1
|
Chu M, Zhang Y, Ji C, Zhang Y, Yuan Q, Tan J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS NANO 2024; 18:31713-31736. [PMID: 39509537 DOI: 10.1021/acsnano.4c11857] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensitive and quantitative detection of chemical and biological molecules for screening, diagnosis and monitoring diseases is essential to treatment planning and response monitoring. Electrochemical biosensors are fast, sensitive, and easy to miniaturize, which has led to rapid development in clinical diagnosis. Benefiting from their excellent molecular recognition ability and high programmability, DNA nanomaterials could overcome the Debye length of electrochemical biosensors by simple molecular design and are well suited as recognition elements for electrochemical biosensors. Therefore, to enhance the sensitivity and specificity of electrochemical biosensors, significant progress has been made in recent years by optimizing the DNA nanomaterials design. Here, the establishment of electrochemical sensing strategies based on DNA nanomaterials is reviewed in detail. First, the structural design of DNA nanomaterial is examined to enhance the sensitivity of electrochemical biosensors by improving recognition and overcoming Debye length. In addition, the strategies of electrical signal transduction and signal amplification based on DNA nanomaterials are reviewed, and the applications of DNA nanomaterial-based electrochemical biosensors and integrated devices in clinical diagnosis are further summarized. Finally, the main opportunities and challenges of DNA nanomaterial-based electrochemical biosensors in detecting disease biomarkers are presented in an aim to guide the design of DNA nanomaterial-based electrochemical devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yawen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit Rev Clin Lab Sci 2024; 61:473-495. [PMID: 38450458 DOI: 10.1080/10408363.2024.2321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Liao X, Bai X, Wang S, Liggins C, Pan L, Wang M, Tchounwou P, Mao J, Liu YM. A novel one-pot fluorescence tagging and depyrimidination strategy for quantification of global DNA methylation. Anal Chim Acta 2023; 1239:340636. [PMID: 36628742 PMCID: PMC9834644 DOI: 10.1016/j.aca.2022.340636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
DNA methylation is intensively studied in medical science. Current HPLC methods for quantification of global DNA methylation involve digestion of a DNA sample and HPLC determination of both cytosine (C) and 5-methylcytosine (5mC) so that percentage of 5mC in total cytosine can be calculated as DNA methylation level. Herein we report a novel HPLC method based on a one-pot fluorescence tagging and depyrimidination reaction between DNA and chloroacetaldehyde (CAA) for highly sensitive quantification of global DNA methylation. In the one-pot reaction, C and 5mC residues in a DNA sequence react with CAA, forming fluorescent etheno-adducts that are then released from the sequence through depyrimidination. Interestingly, etheno-5mC (ε-5mC) is ∼20 times more fluorescent than ε-C and other ε-nucleobases resulting from the reaction, which greatly facilitates the quantification. Further, due to the tagging-induced increase in structural aromaticity, ε-nucleobases are far more separable by HPLC than intact nucleobases. The proposed HPLC method with fluorescence detection (HPLC-FD) is quick (i.e., < 1h per assay) and highly sensitive with a detection limit of 0.80 nM (or 250 fg on column) for 5mC. Using the method, DNA samples isolated from yeast, HCT-116 cells, and tissues were analyzed. Global DNA methylation was measured to be in the range from 0.35% to 2.23% in the samples analyzed. This sensitive method allowed accurate analyses of minute DNA samples (∼100 ng) isolated from milligrams of tissues.
Collapse
Affiliation(s)
- Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaolin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shuguan Wang
- Department of Physics, Chemistry and Atmospheric Science, Jackson State University, Jackson, MS, 39217, USA
| | - Christany Liggins
- Department of Physics, Chemistry and Atmospheric Science, Jackson State University, Jackson, MS, 39217, USA
| | - Li Pan
- Department of Physics, Chemistry and Atmospheric Science, Jackson State University, Jackson, MS, 39217, USA
| | - Meiyuan Wang
- Department of Physics, Chemistry and Atmospheric Science, Jackson State University, Jackson, MS, 39217, USA
| | - Paul Tchounwou
- Department of Biology, Jackson State University, Jackson, MS, 39217, USA
| | - Jinghe Mao
- Department of Biology, Tougaloo College, Tugaloo, MS, 39174, USA
| | - Yi-Ming Liu
- Department of Physics, Chemistry and Atmospheric Science, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
4
|
Ye Q, Zhang Z, Liu J, Wang X. Screen-printed electrode-based biosensors modified with functional nucleic acid probes and their applications in this pandemic age: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2961-2975. [PMID: 35913361 DOI: 10.1039/d2ay00666a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical methodology has probably been the most used sensing platform in the past few years as they provide superior advantages. In particular, screen-printed electrode (SPE)-based sensing applications stand out as they provide extraordinary miniaturized but robust and user-friendly detection system. In this context, we are focusing on the modification of SPE with functional nucleic acid probes and nanostructures to improve the electrochemical detection performance in versatile sensing applications, particularly in the fight against the COVID-19 pandemic. Aptamers are immobilized on the electrode surface to detect non-nucleic acid targets and complementary probes to recognize and capture nucleic acid targets. In a step further, SPE-based biosensors with the modification of self-assembled DNA nanostructures are emphasized as they offer great potential for the interface engineering of the electrode surface and promote the excellent performance of various interface reactions. By equipping with a portable potentiostat and a smartphone monitoring device, the realization of this SPE-based miniaturized diagnostic system for the further requirement of fast and POC detection is revealed. Finally, more novel and excellent works are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Qingqing Ye
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
5
|
Salahuddin B, Masud MK, Aziz S, Liu CH, Amiralian N, Ashok A, Hossain SMA, Park H, Wahab MA, Amin MA, Chari MA, Rowan AE, Yamauchi Y, Hossain MSA, Kaneti YV. κ-Carrageenan Gel Modified Mesoporous Gold Chronocoulometric Sensor for Ultrasensitive Detection of microRNA. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bidita Salahuddin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Shazed Aziz
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan
| | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - S. M. Azad Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hyeongyu Park
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Abdul Wahab
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - M. Adharvana Chari
- Department of Chemistry, JNT University, Kukatpally, Hyderabad 500072, India
| | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Soda N, Gonzaga ZJ, Chen S, Koo KM, Nguyen NT, Shiddiky MJA, Rehm BHA. Bioengineered Polymer Nanobeads for Isolation and Electrochemical Detection of Cancer Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31418-31430. [PMID: 34185493 DOI: 10.1021/acsami.1c05355] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early sensitive diagnosis of cancer is critical for enhancing treatment success. We previously bioengineered multifunctional core-shell structures composed of a poly-3-hydroxybutyrate (PHB) core densely coated with protein functions for uses in bioseparation and immunodiagnostic applications. Here, we report bioengineering of Escherichia coli to self-assemble PHB inclusions that codisplay a ferritin-derived iron-binding peptide and the protein A-derived antibody-binding Z domain. The iron-binding peptide mediated surface coating with a ferrofluid imparting superparamagnetic properties, while the Z domain remained accessible for binding of cancer biomarker-specific antibodies. We demonstrated that these nanobeads can specifically bind biomarkers in complex mixtures, enabling efficient magnetic separation toward enhanced electrochemical detection of cancer biomarkers such as methylated DNA and exosomes from cancer cells. Our study revealed that superparamagnetic core-shell structures can be derived from biological self-assembly systems for uses in sensitive and specific electrochemical detection of cancer biomarkers, laying the foundation for engineering advanced nanomaterials for diverse diagnostic approaches.
Collapse
Affiliation(s)
- Narshone Soda
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Queensland 4111, Australia
| | - Zennia Jean Gonzaga
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Kevin M Koo
- The University of Queensland Centre for Clinical Research (UQCCR), Herston, Queensland 4029, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Queensland 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Queensland 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
7
|
Jin X, Lu L, Wang X. Interspace-controlled biosensing interface with enhanced charge transfer based on tripod DNA probes. Talanta 2021; 234:122670. [PMID: 34364471 DOI: 10.1016/j.talanta.2021.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
Binding of a target by a probe for selective detection depends on the state of the probes on the sensing interface. Here, the hanging strand length of triple-helix DNA was used to form tripod probes immobilized via π-π interactions on a reduced graphene-oxide substrate. The spacing between the probes was adjusted by controlling the lengths of the tripod "feet" on the substrate; that is, increased probe spacing occurred when foot size increased over the range of 6-12 bases. The surface coverages and electron-transfer rates mediated the tripod DNA probes were characterized by electrochemical methods and atomic force microscopy. The electron-transfer mediated by the tripod DNA probes was higher than that mediated by doubled-stranded DNA. Then different sizes tripod DNA probes were developed for protein-CEA detection. The DNA probes with 10 bases feet showed the best detection limit of detection of 10-6 ng/mL in the detection linear range (10-6 - 25 ng/mL). The result demonstrated the tripod DNA probes with different sizes could obtain excellent sensitivity when it applied to the target with appropriate size. This interspace-controlled biosensing interface of tripod DNA probes with enhanced charge transfer should find widespread applications in clinical, medical, biological, and environmental areas for precise detection of differently sized targets.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China; Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
8
|
Farhana FZ, Umer M, Saeed A, Pannu AS, Husaini S, Sonar P, Firoz SH, Shiddiky MJA. e-MagnetoMethyl IP: a magnetic nanoparticle-mediated immunoprecipitation and electrochemical detection method for global DNA methylation. Analyst 2021; 146:3654-3665. [PMID: 33949437 DOI: 10.1039/d1an00345c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The quantification of global 5-methylcytosine (5mC) content has emerged as a promising approach for the diagnosis and prognosis of cancers. However, conventional methods for the global 5mC analysis require large quantities of DNA and may not be useful for liquid biopsy applications, where the amount of DNA available is limited. Herein, we report magnetic nanoparticles-assisted methylated DNA immunoprecipitation (e-MagnetoMethyl IP) coupled with electrochemical quantification of global DNA methylation. Carboxyl (-COOH) group-functionalized iron oxide nanoparticles (C-IONPs) synthesized by a novel starch-assisted gel formation method were conjugated with anti-5mC antibodies through EDC/NHS coupling (anti-5mC/C-IONPs). Anti-5mC/C-IONPs were subsequently mixed with DNA samples, in which they acted as dispersible capture agents to selectively bind 5mC residues and capture the methylated fraction of genomic DNA. The target-bound Anti-5mC/C-IONPs were magnetically separated and directly adsorbed onto the gold electrode surface using gold-DNA affinity interaction. The amount of DNA adsorbed on the electrode surface, which corresponds to the DNA methylation level in the sample, was electrochemically estimated by differential pulse voltammetric (DPV) study of an electroactive indicator [Ru(NH3)6]3+ bound to the surface-adsorbed DNA. Using a 200 ng DNA sample, the assay could successfully detect differences as low as 5% in global DNA methylation levels with high reproducibility (relative standard deviation (% RSD) = <5% for n = 3). The method could also reproducibly analyze various levels of global DNA methylation in synthetic samples as well as in cell lines. The method avoids bisulfite treatment, does not rely on enzymes for signal generation, and can detect global DNA methylation using clinically relevant quantities of sample DNA without PCR amplification. We believe that this proof-of-concept method could potentially find applications for liquid biopsy-based global DNA methylation analysis in point-of-care settings.
Collapse
Affiliation(s)
- Fatema Zerin Farhana
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh.
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia.
| | - Ayad Saeed
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia.
| | - Amandeep Singh Pannu
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia and Centre for Material Science, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Sediqa Husaini
- School of Environment and Science (ESC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia and Centre for Material Science, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Shakhawat H Firoz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh.
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia. and School of Environment and Science (ESC), Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
9
|
Zhang S, Huang J, Lu J, Liu M, Chen X, Su S, Mo F, Zheng J. Electrochemical and Optical Biosensing Strategies for DNA Methylation Analysis. Curr Med Chem 2020; 27:6159-6187. [DOI: 10.2174/0929867326666190903161750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
DNA methylation is considered as a crucial part of epigenetic modifications and a popular
research topic in recent decades. It usually occurs with a methyl group adding to the fifth carbon
atom of cytosine while the base sequence of DNA remains unchanged. DNA methylation has significant
influences on maintaining cell functions, genetic imprinting, embryonic development and
tumorigenesis procedures and hence the analysis of DNA methylation is of great medical significance.
With the development of analytical techniques and further research on DNA methylation,
numerous DNA methylation detection strategies based on biosensing technology have been developed
to fulfill various study requirements. This article reviewed the development of electrochemistry
and optical biosensing analysis of DNA methylation in recent years; in addition, we also reviewed
some recent advances in the detection of DNA methylation using new techniques, such as
nanopore biosensors, and highlighted the key technical and biological challenges involved in these
methods. We hope this paper will provide useful information for the selection and establishment of
analysis of DNA methylation.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jian Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jingrun Lu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Min Liu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Xi Chen
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Shasha Su
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
10
|
Campuzano S, Barderas R, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Electrochemical biosensing to move forward in cancer epigenetics and metastasis: A review. Anal Chim Acta 2020; 1109:169-190. [PMID: 32252900 DOI: 10.1016/j.aca.2020.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Early detection and effective treatment are crucial to reduce the physical, emotional, and financial pressure exerted by growing cancer burden on individuals, families, communities, and health systems. Currently, it is clear that the accurate analysis of emerging cancer epigenetic and metastatic-related biomarkers at different molecular levels is envisaged as an exceptional solution for early and reliable diagnosis and the improvement of therapy efficiency through personalized treatments. Within this field, electrochemical biosensing has demonstrated to be competitive over other emerging and currently used methodologies for the determination of these biomarkers accomplishing the premises of user-friendly, multiplexing ability, simplicity, reduced costs and decentralized analysis, demanded by clinical oncology, thus priming electrochemical biosensors to spark a diagnostic revolution for cancer prediction and eradication. This review article critically discusses the main characteristics, opportunities and versatility exhibited by electrochemical biosensing, through highlighting representative examples published during the last two years, for the reliable determination of these emerging biomarkers, with great diagnostic, predictive and prognostic potential. Special attention is paid on electrochemical affinity biosensors developed for the single or multiplexed determination of methylation events, non-coding RNAs, ctDNA features and metastasis-related protein biomarkers both in liquid and solid biopsies of cancer patients. The main challenges to which further work must be addressed and the impact of these advances should have in the clinical acceptance of these emerging biomarkers are also discussed which decisively will contribute to understand the molecular basis involved in the epigenetics and metastasis of cancer and to apply more efficient personalized therapies.
Collapse
Affiliation(s)
- S Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - R Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - M Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - P Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - J M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
11
|
Jia Y, Li F, Jia T, Wang Z. Meso-tetra(4-carboxyphenyl)porphine-Enhanced DNA Methylation Sensing Interface on a Light-Addressable Potentiometric Sensor. ACS OMEGA 2019; 4:12567-12574. [PMID: 31460377 PMCID: PMC6682126 DOI: 10.1021/acsomega.9b00980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/12/2019] [Indexed: 05/05/2023]
Abstract
DNA methylation (DNAm) sensors are an emerging branch in the discipline of sensors. It is believed to be able to promote the next generation of epigenetics-based diagnostic technology. Differing from the traditional biochemical sensors that aimed at individual molecules, the challenge in DNAm sensors is how to determine the amount of 5-methylcytosine (5mC) in a continuous nucleotide sequence. Here, we report a comparative study about meso-tetra(4-carboxyphenyl)porphine (TCPP)-based DNAm sensing interfaces on a light-addressable potentiometric sensor (LAPS), depending on TCPP's postures that are flat in the π-conjugated TCPP layer on reduced-graphene-oxide-decorated LAPS (#1) and stand-up in the covalently anchored TCPP on glutaraldehyde (GA)-treated LAPS (#2), along with the blank one (only GA-treated LAPS, #3). These DNAm sensing interfaces are also distinct from the traditional biosensing interface on LAPS, that is: it is not functionalized by the sensing indicator (5mC antibody, in this case) but by the target nucleotide sequence. The surface characterization techniques such as Raman spectra, scanning electron microscopy, and X-ray photoelectron spectroscopy are conducted to prove the decorations, as well as the anchored nucleotides. It is found that, though all of them can detect as low as one 5mC in the target sequence, the enhanced DNAm sensitivity is obtained by #2, which is evidenced by the higher output-voltage changing ratio for the 5mC site of #2 than those of #1 and #3. Furthermore, the underlying causes for the improved sensitivity in #2 are proposed, according to the conformational and electronic properties of TCPP molecules. Conclusively, TCPP's synergetic function, including the molecular configuration and the activate (carboxyl) groups on its peripheral substituents, to improve the DNAm sensing interface on LAPS is investigated and demonstrated. This can shed light on a new approach for DNA methylation detection, with the merits of low cost, independence on bisulfite conversion, and polymerase chain reaction.
Collapse
|
12
|
Campuzano S, Pedrero M, Yánez‐Sedeño P, Pingarrón JM. Advances in Electrochemical (Bio)Sensing Targeting Epigenetic Modifications of Nucleic Acids. ELECTROANAL 2019. [DOI: 10.1002/elan.201900180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica Facultad de CC. QuímicasUniversidad Complutense de Madrid E-28040 Madrid Spain
| | - María Pedrero
- Departamento de Química Analítica Facultad de CC. QuímicasUniversidad Complutense de Madrid E-28040 Madrid Spain
| | - Paloma Yánez‐Sedeño
- Departamento de Química Analítica Facultad de CC. QuímicasUniversidad Complutense de Madrid E-28040 Madrid Spain
| | - José M. Pingarrón
- Departamento de Química Analítica Facultad de CC. QuímicasUniversidad Complutense de Madrid E-28040 Madrid Spain
| |
Collapse
|
13
|
Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, Yamauchi Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019; 48:5717-5751. [DOI: 10.1039/c9cs00174c] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesis, bio-functionalization, and multifunctional activities of superparamagnetic-nanostructures have been extensively reviewed with a particular emphasis on their uses in a range of disease-specific biomarker detection and associated challenges.
Collapse
Affiliation(s)
- Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Department of Biochemistry & Molecular Biology
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| | - Muhammad Younus
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science & Technology
- Sylhet 3114
- Bangladesh
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- School of Mechanical and Mining Engineering
| | - Yoshio Bando
- International Center for Materials Nanoarchitechtonics (MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
- Institute of Molecular Plus
| | - Muhammad J. A. Shiddiky
- School of Environment and Sciences and Queensland Micro- and Nanotechnology Centre (QMMC)
- Griffith University
- QLD 4111
- Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| |
Collapse
|
14
|
Huang D, Wang Y, He Y, Wang G, Wang W, Han X, Sun Y, Lin L, Shan B, Shen G, Cheng M, Bian G, Fang X, Hu S, Pan Y. Paraoxonase 3 is involved in the multi-drug resistance of esophageal cancer. Cancer Cell Int 2018; 18:168. [PMID: 30386177 PMCID: PMC6198441 DOI: 10.1186/s12935-018-0657-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background Drug resistance prevents the effective treatment of cancers. DNA methylation has been found to participate in the development of cancer drug resistance. Methods We performed the wound-healing and invasion assays to test the effect of the paraoxonase gene PON3 on esophageal cancer (EC) cells. In addition, in vivo EC-derived tumor xenografts in nude mice were generated to test the effect of PON3 on the chemoresistance of EC cells. Results We found that PON3 is hypermethylated in drug-resistant EC cell line K150, which in-return down-regulates its expression. The following experiments by the forced changes of PON3 level in vitro and in vivo demonstrated that the PON3 expression negatively correlates with drug resistance in EC cells. Further wound-healing and invasion assays showed that PON3 suppresses the migration and invasion of EC cells. Conclusion Our data established that PON3 is associated with the EC drug resistance, which may serve as a biomarker for the potential therapeutic treatment of EC. Electronic supplementary material The online version of this article (10.1186/s12935-018-0657-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dabing Huang
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Yong Wang
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Yifu He
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Gang Wang
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Wei Wang
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Xinghua Han
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Yubei Sun
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Lin Lin
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Benjie Shan
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Guodong Shen
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Min Cheng
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Geng Bian
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Xiang Fang
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Shilian Hu
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Yueyin Pan
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| |
Collapse
|
15
|
Bhattacharjee R, Moriam S, Nguyen NT, Shiddiky MJA. A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement. Biosens Bioelectron 2018; 126:102-107. [PMID: 30396016 DOI: 10.1016/j.bios.2018.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/09/2023]
Abstract
In this paper we report on a bisulfite treatment and PCR amplification-free method for sensitive and selective quantifying of global DNA methylation. Our method utilizes a three-step strategy that involves (i) initial isolation and denaturation of global DNA using the standard isolation protocol and direct adsorption onto a bare gold electrode via gold-DNA affinity interaction, (ii) selective interrogation of methylation sites in adsorbed DNA via methylation-specific 5mC antibody, and (iii) subsequent signal enhancement using an electrochemical-enzymatic redox cycling reaction. In the redox cycling reaction, glucose oxidase (GOx) is used as an enzyme label, glucose as a substrate and ruthenium complex as a redox mediator. We initially investigated the enzymatic properties of GOx by varying glucose and ruthenium concentration to delineate the redox cyclic mechanism of our assay. Because of the fast electron transfer by ruthenium (Ru) complex and intrinsic signal amplification from GOx label, this method could detect as low as 5% methylation level in 50 ng of total DNA input. Moreover, the use of methylation-specific 5mC antibody conjugated GOx makes this assay relatively highly selective for DNA methylation analysis. The data obtained from the electrochemical response for different levels of methylation showed excellent interassay reproducibility of RSD (relative standard deviation) < 5% for n = 3. We believe that this inexpensive, rapid, and sensitive assay will find high relevance as an alternative method for DNA methylation analysis both in research and clinical platforms.
Collapse
Affiliation(s)
- Ripon Bhattacharjee
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Sofia Moriam
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| |
Collapse
|
16
|
Fujita K, Hashimoto M. Separation-free single-base extension assay with fluorescence resonance energy transfer for rapid and convenient determination of DNA methylation status at specific cytosine and guanine dinucleotide sites. Electrophoresis 2018; 40:281-288. [PMID: 30280389 DOI: 10.1002/elps.201800144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/15/2018] [Accepted: 09/29/2018] [Indexed: 11/08/2022]
Abstract
A separation-free single-base extension (SBE) assay utilizing fluorescence resonance energy transfer (FRET) was developed for rapid and convenient interrogation of DNA methylation status at specific cytosine and guanine dinucleotide sites. In this assay, the SBE was performed in a tube using an allele-specific oligonucleotide primer (i.e., extension primer) labeled with Cy3 as a FRET donor fluorophore at the 5'-end, a nucleotide terminator (dideoxynucleotide triphosphate) labeled with Cy5 as a FRET acceptor, a PCR amplicon derived from bisulfite-converted genomic DNA, and a DNA polymerase. A single base-extended primer (i.e., SBE product) that was 5'-Cy3- and 3'-Cy5-tagged was formed by incorporation of the Cy5-labeled terminator into the 3'-end of the extension primer, but only if the terminator added was complementary to the target nucleotide. The resulting SBE product brought the Cy3 donor and the Cy5 acceptor into close proximity. Illumination of the Cy3 donor resulted in successful FRET and excitation of the Cy5 acceptor, generating fluorescence emission from the acceptor. The capacity of the developed assay to discriminate as low as 10% methylation from a mixture of methylated and unmethylated DNA was demonstrated at multiple cytosine and guanine dinucleotide sites.
Collapse
Affiliation(s)
- Keisuke Fujita
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
17
|
Detection of FGFR2 : FAM76A Fusion Gene in Circulating Tumor RNA Based on Catalytic Signal Amplification of Graphene Oxide‐loaded Magnetic Nanoparticles. ELECTROANAL 2018. [DOI: 10.1002/elan.201800282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Islam F, Gopalan V, Pillai S, Lu CT, Kasem K, Lam AKY. Promoter hypermethylation inactivate tumor suppressor FAM134B and is associated with poor prognosis in colorectal cancer. Genes Chromosomes Cancer 2018; 57:240-251. [PMID: 29318692 DOI: 10.1002/gcc.22525] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 01/04/2023] Open
Abstract
The present study aims to examine promoter methylation status of FAM134B in a large cohort of patients with colorectal adenocarcinomas. The clinical significances and correlations of FAM134B promoter methylation with its expression are also analysed. Methylation-specific high-resolution melt-curve analysis followed by sequencing was used to identify FAM134B promoter methylation in colorectal adenomas (N = 32), colorectal adenocarcinomas (N = 164), matched adjacent non-neoplastic colorectal mucosae (N = 83) and colon cancer cell lines (N = 4). FAM134B expression was studied by real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blots. FAM134B promoter methylation was more frequent in adenocarcinomas (52%; 85/164) when compared to that of adenomas (28%; 9/32) and non-neoplastic mucosae (35%; 29/83). Cancer cells exhibited higher methylation when compared to non-neoplastic cells. FAM134B promoter methylation was inversely correlated with low FAM134B copy number and mRNA/protein expressions, whereas in-vitro demethylation has restored FAM134B expression in colon cancer cells. FAM134B promoter methylation was associated with high histological grade (P = .025), presence of peri-neural infiltration (P = .012), lymphovascular invasion (P = .021), lymph node metastasis (P = .0001), distant metastasis (P = .0001) and advanced pathological stages (P = .0001). In addition, FAM134B promoter methylation correlated with cancer recurrence and poor survival rates of patients with colorectal adenocarcinomas. To conclude, FAM134B promoter methylation plays a key role in regulating FAM134B expression in vitro and in vivo, which in turn contributes to the prediction of the biological aggressiveness of colorectal adenocarcinomas. Furthermore, FAM134B methylation might act as a marker in predicting clinical prognosis in patients with colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Suja Pillai
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
- School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | - Cu-Tai Lu
- Department of Surgery, Gold Coast Hospital, Gold Coast, Queensland, Australia
| | - Kais Kasem
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| |
Collapse
|
19
|
Islam MN, Moriam S, Umer M, Phan HP, Salomon C, Kline R, Nguyen NT, Shiddiky MJA. Naked-eye and electrochemical detection of isothermally amplified HOTAIR long non-coding RNA. Analyst 2018; 143:3021-3028. [DOI: 10.1039/c7an02109g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A naked-eye, colorimetric and electrochemical detection of HOTAIR long non-coding RNA has been demonstrated.
Collapse
Affiliation(s)
- Md. Nazmul Islam
- School of Environment and Science
- Griffith University
- Nathan
- Australia
- Queensland Micro- and Nanotechnology Centre (QMNC)
| | - Sofia Moriam
- School of Environment and Science
- Griffith University
- Nathan
- Australia
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre (QMNC)
- Griffith University
- Nathan
- Australia
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre (QMNC)
- Griffith University
- Nathan
- Australia
| | - Carlos Salomon
- Exosome Biology Laboratory
- Centre for Clinical Diagnostics
- University of Queensland Centre for Clinical Research
- Royal Brisbane and Women's Hospital
- The University of Queensland
| | - Richard Kline
- Maternal-Fetal Medicine
- Department of Obstetrics and Gynecology
- Ochsner Clinic Foundation
- New Orleans
- USA
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC)
- Griffith University
- Nathan
- Australia
| | - Muhammad J. A. Shiddiky
- School of Environment and Science
- Griffith University
- Nathan
- Australia
- Queensland Micro- and Nanotechnology Centre (QMNC)
| |
Collapse
|
20
|
Masud MK, Yadav S, Islam MN, Nguyen NT, Salomon C, Kline R, Alamri HR, Alothman ZA, Yamauchi Y, Hossain MSA, Shiddiky MJA. Gold-Loaded Nanoporous Ferric Oxide Nanocubes with Peroxidase-Mimicking Activity for Electrocatalytic and Colorimetric Detection of Autoantibody. Anal Chem 2017; 89:11005-11013. [DOI: 10.1021/acs.analchem.7b02880] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mostafa Kamal Masud
- Australian
Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, New South Wales 2500, Australia
| | | | | | | | - Carlos Salomon
- Exosome Biology Laboratory,
Centre for Clinical Diagnostics, University of Queensland Centre for
Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland 4029, Australia
- Maternal-Fetal
Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121, United States
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Richard Kline
- Maternal-Fetal
Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121, United States
| | - Hatem R. Alamri
- Physics
Department, Jamoum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zeid A. Alothman
- Advanced
Materials
Research Chair, Chemistry Department, College
of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yusuke Yamauchi
- Australian
Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, New South Wales 2500, Australia
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Md. Shahriar A. Hossain
- Australian
Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, New South Wales 2500, Australia
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | |
Collapse
|
21
|
Yao J, Li L, Li P, Yang M. Quantum dots: from fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. NANOSCALE 2017; 9:13364-13383. [PMID: 28880034 DOI: 10.1039/c7nr05233b] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the past decade, nanotechnology has become one of the major forces driving basic and applied research. As a novel class of inorganic fluorochromes, research into quantum dots (QDs) has become one of the fastest growing fields of nanotechnology today. QDs are made of a semiconductor material with tunable physical dimensions as well as unique optoelectronic properties, and have attracted multidisciplinary research efforts to further their potential bioanalytical applications. Recently, numerous optical properties of QDs, such as narrow emission band peaks, broad absorption spectra, intense signals, and remarkable resistance to photobleaching, have made them biocompatible and sensitive for biological assays. In this review, we give an overview of these exciting materials and describe their potential, especially in biomolecules analysis, including fluorescence detection, chemiluminescence detection, bioluminescence detection, electrochemiluminescence detection, and electrochemical detection. Finally, conclusions are made, including highlighting some critical challenges remaining and a perspective of how this field can be expected to develop in the future.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, People's Republic of China.
| | | | | | | |
Collapse
|