1
|
Pei Y, Pan Y, Zhang Z, Zhu J, Sun Y, Zhang Q, Zhu D, Li G, Bryce MR, Wang D, Tang BZ. Leveraging Tumor Microenvironment to Boost Synergistic Photodynamic Therapy, Ferroptosis Anti-Tumor Efficiency Based on a Functional Iridium(III) Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413879. [PMID: 39951332 PMCID: PMC11984874 DOI: 10.1002/advs.202413879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/20/2025] [Indexed: 04/12/2025]
Abstract
The tumor microenvironment (TME) severely limits the efficacy of clinical applications of photodynamic therapy (PDT). The development of a functional agent allowing full use of the TME to boost synergistic PDT and ferroptosis anti-tumor efficiency is an appealing yet significantly challenging task. Herein, to overcome the adverse influence on PDT of hypoxia and high level of glutathione (GSH) in the TME, an imine bond is introduced into an Ir(III)-ferrocene complex to construct a small molecule drug, named Ir-Fc, for tumors' imaging and therapy. The cleavage of the imine bond in the lysosome effectively disrupts the photoinduced electron transfer (PET) process, realizing the decomposition of Ir-Fc into Fc-CHO and Ir-NH2. Fc-CHO produces •OH by Fenton reactions under dark conditions and induces ferroptosis in tumor cells, and Ir-NH2 shows prominent performance for type-I and type-II reactive oxygen species (ROS) production. Meanwhile, the ferroptosis pathway simultaneously consumes large amounts of GSH and produces O2 for effectively relieving hypoxia. These distinctive outputs make Ir-Fc an exceptional molecule for effective tumor synergistic therapy. This study thus brings a new and revolutionary PDT protocol for practical cancer treatment.
Collapse
Affiliation(s)
- Yu Pei
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin ProvinceDepartment of ChemistryNortheast Normal University5268 Renmin StreetChangchunJilin Province130024P. R. China
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Yinzhen Pan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Jun Zhu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Yan Sun
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin ProvinceDepartment of ChemistryNortheast Normal University5268 Renmin StreetChangchunJilin Province130024P. R. China
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Qian Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin ProvinceDepartment of ChemistryNortheast Normal University5268 Renmin StreetChangchunJilin Province130024P. R. China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin ProvinceDepartment of ChemistryNortheast Normal University5268 Renmin StreetChangchunJilin Province130024P. R. China
| | - Guangzhe Li
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese MedicineChangchun University of Chinese MedicineChangchunJilin Province130117P. R. China
| | | | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong Kong, Shenzhen (CUHK‐Shenzhen)Guangdong518172P. R. China
| |
Collapse
|
2
|
Li G, Ko CN, Wang Z, Chen F, Wang W, Ma DL, Leung CH. Interference reduction isothermal nucleic acid amplification strategy for COVID-19 variant detection. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 377:133006. [PMID: 36439053 PMCID: PMC9678234 DOI: 10.1016/j.snb.2022.133006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Common reference methods for COVID-19 variant diagnosis include viral sequencing and PCR-based methods. However, sequencing is tedious, expensive, and time-consuming, while PCR-based methods have high risk of insensitive detection in variant-prone regions and are susceptible to potential background signal interference in biological samples. Here, we report a loop-mediated interference reduction isothermal nucleic acid amplification (LM-IR-INA) strategy for highly sensitive single-base mutation detection in viral variants. This strategy exploits the advantages of nicking endonuclease-mediated isothermal amplification, luminescent iridium(III) probes, and time-resolved emission spectroscopy (TRES). Using the LM-IR-INA strategy, we established a luminescence platform for diagnosing COVID-19 D796Y single-base substitution detection with a detection limit of 2.01 × 105 copies/μL in a linear range of 6.01 × 105 to 3.76 × 108 copies/μL and an excellent specificity with a variant/wild-type ratio of significantly less than 0.0625%. The developed TRES-based method was also successfully applied to detect D796Y single-base substitution sequence in complicated biological samples, including throat and blood, and was a superior to steady-state technique. LM-IR-INA was also demonstrated for detecting the single-base substitution D614G as well as the multiple-base mutation H69/V70del without mutual interference, indicating that this approach has the potential to be used as a universal viral variant detection strategy.
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zikang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China
| |
Collapse
|
3
|
Chang S, Chen BB, Gao YT, Zheng YH, Shi JF, Qian RC, Li DW. Carbon dots with hydrogen bond-controlled aggregation behavior. Analyst 2023; 148:507-511. [PMID: 36594781 DOI: 10.1039/d2an01858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, hydrophilic carbon dots (H-CDs) are prepared by a facile room temperature method. The strength of hydrogen bonds can be controlled by introducing proton and aprotic solvents, respectively, so as to realize the tunable aggregation state of H-CDs. Because of the ultrasensitive response to dimethyl sulfoxide (DMSO), H-CDs can serve as optical probes for detecting DMSO in a linear range of 0.005% to 0.75% and with a detection limit of 0.001%.
Collapse
Affiliation(s)
- Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China. .,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
| | - Ya-Ting Gao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yi-Han Zheng
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Ji-Fen Shi
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
4
|
Lin C, Wang J, Yang K, Liu J, Ma DL, Leung CH, Wang W. Development of a NIR iridium(III) complex for self-calibrated and luminogenic detection of boron trifluoride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121658. [PMID: 35905613 DOI: 10.1016/j.saa.2022.121658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Boron trifluoride (BF3) is a potential environmental pollutant, and excess exposure to it may cause human diseases. However, the sensitive, rapid and accurate detection of BF3 for on-site purposes is still a challenge. In this work, we developed the first NIR iridium(III)-based probe with dual emission and a Stokes shift of 370 nm for self-calibrated and luminogenic detection of BF3. This probe exhibited a strong luminescence enhancement at around 650 nm to BF3 (0-100 μM) with almost no change in luminescence at 475 nm, displaying a 220-fold I650 nm/I475 nm enhancement at 100 μM of BF3 with a detection limit of 0.35 μM. Moreover, the probe showed a fast response time of less than 5 s to BF3 along with an obvious color change under UV irradiation for visual detection. Importantly, the desirable photophysical properties of the iridium(III)-based probe can be harnessed for time-resolved detection of BF3 in the presence of the fluorescence background. The applicability of the probe was further verified in an organic solvent waste-spiked system and on a glass pane. This work will provide a solid basis for the development of sensitive and on-site BF3 sensing toolkits for environmental monitoring.
Collapse
Affiliation(s)
- Chuankai Lin
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Jing Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Jinbiao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China.
| |
Collapse
|
5
|
Chen F, Li G, Wu C, Wang W, Ma DL, Leung CH. A rapid and label-free DNA-based interference reduction nucleic acid amplification strategy for viral RNA detection. Biosens Bioelectron 2022; 198:113829. [PMID: 34840016 DOI: 10.1016/j.bios.2021.113829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
Abstract
Common reference methods for COVID-19 diagnosis include thermal cycling amplification (e.g. RT-PCR) and isothermal amplification methods (e.g. LAMP and RPA). However, they may not be suitable for direct detection in environmental and biological samples due to background signal interference. Here, we report a rapid and label-free interference reduction nucleic acid amplification strategy (IR-NAAS) that exploits the advantages of luminescent iridium(III) probes, time-resolved emission spectroscopy (TRES) and multi-branch rolling circle amplification (mbRCA). Using IR-NAAS, we established a luminescence approach for diagnosing COVID-19 RNAs sequences RdRp, ORF1ab and N with a linear range of 0.06-6.0 × 105 copies/mL and a detection limit of down to 7.3 × 104 copies/mL. Moreover, the developed method was successfully applied to detect COVID-19 RNA sequences from various environmental and biological samples, such as domestic sewage, and mice urine, blood, feces, lung tissue, throat and nasal secretions. Apart from COVID-19 diagnosis, IR-NAAS was also demonstrated for detecting other RNA viruses, such as H1N1 and CVA10, indicating that this approach has great potential approach for routine preliminary viral detection.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
6
|
Sahoo SK. Fluorescent chemosensors containing redox-active ferrocene: a review. Dalton Trans 2021; 50:11681-11700. [PMID: 34378597 DOI: 10.1039/d1dt02077c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The redox-active ferrocene containing two cyclopentadienyl rings and iron was extensively employed in the field of sensing, catalysis, medicine, biotechnology etc., due to the structural stability, solubility in common solvents and easy structural modification to make a wide variety of ferrocene derivatives. The ferrocene moiety can be linked suitably with fluoro-chromogenic units and applied for the multichannel (fluorescent, chromogenic and redox) sensing of various bioactive and toxic analytes. This review was narrated to compile some important ferrocene based fluorescent chemosensors developed for the detection of metal ions, anions and neutral analytes. The analytical novelty and sensing mechanisms of the summarized chemosensors are discussed to open new scopes for future research.
Collapse
Affiliation(s)
- Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat-395007, Gujarat, India.
| |
Collapse
|
7
|
Chen BB, Pan NL, Liao JX, Huang MY, Jiang DC, Wang JJ, Qiu HJ, Chen JX, Li L, Sun J. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer and antibacterial agents to induce both autophagy and apoptosis. J Inorg Biochem 2021; 219:111450. [PMID: 33826973 DOI: 10.1016/j.jinorgbio.2021.111450] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/28/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial damage will hinder the energy production of cells and produce excessive ROS (reactive oxygen species), resulting in cell death through autophagy or apoptosis. In this paper, four cyclometalated iridium(III) complexes (Ir1: [Ir(piq)2L]PF6; Ir2: [Ir(bzq)2L]PF6; Ir3: [Ir(dfppy)2L]PF6; Ir4: [Ir(thpy)2L]PF6; piq = 1-phenylisoquinoline; bzq = benzo[h]quinoline; dfppy = 2-(2,4-difluorophenyl)pyridine;thpy = 2-(2-thienyl)pyridine; L = 1,10-phenanthroline-5-amine) were synthesized and characterized. Cytotoxicity tests show that these complexes have excellent cytotoxicity to cancer cells, and mechanism studies indicatethat these complexes can specifically target mitochondria. Complexes Ir1 and Ir2 can damage the function of mitochondria, subsequently increasing intracellular levels of ROS, decreasing MMP (mitochondrial membrane potential), and interfering with ATP energy production, which leads to autophagy and apoptosis. Furthermore, autophagy induced by Ir1 and Ir2 can promote cell death in coordination with apoptosis. Surprisingly, these four complexes also showed moderate antibacterial activity to S. aureusand P. aeruginosa.
Collapse
Affiliation(s)
- Bing-Bing Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Pharmacy Department, The People's Hospital of Gaozhou, Maoming 525200, China
| | - Nan-Lian Pan
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Min-Ying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dong-Chun Jiang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Jie Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Hai-Jun Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jia-Xi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Lin Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
8
|
Wang XL, Tian JY, Guo XC, Zhang FQ, Liang L, Zhang XM. Cd-Based Metal-Organic Framework for Selective Turn-On Fluorescent DMSO Residual Sensing. Chemistry 2021; 27:3753-3760. [PMID: 33145861 DOI: 10.1002/chem.202004111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/18/2020] [Indexed: 11/11/2022]
Abstract
Dimethyl sulfoxide (DMSO) is a universally used solvent in various synthetic reactions, and trace amounts of DMSO residual are often seen on the surface of chemical product. It is difficult to quickly determine whether the residual DMSO is washed completely. This work reports a CdII metal-organic framework (MOF) SXU-4 which can detect trace amounts of DMSO in various solvents. Fluorescence experiments reveal its turn-on fluorescence effect toward DMSO with high selectivity and sensitivity, indicating that it can be used as an effective luminescent probe for rapid chemical product purity detection by testing the washing solution. Crystallographically characterized DMSO loaded SXU-4 (DMSO@SXU-4), in combination with computational results uncover that the enhanced DMSO-MOF conjugation through multiple DMSO-MOF supramolecule interactions and charge rearrangement are the main causes of fluorescence intensification.
Collapse
Affiliation(s)
- Xiao-Lu Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jia-Yue Tian
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Xuan-Chen Guo
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Fu-Qiang Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041001, Shanxi, China
| | - Linfeng Liang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xian-Ming Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China.,School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041001, Shanxi, China
| |
Collapse
|
9
|
A reaction-based fluorescent probe for detecting o-phenylenediamine in water and lateritic soil samples. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Liu JB, Wu C, Chen F, Leung CH, Ma DL. A simple iridium(III) dimer as a switch-on luminescent chemosensor for carbon disulfide detection in water samples. Anal Chim Acta 2019; 1083:166-171. [DOI: 10.1016/j.aca.2019.07.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
|
11
|
Ko CN, Li G, Leung CH, Ma DL. Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Lai X, Wang R, Li J, Qiu G, Liu JB. A cascade reaction-based switch-on fluorescent sensor for Ce(iv) ions in real samples. RSC Adv 2019; 9:22053-22056. [PMID: 35518858 PMCID: PMC9066643 DOI: 10.1039/c9ra03776d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/05/2019] [Indexed: 01/24/2023] Open
Abstract
A cascade reaction-based switch-on fluorescent sensor for Ce(iv) ions in river water and soil samples is presented.
Collapse
Affiliation(s)
- Xiaojing Lai
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Ruixiang Wang
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Jinhui Li
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Jin-Biao Liu
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| |
Collapse
|
13
|
Zhu J, Zhao Y, Yu L, Wang M, Li Q, Xu S. Pioglitazone restores the homocysteine‑impaired function of endothelial progenitor cells via the inhibition of the protein kinase C/NADPH oxidase pathway. Mol Med Rep 2018; 18:1637-1643. [PMID: 29901193 PMCID: PMC6072150 DOI: 10.3892/mmr.2018.9154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
Homocysteine (Hcy) has been shown to impair the migratory and adhesive activity of endothelial progenitor cells (EPCs). As a peroxisome proliferator-activated receptor γ agonist, pioglitazone (PIO) has been predicted to regulate angiogenesis, and cell adhesion, migration and survival. The aim of the present study was to determine whether PIO could inhibit Hcy-induced EPC dysfunctions such as impairments of cell migration and adhesion. EPC migration and adhesion were assayed using 8.0-µm pore size Transwell membranes and fibronectin-coated culture dishes, respectively. Hcy at a concentration of 200 µM was observed to markedly impair cell migration and adhesiveness, and PIO at a concentration of 10 µM attenuated the Hcy-mediated inhibition of EPC migration and adhesion. The mechanism of these effects may be through the inhibition of protein kinase C (PKC) and reactive oxygen species production. The expression levels of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, NADPH oxidase 2 (Nox2) and p67phox, were upregulated by Hcy, with a peak in levels following treatment with a concentration of 200 µM. PIO downregulated the expression levels of Nox2 and p67phox via the PKC signaling pathway. Furthermore, the mechanism of PIO associated with downregulating the p67phox and Nox2 subunits of NADPH oxidase was verified. Thus, PKC and NADPH oxidase may serve a major role in the protective effects of PIO in EPCs under conditions of high Hcy concentrations.
Collapse
Affiliation(s)
- Junhui Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yanbo Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lu Yu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Qinfeng Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shengjie Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
14
|
Wu C, Li G, Han QB, Pei RJ, Liu JB, Ma DL, Leung CH. Real-time detection of oxalyl chloride based on a long-lived iridium(iii) probe. Dalton Trans 2018; 46:17074-17079. [PMID: 29188252 DOI: 10.1039/c7dt04054g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of luminescent iridium(iii) complexes were designed and evaluated for their ability to detect oxalyl chloride ((COCl)2) at ambient temperature. In the presence of (COCl)2, a double amidation reaction takes place at the diamino functionality of complex 1, leading to the switching-on of a long-lived red luminescence with a 9-fold enhanced emission. Complex 1 exhibited high sensitivity and selectivity, with a detection limit for (COCl)2 at 32 nM. Additionally, complex 1 can be used to detect (COCl)2 using a simple smartphone, allowing for the portable and real-time monitoring of (COCl)2.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ren-Jun Pei
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jin-Biao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China. and School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|