1
|
Mishra S, Ghosh A, Hansda B, Mondal TK, Biswas T, Das B, Roy D, Kumari P, Mondal S, Mandal B. Activation of Inert Supports for Enzyme(s) Immobilization Harnessing Biocatalytic Sustainability for Perennial Utilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18377-18406. [PMID: 39171729 DOI: 10.1021/acs.langmuir.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Although Nature's evolution and intelligence have gifted humankind with noteworthy enzyme candidates to simplify complex reactions with ultrafast, overselective, effortless, mild biological reactions for millions of years, their availability at minute-scale, short-range time-temperature stability, and purification costs hardly justify recycling/or reuse. Covalent immobilization, particularly via multipoint bonds, prevents denaturing, maintains activities for long-range time, pH, and temperature, and makes catalysts available for repetitive usages; which attracts researchers and industries to bring more immobilized enzyme contenders in science and commercial progressions. Inert-support activation, the most crucial step, needs appropriate activators; under mild conditions, the activator's functional group(s) still present on the activated support rapidly couples the enzyme, preventing unfolding and keeping the active site alive. This review summarizes exciting experimental advances, from the 1950s until today, in the activation strategies of various inert supports with five different surface activators, the cyanogen bromide, the isocyanate/isothiocyanate, the glutaraldehyde, the carbodiimide (with or without N-hydroxysuccinimide (NHS)), and the diazo group, for the immobilization of diverse enzymes for broader applications. These activators under mild pH (7.5 ± 0.5) and temperature (27 ± 3 °C) and ordinary stirring witnessed support activation and enzyme coupling and put off unfolding, harnessing addressable activities (CNBr: 40 ± 10%; -N═C═O/-N═C═S: 32 ± 7%; GA: 70 ± 15%; CDI: 60 ± 10%; -N+≡N: 80 ± 15%), while underprivileged stability, longevity, and reusabilities keep future investigations alive.
Collapse
Affiliation(s)
- Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal, India 700032
| | - Pallavi Kumari
- University Department of Chemistry, T.M.B.U., Bhagalpur, Bihar-812007, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| |
Collapse
|
2
|
Takahashi A, Fujii C, Takahashi Y, Kunisawa T, Nagayasu Y, Yoshimoto N, Yoshimoto M. Liposome-Papain Conjugates for Catalytic Digestion of Antibody Producing Fab Fragments. ACS APPLIED BIO MATERIALS 2024; 7:5566-5578. [PMID: 39010295 DOI: 10.1021/acsabm.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Papain is useful for the enzymatic digestion of various proteins to produce functional peptides or protein fragments. Immobilized papain being reactive toward proteins and easily removable from a reaction mixture is worth developed. In the present work, liposomes were applied as colloidal carriers of papain for the catalytic digestion of polyclonal immunoglobulin G (IgG). Papain was covalently conjugated at pH = 7.0 via tris-succinimidyl aminotriacetate (TSAT) to liposomes incorporated with 5 mol % poly(ethylene glycol)-tethered lipid with a reactive amino group. The papain-conjugated liposome (liposome-papain) catalyzed the hydrolysis of Nα-benzoyl-l-arginine 4-nitroanilide hydrochloride (BAPNA) at pH = 5.0-7.0. The activity of liposome-papain significantly increased with increasing temperature from 25 to 50 °C. The Michaelis constant Km was determined with respect to the liposome-papain- and free papain-catalyzed reactions with BAPNA at 37 °C as Km = 1.11 ± 0.13 and 11.6 ± 2.9 mM, respectively. Liposome-papain was applied to the catalytic digestion of 10 mg·mL-1 IgG at 37 °C for 24 h at pH = 5.0-7.0. The reaction mixture could be analyzed without pretreatment by using the affinity columns immobilized with the protein A or protein L ligand because colloidal liposome-papain quickly flowed through the chromatographic stationary phase, exhibiting little proteolytic effect on the proteinaceous ligands. The analysis clearly demonstrated the catalytic production of antigen-binding fragments (Fab) from IgG in an enzyme concentration- and pH-dependent manner. Liposome-papain with 15 or 50 mol % anionic lipids also catalyzed the formation of Fab from IgG. The above results demonstrated that liposome-papain was useful to digest IgG and to purify Fab formed with the affinity chromatography.
Collapse
Affiliation(s)
- Azusa Takahashi
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Chisaki Fujii
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Yuya Takahashi
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Tatsuki Kunisawa
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Yuto Nagayasu
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Noriko Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| |
Collapse
|
3
|
Soleimani Asl S, Roozbahani MH. A novel robust inhibitor of papain-like protease (PLpro) as a COVID-19 drug. J Biomol Struct Dyn 2024; 42:6863-6870. [PMID: 37578047 DOI: 10.1080/07391102.2023.2245474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023]
Abstract
Regarding the significance of SARS-CoV-2, scientists have shown considerable interest in developing effective drugs. Inhibitors for PLpro are the primary strategies for locating suitable COVID-19 drugs. Natural compounds comprise the majority of COVID-19 drugs. Due to limitations on the safety of clinical trials in cases of COVID, computational methods are typically utilized for inhibition studies. Whereas papain is highly similar to PLpro and is entirely safe, the current study aimed to examine several plant secondary metabolites to identify the most effective papain inhibitor and validate the results using molecular dynamics and docking. This simulation was conducted identically for PLpro and the optimal inhibitor. The results indicated that the experimental results are comparable to those obtained In-Silico, and the inhibition effects of Chlorogenic acid (CGA) on papain attained in the experiment were validated (IC50=0.54 mM). CGA as an inhibitor was located in the active site of PLpro and papain (total energy -2009410 and -456069 kJ/mol, respectively) at the desired location and distance. The study revealed that CGA and its derivatives are effective PLpro inhibitors against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saeed Soleimani Asl
- Iran Digital Twin Laboratory (IDT-Lab)- Incubator Center, Iran University of Science and Technology, Tehran, Iran
| | | |
Collapse
|
4
|
Mishra S, Hansda B, Ghosh A, Mondal S, Mandal B, Kumari P, Das B, Mondal TK, Biswas T. Multipoint Immobilization at Inert Center of Papain on Homo-Functional Diazo-Activated Silica Support: A Way of Restoring "Above Room-Temperature" Bio-Catalytic Sustainability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5710-5726. [PMID: 37039774 DOI: 10.1021/acs.langmuir.2c03466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although enzymes play a significant role in industrial applications, their potential usage at high-level efficiency, particularly above room temperature, has not yet been fully harnessed. It brings above room-temperature catalytic sustainability of an immobilized (imm.) bio-catalyst as a long pending issue to improve enzyme stability, activity, specificity, or selectivity, particularly the enantio-selectivity over the native-enzymes. At this juncture, in a robust methodology, a heterogeneous solid phase bio-catalyst, {Si(OSi)4(H2O)1.03}n=328{OSi(CH3)2-NH-C6H4-N═N}4{papain}(H2O)251, has efficiently been prepared by immobilizing papain on homo-functionalized SG (silica-gel) via multipoint covalent attachment. The bio-catalyst is easy to be recovered and reused multiple times. The homo-functional -N═N+, which appears on the SG-surface, makes the multipoint diazo-links with the inert center of the tyrosine-moiety to couple the enzyme where all the amino, thiol, phenol, and so forth, groups of the protein, including those that belong to the active-site, remain intact. The immobilized enzyme (13.9 μmol g-1) swims in pore-water within the pore-channel, remains stable up to 70 ± 5 °C, and exhibits wider temperature adaptability in performing its hydrolyzing activities. The relative activity, 78 ± 2% at 27 °C, remains quantitative for 60 days and can be reused for 60 cycles with 53% activity at room-temperature. The thermal (relative activity: 87%; incubated at 70 ± 5 °C for 24 h) and mechanical (relative activity: 92%; incubated at 2500 rpm for 2 h at 27 °C) stability was outstanding.
Collapse
Affiliation(s)
- Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Pallavi Kumari
- University Department of Chemistry, T.M.B.U., Bhagalpur, Bihar 812007, India
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tanay Kumar Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| |
Collapse
|
5
|
Diez‐Pascual AM, Rahdar A. Functional Nanomaterials in Biomedicine: Current Uses and Potential Applications. ChemMedChem 2022; 17:e202200142. [PMID: 35729066 PMCID: PMC9544115 DOI: 10.1002/cmdc.202200142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Indexed: 11/07/2022]
Abstract
Nanomaterials, that is, materials made up of individual units between 1 and 100 nanometers, have lately involved a lot of attention since they offer a lot of potential in many fields, including pharmacy and biomedicine, owed to their exceptional physicochemical properties arising from their high surface area and nanoscale size. Smart engineering of nanostructures through appropriate surface or bulk functionalization endows them with multifunctional capabilities, opening up new possibilities in the biomedical field such as biosensing, drug delivery, imaging, medical implants, cancer treatment and tissue engineering. This article highlights up-to-date research in nanomaterials functionalization for biomedical applications. A summary of the different types of nanomaterials and the surface functionalization strategies is provided. Besides, the use of nanomaterials in diagnostic imaging, drug/gene delivery, regenerative medicine, cancer treatment and medical implants is reviewed. Finally, conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Ana María Diez‐Pascual
- Universidad de AlcaláDepartamento de Química Analítica Química Física e Ingeniería QuímicaCarretera Madrid-Barcelona Km. 33.628871Alcalá de Henares, MadridSpain
| | - Abbas Rahdar
- Department of PhysicsUniversity of ZabolZabol98613-35856Iran
| |
Collapse
|
6
|
Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3251. [PMID: 35591584 PMCID: PMC9104878 DOI: 10.3390/ma15093251] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Nanomedicine is a speedily growing area of medical research that is focused on developing nanomaterials for the prevention, diagnosis, and treatment of diseases. Nanomaterials with unique physicochemical properties have recently attracted a lot of attention since they offer a lot of potential in biomedical research. Novel generations of engineered nanostructures, also known as designed and functionalized nanomaterials, have opened up new possibilities in the applications of biomedical approaches such as biological imaging, biomolecular sensing, medical devices, drug delivery, and therapy. Polymers, natural biomolecules, or synthetic ligands can interact physically or chemically with nanomaterials to functionalize them for targeted uses. This paper reviews current research in nanotechnology, with a focus on nanomaterial functionalization for medical applications. Firstly, a brief overview of the different types of nanomaterials and the strategies for their surface functionalization is offered. Secondly, different types of functionalized nanomaterials are reviewed. Then, their potential cytotoxicity and cost-effectiveness are discussed. Finally, their use in diverse fields is examined in detail, including cancer treatment, tissue engineering, drug/gene delivery, and medical implants.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
7
|
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021; 26:5823. [PMID: 34641367 PMCID: PMC8510367 DOI: 10.3390/molecules26195823] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Dario Drommi
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| |
Collapse
|
8
|
Hussain A, Rafeeq H, Qasim M, Jabeen Z, Bilal M, Franco M, Iqbal HMN. Engineered tyrosinases with broadened bio-catalysis scope: immobilization using nanocarriers and applications. 3 Biotech 2021; 11:365. [PMID: 34290948 PMCID: PMC8257883 DOI: 10.1007/s13205-021-02913-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Enzyme immobilization is a widely used technology for creating more stable, active, and reusable biocatalysts. The immobilization process also improves the enzyme's operating efficiency in industrial applications. Various support matrices have been designed and developed to enhance the biocatalytic efficiency of immobilized enzymes. Given their unique physicochemical attributes, including substantial surface area, rigidity, semi-conductivity, high enzyme loading, hyper catalytic activity, and size-assisted optical properties, nanomaterials have emerged as fascinating matrices for enzyme immobilization. Tyrosinase is a copper-containing monooxygenase that catalyzes the o-hydroxylation of monophenols to catechols and o-quinones. This enzyme possesses a wide range of uses in the medical, biotechnological, and food sectors. This article summarizes an array of nanostructured materials as carrier matrices for tyrosinase immobilization. Following a detailed background overview, various nanomaterials, as immobilization support matrices, including carbon nanotubes (CNTs), carbon dots (CDs), carbon black (CB), nanofibers, Graphene nanocomposite, platinum nanoparticles, nano-sized magnetic particles, lignin nanoparticles, layered double hydroxide (LDH) nanomaterials, gold nanoparticles (AuNPs), and zinc oxide nanoparticles have been discussed. Next, applied perspectives have been spotlights with particular reference to environmental pollutant sensing, phenolic compounds detection, pharmaceutical, and food industry (e.g., cereal processing, dairy processing, and meat processing), along with other miscellaneous applications.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Qasim
- International Islamic University Islamabad, Islamabad, Pakistan
| | - Zara Jabeen
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Marcelo Franco
- Departament of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico
| |
Collapse
|
9
|
Díaz SA, Choo P, Oh E, Susumu K, Klein WP, Walper SA, Hastman DA, Odom TW, Medintz IL. Gold Nanoparticle Templating Increases the Catalytic Rate of an Amylase, Maltase, and Glucokinase Multienzyme Cascade through Substrate Channeling Independent of Surface Curvature. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- Jacobs Corporation, Hanover, Maryland 21076, United States
| | - William P. Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| | - David A. Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| |
Collapse
|
10
|
Purification of Fab and Fc using papain immobilized cryogel bioreactor separator system. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122396. [DOI: 10.1016/j.jchromb.2020.122396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022]
|
11
|
Hong C, Ye S, Dai C, Wu C, Chen L, Huang Z. Sensitive and on-site detection of glyphosate based on papain-stabilized fluorescent gold nanoclusters. Anal Bioanal Chem 2020; 412:8177-8184. [PMID: 32978654 DOI: 10.1007/s00216-020-02952-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 01/07/2023]
Abstract
Organophosphorus pesticides can prevent or eliminate various pathogenic bacteria, insects, and weeds, and thus they are widely applied in agricultural production. However, illegal use and issues with organophosphorus pesticide residues contribute to global environmental pollution and pose a threat to public health safety. In this study, we developed a sensitive glyphosate (Glyp) fluorescence detection method using papain-stabilized gold nanoclusters (papain-AuNCs) as the fluorescence probe and a tyrosinase (TYR)/dopamine (DA) fluorescence-quenching system. The TYR catalyzed the oxidized conversion of DA into DA chrome, which served as an electron acceptor to quench the fluorescence of papain-AuNCs. However, Glyp inhibited the activity of TYR, thereby preventing DA oxidization and leading to the fluorescence recovery of papain-AuNCs. Under the optimum conditions, the fluorescence intensities of papain-AuNCs exhibited a good linear relationship with the concentration of Glyp in the range of 0.04-0.4 ng·mL-1, and the limit of detection for Glyp was 0.035 ng·mL-1. Furthermore, a paper-based sensor was constructed using the proposed system, which enabled on-site visual and semiquantitative detection of Glyp residues in tap-water samples. Overall, our strategy provides new opportunities for detection of organophosphorus pesticides and evaluation of environmental security. Graphical abstract.
Collapse
Affiliation(s)
- Chengyi Hong
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China.
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, China.
| | - Sishi Ye
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Chenying Dai
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Chenyue Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Lingling Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Zhiyong Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China
| |
Collapse
|
12
|
Quantum Dots and Gold Nanoparticles as Scaffolds for Enzymatic Enhancement: Recent Advances and the Influence of Nanoparticle Size. Catalysts 2020. [DOI: 10.3390/catal10010083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nanoparticle scaffolds can impart multiple benefits onto immobilized enzymes including enhanced stability, activity, and recoverability. The magnitude of these benefits is modulated by features inherent to the scaffold–enzyme conjugate, amongst which the size of the nanoscaffold itself can be critically important. In this review, we highlight the benefits of enzyme immobilization on nanoparticles and the factors affecting these benefits using quantum dots and gold nanoparticles as representative materials due to their maturity. We then review recent literature on the use of these scaffolds for enzyme immobilization and as a means to dissect the underlying mechanisms. Detailed analysis of the literature suggests that there is a “sweet-spot” for scaffold size and the ratio of immobilized enzyme to scaffold, with smaller scaffolds and lower enzyme:scaffold ratios generally providing higher enzymatic activities. We anticipate that ongoing studies of enzyme immobilization onto nanoscale scaffolds will continue to sharpen our understanding of what gives rise to beneficial characteristics and allow for the next important step, namely, that of translation to large-scale processes that exploit these properties.
Collapse
|
13
|
Li X, Yin Z, Cui X, Yang L. Capillary electrophoresis-integrated immobilized enzyme microreactor with graphene oxide as support: Immobilization of negatively charged L-lactate dehydrogenase via hydrophobic interactions. Electrophoresis 2019; 41:175-182. [PMID: 31743461 DOI: 10.1002/elps.201900334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
We report the first application of hydrophobic interaction between graphene oxide (GO) and negatively charged enzymes to fabricate CE-integrated immobilized enzyme microreactors (IMERs) by a simple and reliable immobilization procedure based on layer by layer assembly. L-lactate dehydrogenase (L-LDH), which is negatively charged during the enzymatic reaction, is selected as the model enzyme. Various spectroscopic techniques, including SEM, FTIR, and UV-vis are used to characterize the fabricated CE-IMERs, demonstrating the successful immobilization of enzymes on the negatively charged GO layer in the capillary surface. The IMER exhibits excellent repeatability with RSDs of inter-day and batch-to-batch less than 3.49 and 6.37%, respectively, and the activity of immobilized enzymes remains about 90% after five-day usage. The measured Km values of pyruvate and NADH of the immobilized L-LDH are in good agreement with those obtained by free enzymes. The results demonstrate that the hydrophobic interactions and/or π-π stacking is significant between the GO backbone and the aromatic residues of L-LDH and favorable to fabrication of CE-integrated IMERs. Finally, the method is successfully applied to the determination of pyruvate in beer samples.
Collapse
Affiliation(s)
- Xiaojuan Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Zhengri Yin
- Department of Chemistry, College of Science, Yanbian University, Yanji, P. R. China
| | - Xiujun Cui
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, P. R. China
| |
Collapse
|
14
|
Abdollahi K, Yazdani F, Panahi R. Fabrication of the robust and recyclable tyrosinase-harboring biocatalyst using ethylenediamine functionalized superparamagnetic nanoparticles: nanocarrier characterization and immobilized enzyme properties. J Biol Inorg Chem 2019; 24:943-959. [PMID: 31359184 DOI: 10.1007/s00775-019-01690-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/13/2019] [Indexed: 01/25/2023]
Abstract
Immobilized tyrosinase onto the functionalized nanoparticles with the ability to be reused easily in different reaction cycles to degrade phenolic compounds is known as a substantial challenge, which can be overcome through surface modification of the particles via proper chemical groups. Herein, the synthesis and silica coating of superparamagnetic nanoparticles using a simple procedure as well as their potential for tyrosinase immobilization were demonstrated. Therefore, N-[3-(trimethoxysilyl)propyl]ethylenediamine was used to functionalize the silica-coated nanoparticles with amine groups. Then, the ethylenediamine functionalized magnetic nanoparticles (EMNPs) were suspended in a solution containing tetrahydrofuran and cyanuric chloride (as an activating agent) to modify nanocarriers. To immobilize enzyme, a mixture of tyrosinase and cyanuric chloride functionalized magnetic nanoparticle (Cyc/EMNPs) was shaken at room temperature. The particles were characterized by EDX, TGA, SEM, FTIR, and TEM. As a result, the successful functionalization of the magnetic nanoparticles and covalent attachment of tyrosinase onto the Cyc/EMNPs were confirmed. The fabricated nano-biocatalyst particles were semi-spherical in shape. The immobilized tyrosinase (Ty-Cyc/EMNPs) exhibited remarkable reusability of six consecutive reaction cycles while no considerable loss of activity was observed for the first three cycles. Moreover, the excellent stability of the biocatalyst at different temperatures and pHs was proved. The Ty-Cyc/EMNPs with interesting features are promising for practical applications in biosensor development and wastewater treatment.
Collapse
Affiliation(s)
- Kourosh Abdollahi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 14335-186, Tehran, Iran.,School of Science, RMIT University, Bundoora West Campus, Melbourne, VIC, 3083, Australia
| | - Farshad Yazdani
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 14335-186, Tehran, Iran.
| | - Reza Panahi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|
15
|
Agarwal N, Narnoliya LK, Singh SP. Characterization of a novel amylosucrase gene from the metagenome of a thermal aquatic habitat, and its use in turanose production from sucrose biomass. Enzyme Microb Technol 2019; 131:109372. [PMID: 31615660 DOI: 10.1016/j.enzmictec.2019.109372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/21/2019] [Accepted: 07/09/2019] [Indexed: 02/08/2023]
Abstract
Turanose is a natural isomer of sucrose. It is an emerging functional sweetener of the next generation. Turanose is catalytically synthesized from the sucrose biomass by employing amylosucrase enzyme. In this study, a novel gene encoding amylosucrase (Asmet) has been identified from the metagenome of a thermal aquatic habitat. Asmet exhibits 37-55% identity at the protein level with the known amylosucrases characterized till date. Asmet was cloned and expressed in Escherichia coli, followed by protein purification, and characterization. Asmet protein exhibited the maximum total activity at 9.0 pH and 60 °C temperature, whereas, 8.0 pH and 50 °C temperature were found optimum for transglycosylation activity. Asmet showed fairly high thermal tolerance at 50 °C. The conjugation of Asmet protein with functionalized iron nanoparticles significantly improved its thermal tolerance, showing hardly any loss in the enzyme's activity even after 72 h of heat (50 °C) exposure. The turanose yield of about 47% was achieved from 1.5 M sucrose, containing 0.5 M fructose in the reaction. Turanose was purified (˜95%) via a bio-physical process, and characterized by TLC, HPLC, and NMR. The novel amylosucrase gene was demonstrated to be a potential candidate for turanose production, utilizing various sucrose containing feedstocks.
Collapse
Affiliation(s)
- Neera Agarwal
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Sector-81 (Knowledge City), Mohali, 140 306, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Lokesh Kumar Narnoliya
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Sector-81 (Knowledge City), Mohali, 140 306, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Sector-81 (Knowledge City), Mohali, 140 306, India.
| |
Collapse
|
16
|
Chen Y, Zhong Q, Wang Y, Yuan C, Qin X, Xu Y. Colorimetric detection of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of papain. RSC Adv 2019; 9:16566-16570. [PMID: 35516354 PMCID: PMC9064409 DOI: 10.1039/c9ra03111a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Papain, a natural plant protease that exists in the latex of Carica papaya, catalyzes the hydrolysis of peptide, ester and amide bonds. In this work, we found that papain displayed peroxidase-like activity and catalyzed the oxidation of 3,3',5',5'-tetramethylbenzidine (TMB) in the presence of H2O2. This results in the formation of a blue colored product with an absorption maximum at 652 nm. The effects of experimental parameters including pH and reaction temperature on catalytic activity of papain were investigated. The increase of absorbance induced by the catalytic effect of papain offers accurate detection of H2O2 in the range of 5.00-90.0 μM, along with a detection limit of 2.10 μM. A facile colorimetric method for glucose detection was also proposed by combining the glucose oxidase (GOx)-catalyzed glucose oxidation and papain-catalyzed TMB oxidation, which exhibited a linear response in the range of 0.05-0.50 mM with a detection limit of 0.025 mM. The method proposed here displayed excellent selectivity, indicating that common coexisting substances (urea, uric acid, ascorbic acid, maltose, lactose and fructose) in urine did not interfere with detection of glucose. More importantly, the suggested method was successfully used to precisely detect the glucose concentration in human urine samples with recoveries over 96.0%.
Collapse
Affiliation(s)
- Yuye Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Qingmei Zhong
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Yilin Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety Nanning 530004 China +86 771 3392879
| | - Chunling Yuan
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Xiu Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Yuanjin Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| |
Collapse
|
17
|
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40:2438-2461. [PMID: 31056767 DOI: 10.1002/elps.201900111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre-concentration, removal of interferences (purification), and pre-processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)-assisted sample preparation and pre-concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size-controlled synthesis, large surface-to-volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ-potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|