1
|
Kantak M, Batra P, Shende P. Integration of DNA barcoding and nanotechnology in drug delivery. Int J Biol Macromol 2023; 230:123262. [PMID: 36646350 DOI: 10.1016/j.ijbiomac.2023.123262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
In recent years' development in nanotechnology utilization of DNA barcodes with potential benefit of nanoparticulate system is a hallmark for novel advancement in healthcare, biomedical and research sector. Interplay of biological barcoding with nanodimensional system encompasses innovative technologies to offer unique advantages of ultra-sensitivity, error-free, accuracy with minimal label reagents, and less time consumption in comparison to conventional techniques like ELISA, PCR, culture media, electrophoresis. DNA barcoding systems used as universal novel tool for identification and multiplex structural detection of proteins, DNAs, toxins, allergens, and nucleic acids of humans, viruses, animals, bacteria, plants as well as personalized treatment in ovarian cancer, AIDS-related Kaposi sarcoma, breast cancer and cardiovascular diseases. Barcoding tools offer substantial attention in drug delivery, in-vivo screening, gene transport for theranostics, bioimaging, and nano-biosensors applications. This review article outlines the recent advances in nano-mediated DNA barcodes to explore various applications in detection of cancer markers, tumor cells, pathogens, allergens, as theranostics, biological sensors, and plant authentication. Furthermore, it summarizes the diverse newer technologies such as bio-barcode amplification (BBA), Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) and CRISPR-Cas9 gene knockout and their applications as sensors for detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Maithili Kantak
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Priyanka Batra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Iles AH, He PJW, Katis IN, Galanis PP, John AJUK, Elkington P, Eason RW, Sones CL. Semi-quantitative detection of inflammatory biomarkers using a laser-patterned multiplexed lateral flow device. Talanta 2022; 237:122944. [PMID: 34736671 DOI: 10.1016/j.talanta.2021.122944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
Inflammatory markers including C-reactive protein (CRP) and procalcitonin (PCT) have been shown to be useful biomarkers to improve triage speed and prevent the inappropriate use of antibiotics for infections such as pneumonia. Here, we present a novel and exciting solution to guide the administration of antibiotic treatment via rapid, semi-quantitative and multiplexed detection of CRP and PCT using an advanced lateral flow device (LFD) designed to have multiple parallel flow-paths, produced via the precise laser-based partitioning of the single flow-path of a standard LFD. Each flow-path within this multiplexed LFD has a unique detection capability which permits tailored detection of CRP within a predefined cut-off range (20 μg/mL - 100 μg/mL) and PCT above a pre-defined threshold (0.5 ng/mL). We demonstrate the use of this LFD in the successful detection of CRP and PCT semi-quantitatively within spiked human serum samples. This multiplexed near-patient assay has potential for development into a rapid triage and treatment of patients with suspected pneumonia.
Collapse
Affiliation(s)
- Alice H Iles
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK.
| | - Peijun J W He
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| | - Ioannis N Katis
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| | | | - Anto J U K John
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| | - Paul Elkington
- NIHR Biomedical Research Centre, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Robert W Eason
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| | - Collin L Sones
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
3
|
A visual bio-barcode immunoassay for sensitive detection of triazophos based on biochip silver staining signal amplification. Food Chem 2021; 347:129024. [PMID: 33461115 DOI: 10.1016/j.foodchem.2021.129024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
Herein, a novel visual method for detecting triazophos based on competitive bio-barcode immunoassay was described. The competitive immunoassay was established by gold nanoparticles (AuNPs), magnetic microparticle (MMPs) and triazophos, combined with biochip hybridization system to detect the residual of triazophos in water and apple. Because AuNPs carried many bio-barcodes, which hybridized with labeled DNA on the biochip, catalyzed signal amplification using silver staining was detected by grayscale values as well as the naked eye. Notably, the grayscale values decreases with increasing the concentrations of triazophos, and the color change weakened gradually. The detection range was in between 0.05 and 10 ng/mL and the minimum detection limit was set at 0.04 ng/mL. Percent recovery calculated from spiked water and apple samples ranged between 55.4 and 107.8% with relative standard deviations (RSDs) of 12.4-24.9%. It has therefore been shown that this protocol provides a new insight for rapid detection of small molecule pesticides in various matrices.
Collapse
|
4
|
Li B, Ge L, Lyu P, Chen M, Zhang X, Xie S, Wu Q, Kwok HF. Handheld pH meter-assisted immunoassay for C-reactive protein using glucose oxidase-conjugated dendrimer loaded with platinum nanozymes. Mikrochim Acta 2021; 188:14. [PMID: 33389237 PMCID: PMC7779416 DOI: 10.1007/s00604-020-04687-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
A simple and feasible pH meter-based immunoassay is reported for detection of C-reactive protein (CRP) using glucose oxidase (GOD)-conjugated dendrimer loaded with platinum nanozyme. Initially, platinum nanozymes were loaded into the dendrimers through an in situ synthetic method. Then, GOD and monoclonal anti-CRP antibody with a high molar ratio were covalently conjugated onto carboxylated dendrimers via typical carbodiimide coupling. The immunoreaction was carried out with a competitive mode in a CRP-coated microplate. Along with formation of immunocomplex, the added glucose was oxidized into gluconic acid and hydrogen peroxide by GOD, and the latter was further decomposed by platinum nanozyme, thus accelerating chemical reaction in the positive direction. The produced gluconic acid changed the pH of detection solution, which was determined using a handheld pH meter. Under optimum conditions, the pH meter-based immunoassay gave a good signal toward target CRP from 0.01 to 100 ng mL-1. The limit of detection was 5.9 pg mL-1. An intermediate precision ≤ 11.2% was acquired with batch-to-batch identification. No nonspecific adsorption was observed during a series of procedures to detect target CRP, and the cross-reaction against other biomarkers was very low. Importantly, our system gave well-matched results for analysis of human serum samples relative to a referenced ELISA kit.Graphical abstract.
Collapse
Affiliation(s)
- Bin Li
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Lilin Ge
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Peng Lyu
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Meijuan Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xiongfei Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuping Xie
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR
| | - Qinan Wu
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
5
|
Munir S, Ahmed S, Ibrahim M, Khalid M, Ojha SC. A Spellbinding Interplay Between Biological Barcoding and Nanotechnology. Front Bioeng Biotechnol 2020; 8:883. [PMID: 33014994 PMCID: PMC7506030 DOI: 10.3389/fbioe.2020.00883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Great scientific research with improved potential in probing biological locales has remained a giant stride. The use of bio-barcodes with the potential use of nanotechnology is a hallmark being developed among recent advanced techniques. Biobarcoding is a novel method used for screening biomolecules to identify and divulge ragbag biodiversity. It establishes successful barcoding projects in the field of nanomedical technology for massively testing disease diagnosis and treatment. Biobarcoding and nanotechnology are recently developed technologies that provide unique opportunities and challenges for multiplex detection such as DNAs, proteins and nucleic acids of animals, plants, viruses, and various other species. These technologies also clump drug delivery, gene delivery, and DNA sequencing. Bio-barcode amplification assay (BCA) is used at large for the detection and identification of proteins and DNAs. DNA barcoding combined with nanotechnology has been proven highly sensitive rendering fast uniplex and multiplex detection of pathogens in food, blood, and other specimens. This review takes a panoramic view of current advances in nano bio-barcodes which have been summarized to explore additional applications such as detection of cytokines, neurotransmitters, cancer markers, prostate-specific antigens, and allergens. In the future, it will also be possible to detect some fungi, algae, protozoa, and other pollutants in food, agriculture, and clinical samples. Using these technologies, specific and efficient sensors would possibly be developed that can perform swift detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Shehla Munir
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Chen G, Jin M, Ma J, Yan M, Cui X, Wang Y, Zhang X, Li H, Zheng W, Zhang Y, Abd El-Aty AM, Hacımüftüoğlu A, Wang J. Competitive Bio-Barcode Immunoassay for Highly Sensitive Detection of Parathion Based on Bimetallic Nanozyme Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:660-668. [PMID: 31804828 DOI: 10.1021/acs.jafc.9b06125] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A competitive sensitive bio-barcode immunoassay based on bimetallic nanozyme (Au@Pt: gold@platinum) catalysis has been designed for the detection of the pesticide parathion. Gold nanoparticles (AuNPs) were modified with single-stranded thiol oligonucleotides (ssDNAs) and monoclonal antibodies (mAbs) to form AuNP probes; magnetic nanoparticles (MNPs) were coated with ovalbumin (OVA)-parathion haptens as MNP probes, and bimetallic nanozyme (Au@Pt) nanoparticles functionalized with the complementary thiolated ssDNA were used as Au@Pt probes. The Au@Pt probes reacted with the AuNP probes through complementary base pairing. Further, parathion competed with MNP probes to bind the mAbs on the AuNP probes. Finally, the complex system was separated by a magnetic field. The released Au@Pt probes catalyzed a chromogenic system consisting of teramethylbenzidine (TMB). The bimetallic nanozyme-based bio-barcode immunoassay was performed on rice, pear, apple, and cabbage samples to verify the feasibility of the method. The immunoassay exhibited a linear response from 0.01 to 40 μg·kg-1, and the limit of detection (LOD) was 2.13 × 10-3 μg·kg-1. The recoveries and relative standard deviations (RSDs) ranged from 73.12 to 116.29% and 5.59 to 10.87%, respectively. The method was found to correlate well with data obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In conclusion, this method exhibits potential as a sensitive alternative method for the detection of a variety of pesticides, ensuring the safety of fruits and vegetables in agriculture.
Collapse
Affiliation(s)
- Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Jun Ma
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Xiuyuan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Weijia Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine , Cairo University , 12211 Giza , Egypt
- Department of Medical Pharmacology, Medical Faculty , Ataturk University , 25240 Erzurum , Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty , Ataturk University , 25240 Erzurum , Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| |
Collapse
|
7
|
Wang Y, Jin M, Chen G, Cui X, Zhang Y, Li M, Liao Y, Zhang X, Qin G, Yan F, Abd El-Aty A, Wang J. Bio-barcode detection technology and its research applications: A review. J Adv Res 2019; 20:23-32. [PMID: 31193255 PMCID: PMC6522771 DOI: 10.1016/j.jare.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of nanotechnology, the bio-barcode assay (BCA), as a new diagnostic tool, has been gradually applied to the detection of protein and nucleic acid targets and small-molecule compounds. BCA has the advantages of high sensitivity, short detection time, simple operation, low cost, good repeatability and good linear relationship between detection results. However, bio-barcode technology is not yet fully formed as a complete detection system, and the detection process in all aspects and stages is unstable. Therefore, studying the optimal reaction conditions, optimizing the experimental steps, exploring the multi-residue detection of small-molecule substances, and preparing immuno-bio-barcode kits are important research directions for the standardization and commercialization of BCA. The main theme of this review was to describe the principle of BCA, provide a comparison of its application, and introduce the single-residue and multi-residue detection of macromolecules and single-residue detection of small molecules. We also compared it with other detection methods, summarized its feasibility and limitations, expecting that with further improvement and development, the technique can be more widely used in the field of stable small-molecule and multi-residue detection.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Mingjie Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yun Liao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xiuyuan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Guoxin Qin
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Feiyan Yan
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| |
Collapse
|
8
|
Markwalter C, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem Rev 2019; 119:1456-1518. [PMID: 30511833 PMCID: PMC6348445 DOI: 10.1021/acs.chemrev.8b00136] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Infectious diseases claim millions of lives each year. Robust and accurate diagnostics are essential tools for identifying those who are at risk and in need of treatment in low-resource settings. Inorganic complexes and metal-based nanomaterials continue to drive the development of diagnostic platforms and strategies that enable infectious disease detection in low-resource settings. In this review, we highlight works from the past 20 years in which inorganic chemistry and nanotechnology were implemented in each of the core components that make up a diagnostic test. First, we present how inorganic biomarkers and their properties are leveraged for infectious disease detection. In the following section, we detail metal-based technologies that have been employed for sample preparation and biomarker isolation from sample matrices. We then describe how inorganic- and nanomaterial-based probes have been utilized in point-of-care diagnostics for signal generation. The following section discusses instrumentation for signal readout in resource-limited settings. Next, we highlight the detection of nucleic acids at the point of care as an emerging application of inorganic chemistry. Lastly, we consider the challenges that remain for translation of the aforementioned diagnostic platforms to low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - David W. Wright
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|