of biomarkers on the LFA. In this work, we have extended the functionality of an ATPS separating on paper to automate the sequential delivery of signal enhancement reagents in addition to concentrating biomarkers. The timing of reagent delivery was controlled by changing the initial composition of the ATPS. We applied this technology to automate biomarker concentration and nanozyme signal enhancement on the LFA, resulting in a 30-fold improvement in detection limit over the conventional LFA when detecting Escherichia coli, all while maintaining a single application step.
Collapse
Affiliation(s)
- Daniel W Bradbury
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Milad Azimi
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Alexia J Diaz
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - April A Pan
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Cecilie H Falktoft
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Benjamin M Wu
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Division of Advanced Prosthodontics & Weintraub Center for Reconstructive Biotechnology School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Daniel T Kamei
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
16
|
Pereira DY, Wu CM, Lee SY, Lee E, Wu BM, Kamei DT. Controlling Macroscopic Phase Separation of Aqueous Two-Phase Polymer Systems in Porous Media. SLAS Technol 2019; 24:515-526. [PMID: 31361522 DOI: 10.1177/2472630319861369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In previous work, our group discovered a phenomenon in which a mixed polymer-salt or mixed micellar aqueous two-phase system (ATPS) separates into its two constituent phases as it flows within paper. While these ATPSs worked well in their respective studies to concentrate the target biomarker and improve the sensitivity of the lateral-flow immunoassay, different ATPSs can be advantageous for new applications based on factors such as biomarker partitioning or biochemical compatibility between ATPS and sample components. However, since the mechanism of phase separation in porous media is not completely understood, introducing other ATPSs to paper is an unpredictable process that relies on trial and error experiments. This is especially true for polymer-polymer ATPSs in which the characteristics of the two phases appear quite similar. Therefore, our group aimed to develop semiquantitative guidelines for choosing ATPSs that can phase separate in paper. In this work, we evaluated the Washburn equation and its parameters as a potential mathematical framework to describe the flow behavior of polymer-salt and micellar ATPSs in fiberglass paper. We compared bulk phase fluid characteristics and identified the viscosity difference between the phases as a key determinant of the potential for phase separation in paper. We then used this parameter to predict the phase separation capabilities of polyethylene glycol (PEG)-dextran ATPSs in paper and control the composition of the leading and lagging phases. We also, for the first time, successfully demonstrated the phase separation phenomenon in hydrogels, thereby extending its application and potential benefits to an alternative porous medium.
Collapse
Affiliation(s)
- David Y Pereira
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Chloe M Wu
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - So Youn Lee
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Eumene Lee
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Division of Advanced Prosthodontics & Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Daniel T Kamei
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Bishop JD, Hsieh HV, Gasperino DJ, Weigl BH. Sensitivity enhancement in lateral flow assays: a systems perspective. LAB ON A CHIP 2019; 19:2486-2499. [PMID: 31251312 DOI: 10.1039/c9lc00104b] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lateral flow assays (LFAs) are rapid, inexpensive, easy-to-manufacture and -use tests widely employed in medical and environmental applications, particularly in low resource settings. Historically, LFAs have been stigmatized as having limited sensitivity. However, as their global usage expands, extensive research has demonstrated that it is possible to substantially improve LFA sensitivity without sacrificing their advantages. In this critical review, we have compiled state-of-the-art approaches to LFA sensitivity enhancement. Moreover, we have organized and evaluated these approaches from a system-level perspective, as we have observed that the advantages and disadvantages of each approach have arisen from the integrated and tightly interconnected chemical, physical, and optical properties of LFAs.
Collapse
Affiliation(s)
| | - Helen V Hsieh
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA.
| | | | - Bernhard H Weigl
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA. and Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
18
|
Liu L, Yang D, Liu G. Signal amplification strategies for paper-based analytical devices. Biosens Bioelectron 2019; 136:60-75. [DOI: 10.1016/j.bios.2019.04.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
|
19
|
Schutzer SE, Body BA, Boyle J, Branson BM, Dattwyler RJ, Fikrig E, Gerald NJ, Gomes-Solecki M, Kintrup M, Ledizet M, Levin AE, Lewinski M, Liotta LA, Marques A, Mead PS, Mongodin EF, Pillai S, Rao P, Robinson WH, Roth KM, Schriefer ME, Slezak T, Snyder JL, Steere AC, Witkowski J, Wong SJ, Branda JA. Direct Diagnostic Tests for Lyme Disease. Clin Infect Dis 2019; 68:1052-1057. [PMID: 30307486 PMCID: PMC6399434 DOI: 10.1093/cid/ciy614] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi was discovered to be the cause of Lyme disease in 1983, leading to seroassays. The 1994 serodiagnostic testing guidelines predated a full understanding of key B. burgdorferi antigens and have a number of shortcomings. These serologic tests cannot distinguish active infection, past infection, or reinfection. Reliable direct-detection methods for active B. burgdorferi infection have been lacking in the past but are needed and appear achievable. New approaches have effectively been applied to other emerging infections and show promise in direct detection of B. burgdorferi infections.
Collapse
Affiliation(s)
- Steven E Schutzer
- Department of Medicine, Rutgers New Jersey Medical School, Newark,Correspondence: S. E. Schutzer, Rutgers New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103 ()
| | - Barbara A Body
- Laboratory Corporation of America, Burlington, North Carolina,Retired
| | | | | | | | - Erol Fikrig
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Noel J Gerald
- Office of In Vitro Diagnostics and Radiological Health, Food and Drug Administration, Department of Health and Human Services, Silver Spring, Maryland
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis
| | | | | | | | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, College of Science, George Mason University, Manassas, Virginia
| | - Adriana Marques
- Clinical Studies Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Paul S Mead
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Emmanuel F Mongodin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | - Segaran Pillai
- Office of Laboratory Science and Safety, US Food and Drug Administration, Department of Health and Human Services, Silver Spring, Maryland
| | - Prasad Rao
- Office of In Vitro Diagnostics and Radiological Health, Food and Drug Administration, Department of Health and Human Services, Silver Spring, Maryland
| | - William H Robinson
- Department of Medicine, Stanford University School of Medicine, California
| | - Kristian M Roth
- Office of In Vitro Diagnostics and Radiological Health, Food and Drug Administration, Department of Health and Human Services, Silver Spring, Maryland
| | - Martin E Schriefer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | | | - Allen C Steere
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | | | - Susan J Wong
- Wadsworth Center, New York State Department of Health, Albany
| | - John A Branda
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
20
|
|
21
|
Yee MF, Emmel GN, Yang EJ, Lee E, Paek JH, Wu BM, Kamei DT. Ionic Liquid Aqueous Two-Phase Systems for the Enhanced Paper-Based Detection of Transferrin and Escherichia coli. Front Chem 2018; 6:486. [PMID: 30386770 PMCID: PMC6198035 DOI: 10.3389/fchem.2018.00486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023] Open
Abstract
Aqueous two-phase systems (ATPSs) have been widely utilized for liquid-liquid extraction and purification of biomolecules, with some studies also demonstrating their capacity as a biomarker concentration technique for use in diagnostic settings. As the limited polarity range of conventional polymer-based ATPSs can restrict their use, ionic liquid (IL)-based ATPSs have been recently proposed as a promising alternative to polymer-based ATPSs, since ILs are regarded as tunable solvents with excellent solvation capabilities for a variety of natural compounds and proteins. This study demonstrates the first application of IL ATPSs to point-of-care diagnostics. ATPSs consisting of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) and sodium phosphate salt were utilized to quickly concentrate biomarkers prior to detection using the lateral-flow immunoassay (LFA). We found the phase separation speed of the IL ATPS to be very rapid and a significant improvement upon the separation speed of both polymer-salt and micellar ATPSs. This system was successfully applied to both sandwich and competitive LFA formats and enhanced the detection of both Escherichia coli bacteria and the transferrin protein up to 8- and 20-fold, respectively. This system's compatibility with a broad range of biomolecules, rapid phase separation speed, and tunability suggest wide applicability for a large range of different antigens and biomarkers.
Collapse
Affiliation(s)
- Matthew F Yee
- Kamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United States
| | - Grace N Emmel
- Kamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United States
| | - Eric J Yang
- Kamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United States
| | - Eumene Lee
- Kamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United States
| | - Justin H Paek
- Kamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United States
| | - Benjamin M Wu
- Wu Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United States
| | - Daniel T Kamei
- Kamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United States
| |
Collapse
|
22
|
Pham NM, Karlen W, Beck HP, Delamarche E. Malaria and the 'last' parasite: how can technology help? Malar J 2018; 17:260. [PMID: 29996831 PMCID: PMC6042346 DOI: 10.1186/s12936-018-2408-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023] Open
Abstract
Malaria, together with HIV/AIDS, tuberculosis and hepatitis are the four most deadly infectious diseases globally. Progress in eliminating malaria has saved millions of lives, but also creates new challenges in detecting the 'last parasite'. Effective and accurate detection of malaria infections, both in symptomatic and asymptomatic individuals are needed. In this review, the current progress in developing new diagnostic tools to fight malaria is presented. An ideal rapid test for malaria elimination is envisioned with examples to demonstrate how innovative technologies can assist the global defeat against this disease. Diagnostic gaps where technology can bring an impact to the elimination campaign for malaria are identified. Finally, how a combination of microfluidic-based technologies and smartphone-based read-outs could potentially represent the next generation of rapid diagnostic tests is discussed.
Collapse
Affiliation(s)
- Ngoc Minh Pham
- Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zurich, Switzerland
| | - Walter Karlen
- Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zurich, Switzerland
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.
- University of Basel, Petersgraben 1, 4001, Basel, Switzerland.
| | | |
Collapse
|
23
|
Ragavan K, Kumar S, Swaraj S, Neethirajan S. Advances in biosensors and optical assays for diagnosis and detection of malaria. Biosens Bioelectron 2018; 105:188-210. [DOI: 10.1016/j.bios.2018.01.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/22/2022]
|
24
|
ISHII M, PREECHAKASEDKIT P, YAMADA K, CHAILAPAKUL O, SUZUKI K, CITTERIO D. Wax-Assisted One-Step Enzyme-Linked Immunosorbent Assay on Lateral Flow Test Devices. ANAL SCI 2018; 34:51-56. [DOI: 10.2116/analsci.34.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | - Orawon CHAILAPAKUL
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Koji SUZUKI
- Department of Applied Chemistry, Keio University
| | | |
Collapse
|
25
|
Banerjee R, Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018; 143:1970-1996. [DOI: 10.1039/c8an00307f] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in lateral flow immunoassay-based devices as a point-of-care analytical tool for the detection of infectious diseases are reviewed.
Collapse
Affiliation(s)
- Ruptanu Banerjee
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| | - Amit Jaiswal
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| |
Collapse
|
26
|
Kolluri N, Klapperich CM, Cabodi M. Towards lab-on-a-chip diagnostics for malaria elimination. LAB ON A CHIP 2017; 18:75-94. [PMID: 29125615 DOI: 10.1039/c7lc00758b] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Malaria continues to be one of the most devastating diseases impacting global health. Although there have been significant reductions in global malaria incidence and mortality rates over the past 17 years, the disease remains endemic throughout the world, especially in low- and middle-income countries. The World Health Organization has put forth ambitious milestones moving toward a world free of malaria as part of the United Nations Millennium Goals. Mass screening and treatment of symptomatic and asymptomatic malaria infections in endemic regions is integral to these goals and requires diagnostics that are both sensitive and affordable. Lab-on-a-chip technologies provide a path toward sensitive, portable, and affordable diagnostic platforms. Here, we review and compare currently-available and emerging lab-on-a-chip diagnostic approaches in three categories: (1) protein-based tests, (2) nucleic acid tests, and (3) cell-based detection. For each category, we highlight the opportunities and challenges in diagnostics development for malaria elimination, and comment on their applicability to different phases of elimination strategies.
Collapse
Affiliation(s)
- N Kolluri
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | | | | |
Collapse
|
27
|
Point-of-Care Sexually Transmitted Infection Diagnostics: Proceedings of the STAR Sexually Transmitted Infection-Clinical Trial Group Programmatic Meeting. Sex Transm Dis 2017; 44:211-218. [PMID: 28282646 PMCID: PMC5347466 DOI: 10.1097/olq.0000000000000572] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The STAR STI-CTG programmatic meeting reviewed point-of-care sexually transmitted infection diagnostics including current and emerging technologies, clinical and public health benefits, international applications, regulatory considerations, and future developments. The goal of the point-of-care (POC) sexually transmitted infection (STI) Diagnostics meeting was to review the state-of-the-art research and develop recommendations for the use of POC STI diagnostics. Experts from academia, government, nonprofit, and industry discussed POC diagnostics for STIs such as Chlamydia trachomatis, human papillomavirus, Neisseria gonorrhoeae, Trichomonas vaginalis, and Treponema pallidum. Key objectives included a review of current and emerging technologies, clinical and public health benefits, POC STI diagnostics in developing countries, regulatory considerations, and future areas of development. Key points of the meeting are as follows: (i) although some rapid point-of-care tests are affordable, sensitive, specific, easy to perform, and deliverable to those who need them for select sexually transmitted infections, implementation barriers exist at the device, patient, provider, and health system levels; (ii) further investment in research and development of point-of-care tests for sexually transmitted infections is needed, and new technologies can be used to improve diagnostic testing, test uptake, and treatment; (iii) efficient deployment of self-testing in supervised (ie, pharmacies, clinics, and so on) and/or unsupervised (ie, home, offices, and so on) settings could facilitate more screening and diagnosis that will reduce the burden of sexually transmitted infections; (iv) development of novel diagnostic technologies has outpaced the generation of guidance tools and documents issued by regulatory agencies; and (v) questions regarding quality management are emerging including the mechanism by which poor-performing diagnostics are removed from the market and quality assurance of self-testing is ensured.
Collapse
|
28
|
Cheung SF, Yee MF, Le NK, Gomes EA, Afrasiabi Z, Kamei DT. A Combined Aqueous Two-Phase System and Spot-Test Platform for the Rapid Detection of Escherichia coli O157:H7 in Milk. SLAS Technol 2017; 23:57-63. [DOI: 10.1177/2472630317731892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Foodborne illnesses are a public health concern in the United States and worldwide. Recent outbreaks of Escherichia coli O157:H7 have brought to light the need for improved ways to detect foodborne pathogens and minimize serious outbreaks. Unfortunately, current methods for the detection of foodborne pathogens are time intensive and complex. In this study, we designed a spot immunoassay that uses a UCON-potassium phosphate salt aqueous two-phase system (ATPS) for the preconcentration of O157:H7. This platform was tested with samples of O157:H7 spiked in phosphate-buffered saline and milk. The ATPS was found to improve the detection limit of the spot test, yielding detection at 106 cfu/mL within 30 min. This is the first known application of ATPSs to spot immunoassays. Moreover, detection was successfully achieved without upstream processing or dilution of the sample prior to testing, thereby further simplifying the detection process. This technology’s ease of use, sensitivity, and short time to result highlight its potential to advance the spot test as a viable diagnostic tool for foodborne pathogens.
Collapse
Affiliation(s)
- Sherine F. Cheung
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Matthew F. Yee
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Nguyen K. Le
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Elizabeth A. Gomes
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Zahra Afrasiabi
- Department of Life and Physical Sciences, Lincoln University, Jefferson City, MO, USA
- Math and Sciences, Soka University of America, Aliso Viejo, CA, USA
| | - Daniel T. Kamei
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Mosley GL, Pereira DY, Han Y, Lee SY, Wu CM, Wu BM, Kamei DT. Improved lateral-flow immunoassays for chlamydia and immunoglobulin M by sequential rehydration of two-phase system components within a paper-based diagnostic. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2434-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Tang RH, Yang H, Choi JR, Gong Y, Feng SS, Pingguan-Murphy B, Huang QS, Shi JL, Mei QB, Xu F. Advances in paper-based sample pretreatment for point-of-care testing. Crit Rev Biotechnol 2017; 37:411-428. [PMID: 27075621 DOI: 10.3109/07388551.2016.1164664] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, paper-based point-of-care testing (POCT) has been widely used in medical diagnostics, food safety and environmental monitoring. However, a high-cost, time-consuming and equipment-dependent sample pretreatment technique is generally required for raw sample processing, which are impractical for low-resource and disease-endemic areas. Therefore, there is an escalating demand for a cost-effective, simple and portable pretreatment technique, to be coupled with the commonly used paper-based assay (e.g. lateral flow assay) in POCT. In this review, we focus on the importance of using paper as a platform for sample pretreatment. We firstly discuss the beneficial use of paper for sample pretreatment, including sample collection and storage, separation, extraction, and concentration. We highlight the working principle and fabrication of each sample pretreatment device, the existing challenges and the future perspectives for developing paper-based sample pretreatment technique.
Collapse
Affiliation(s)
- Rui Hua Tang
- a School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
- b Key Laboratory for Space Bioscience and Biotechnology , Northwestern Polytechnical University , Xi'an , P.R. China
- c The Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , P.R. China
- d Bioinspired Engineering and Biomechanics Center (BEBC) , Xi'an Jiaotong University , Xi'an , P.R. China
| | - Hui Yang
- a School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
- b Key Laboratory for Space Bioscience and Biotechnology , Northwestern Polytechnical University , Xi'an , P.R. China
| | - Jane Ru Choi
- c The Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , P.R. China
- d Bioinspired Engineering and Biomechanics Center (BEBC) , Xi'an Jiaotong University , Xi'an , P.R. China
- e Department of Biomedical Engineering, Faculty of Engineering , University of Malaya , Lembah Pantai , Kuala Lumpur , Malaysia
| | - Yan Gong
- c The Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , P.R. China
- d Bioinspired Engineering and Biomechanics Center (BEBC) , Xi'an Jiaotong University , Xi'an , P.R. China
| | - Shang Sheng Feng
- c The Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , P.R. China
- d Bioinspired Engineering and Biomechanics Center (BEBC) , Xi'an Jiaotong University , Xi'an , P.R. China
| | - Belinda Pingguan-Murphy
- e Department of Biomedical Engineering, Faculty of Engineering , University of Malaya , Lembah Pantai , Kuala Lumpur , Malaysia
| | - Qing Sheng Huang
- a School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
- b Key Laboratory for Space Bioscience and Biotechnology , Northwestern Polytechnical University , Xi'an , P.R. China
| | - Jun Ling Shi
- a School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
- b Key Laboratory for Space Bioscience and Biotechnology , Northwestern Polytechnical University , Xi'an , P.R. China
| | - Qi Bing Mei
- a School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
- b Key Laboratory for Space Bioscience and Biotechnology , Northwestern Polytechnical University , Xi'an , P.R. China
| | - Feng Xu
- c The Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , P.R. China
- d Bioinspired Engineering and Biomechanics Center (BEBC) , Xi'an Jiaotong University , Xi'an , P.R. China
| |
Collapse
|
31
|
Bauer WS, Kimmel DW, Adams NM, Gibson LE, Scherr TF, Richardson KA, Conrad JA, Matakala HK, Haselton FR, Wright DW. Magnetically-enabled biomarker extraction and delivery system: towards integrated ASSURED diagnostic tools. Analyst 2017; 142:1569-1580. [PMID: 28386613 PMCID: PMC5674985 DOI: 10.1039/c7an00278e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diagnosis of asymptomatic malaria poses a great challenge to global disease elimination efforts. Healthcare infrastructure in rural settings cannot support existing state-of-the-art tools necessary to diagnose asymptomatic malaria infections. Instead, lateral flow immunoassays (LFAs) are widely used as a diagnostic tool in malaria endemic areas. While LFAs are simple and easy to use, they are unable to detect low levels of parasite infection. We have developed a field deployable Magnetically-enabled Biomarker Extraction And Delivery System (mBEADS) that significantly improves limits of detection for several commercially available LFAs. Integration of mBEADS with leading commercial Plasmodium falciparum malaria LFAs improves detection limits to encompass an estimated 95% of the disease reservoir. This user-centered mBEADS platform makes significant improvements to a previously cumbersome malaria biomarker enrichment strategy by improving reagent stability, decreasing the processing time 10-fold, and reducing the assay cost 10-fold. The resulting mBEADS process adds just three minutes and less than $0.25 to the total cost of a single LFA, thus balancing sensitivity and practicality to align with the World Health Organization's ASSURED criteria for point-of-care (POC) testing.
Collapse
Affiliation(s)
- Westley S Bauer
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Soares RRG, Silva DFC, Fernandes P, Azevedo AM, Chu V, Conde JP, Aires-Barros MR. Miniaturization of aqueous two-phase extraction for biological applications: From micro-tubes to microchannels. Biotechnol J 2016; 11:1498-1512. [PMID: 27624685 DOI: 10.1002/biot.201600356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/26/2023]
Abstract
Aqueous two-phase extraction (ATPE) is a biocompatible liquid-liquid (L-L) separation technique that has been under research for several decades towards the purification of biomolecules, ranging from small metabolites to large animal cells. More recently, with the emergence of rapid-prototyping techniques for fabrication of microfluidic structures with intricate designs, ATPE gained an expanded range of applications utilizing physical phenomena occurring exclusively at the microscale. Today, research is being carried simultaneously in two different volume ranges, mL-scale (microtubes) and nL-scale (microchannels). The objective of this review is to give insight into the state of the art at both microtube and microchannel-scale and to analyze whether miniaturization is currently a competing or divergent technology in a field of applications including bioseparation, bioanalytics, enhanced fermentation processes, catalysis, high-throughput screening and physical/chemical compartmentalization. From our perspective, both approaches are worthy of investigation and, depending on the application, it is likely that either (i) one of the approaches will eventually become obsolete in particular research areas such as purification at the preparative scale or high-throughput screening applications; or (ii) both approaches will function as complementing techniques within the bioanalytics field.
Collapse
Affiliation(s)
- Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel F C Silva
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M Raquel Aires-Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Citartan M, Ch'ng ES, Rozhdestvensky TS, Tang TH. Aptamers as the ‘capturing’ agents in aptamer-based capture assays. Microchem J 2016. [DOI: 10.1016/j.microc.2016.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
|
35
|
Mosley GL, Nguyen P, Wu BM, Kamei DT. Development of quantitative radioactive methodologies on paper to determine important lateral-flow immunoassay parameters. LAB ON A CHIP 2016; 16:2871-81. [PMID: 27364421 DOI: 10.1039/c6lc00518g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The lateral-flow immunoassay (LFA) is a well-established diagnostic technology that has recently seen significant advancements due in part to the rapidly expanding fields of paper diagnostics and paper-fluidics. As LFA-based diagnostics become more complex, it becomes increasingly important to quantitatively determine important parameters during the design and evaluation process. However, current experimental methods for determining these parameters have certain limitations when applied to LFA systems. In this work, we describe our novel methods of combining paper and radioactive measurements to determine nanoprobe molarity, the number of antibodies per nanoprobe, and the forward and reverse rate constants for nanoprobe binding to immobilized target on the LFA test line. Using a model LFA system that detects for the presence of the protein transferrin (Tf), we demonstrate the application of our methods, which involve quantitative experimentation and mathematical modeling. We also compare the results of our rate constant experiments with traditional experiments to demonstrate how our methods more appropriately capture the influence of the LFA environment on the binding interaction. Our novel experimental approaches can therefore more efficiently guide the research process for LFA design, leading to more rapid advancement of the field of paper-based diagnostics.
Collapse
Affiliation(s)
- Garrett L Mosley
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
36
|
Ricks KM, Adams NM, Scherr TF, Haselton FR, Wright DW. Direct transfer of HRPII-magnetic bead complexes to malaria rapid diagnostic tests significantly improves test sensitivity. Malar J 2016; 15:399. [PMID: 27495329 PMCID: PMC4975893 DOI: 10.1186/s12936-016-1448-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022] Open
Abstract
Background The characteristic ease of use, rapid time to result, and low cost of malaria rapid diagnostic tests (RDTs) promote their widespread use at the point-of-care for malaria detection and surveillance. However, in many settings, the success of malaria elimination campaigns depends on point-of-care diagnostics with greater sensitivity than currently available RDTs. To address this need, a sample preparation method was developed to deliver more biomarkers onto a malaria RDT by concentrating the biomarker from blood sample volumes that are too large to be directly applied to a lateral flow strip. Methods In this design, Ni–NTA-functionalized magnetic beads captured the Plasmodium falciparum biomarker HRPII from a P. falciparum D6 culture spiked blood sample. This transfer of magnetic beads to the RDT was facilitated by an inexpensive 3D-printed apparatus that aligned the sample tube with the sample deposition pad and a magnet beneath the RDT. Biomarkers were released from the bead surface onto the lateral flow strip using imidazole-spiked running buffer. Kinetics of HRPII binding to the Ni–NTA beads as a function of blood sample volume were explored prior to determining the effect of the proposed method on the limit of detection of Paracheck RDTs. Results More than 80 % of HRPII biomarkers were extracted from blood sample volumes ranging from 25 to 250 µL. The time required to reach 80 % binding ranged from 5 to 60 min, depending on sample volume. Using 250 μL of blood and a 30-min biomarker binding time, the limit of detection of the Paracheck Pf RDT brand was improved by 21-fold, resulting in a limit of detection below 1 parasite/μL. Conclusions This approach has the sensitivity and simplicity required to assist in malaria elimination campaigns in settings with limited access to clinical and laboratory resources. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1448-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keersten M Ricks
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Nicholas M Adams
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Thomas F Scherr
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Frederick R Haselton
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
37
|
Tang R, Yang H, Choi JR, Gong Y, Hu J, Feng S, Pingguan-Murphy B, Mei Q, Xu F. Improved sensitivity of lateral flow assay using paper-based sample concentration technique. Talanta 2016; 152:269-276. [PMID: 26992520 DOI: 10.1016/j.talanta.2016.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 11/29/2022]
Abstract
Lateral flow assays (LFAs) hold great promise for point-of-care testing, especially in resource-poor settings. However, the poor sensitivity of LFAs limits their widespread applications. To address this, we developed a novel device by integrating dialysis-based concentration method into LFAs. The device successfully achieved 10-fold signal enhancement in Human Immunodeficiency Virus (HIV) nucleic acid detection with a detection limit of 0.1 nM and 4-fold signal enhancement in myoglobin (MYO) detection with a detection limit of 1.56 ng/mL in less than 25 min. This simple, low-cost and portable integrated device holds great potential for highly sensitive detection of various target analytes for medical diagnostics, food safety analysis and environmental monitoring.
Collapse
Affiliation(s)
- Ruihua Tang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Jane Ru Choi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Yan Gong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shangsheng Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Qibing Mei
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|