1
|
Yu YL, Shi MZ, Zhu SC, Cao J. Rapid stacking of amino acids in soybean and Dendrobium officinale by on-capillary sandwich derivatization in capillary electrophoresis. Food Res Int 2022; 162:112071. [DOI: 10.1016/j.foodres.2022.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/04/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
2
|
Characterization of the Interaction of Polymeric Micelles with siRNA: A Combined Experimental and Molecular Dynamics Study. Polymers (Basel) 2022; 14:polym14204409. [PMID: 36297986 PMCID: PMC9611052 DOI: 10.3390/polym14204409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The simulation of large molecular systems remains a daunting challenge, which justifies the exploration of novel methodologies to keep computers as an ideal companion tool for everyday laboratory work. Whole micelles, bigger than 20 nm in size, formed by the self-assembly of hundreds of copolymers containing more than 50 repeating units, have until now rarely been simulated, due to a lack of computational power. Therefore, a flexible amphiphilic triblock copolymer (mPEG45-α-PLL10-PLA25) containing a total of 80 repeating units, has been emulated and synthesized to embody compactified nanoconstructs of over 900 assembled copolymers, sized between 80 and 100 nm, for siRNA complexing purposes. In this study, the tailored triblock copolymers containing a controlled number of amino groups, were used as a support model to address the binding behavior of STAT3-siRNA, in the formation of micelleplexes. Since increasingly complex drug delivery systems require an ever more optimized physicochemical characterization, a converging description has been implemented by a combination of experimentation and computational simulations. The computational data were advantageous in allowing for the assumption of an optimal N/P ratio favoring both conformational rigidifications of STAT3-siRNA with low competitive phenomena at the binding sites of the micellar carriers. These calculations were consistent with the experimental data showing that an N/P ratio of 1.5 resulted in a sufficient amount of complexed STAT3-siRNA with an electrical potential at the slipping plane of the nanopharmaceuticals, close to the charge neutralization.
Collapse
|
3
|
Analysis of therapeutic nucleic acids by capillary electrophoresis. J Pharm Biomed Anal 2022; 219:114928. [PMID: 35853263 DOI: 10.1016/j.jpba.2022.114928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/04/2022] [Accepted: 07/02/2022] [Indexed: 12/19/2022]
Abstract
Nucleic acids are getting increased attention to fulfill unmet medical needs. The past five years have seen more than ten FDA approvals of nucleic acid based therapeutics. New analytical challenges have been posed in discovery, characterization, quality control and bioanalysis of therapeutic nucleic acids. Capillary electrophoresis (CE) has proven to be an efficient separation technique and has been widely used for analyzing oligonucleotides and nucleic acids. This review discusses the recent technical advances of CE in nucleic acid analysis such as polymeric matrices, separation conditions and detection methods, and the applications of CE to various therapeutic nucleic acids including antisense oligonucleotide (ASO), small interfering ribonucleic acid (siRNA), messenger RNA (mRNA), gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)-based gene and cell therapy, and other nucleic acid related therapeutics.
Collapse
|
4
|
Mlčochová H, Michalcová L, Glatz Z. Extending the application potential of capillary electrophoresis/frontal analysis for drug‐plasma protein studies by combining it with mass spectrometry detection. Electrophoresis 2022; 43:955-963. [DOI: 10.1002/elps.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hana Mlčochová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
5
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
6
|
Bruni PS, Schürch S. Fragmentation mechanisms of protonated cyclodextrins in tandem mass spectrometry. Carbohydr Res 2021; 504:108316. [PMID: 33892257 DOI: 10.1016/j.carres.2021.108316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
Tandem mass spectrometry has found widespread application as a powerful tool for the characterization of linear and branched oligosaccharides. Though the technique has been applied to the analysis of cyclic oligosaccharides as well, the underlying fragmentation mechanisms have hardly been investigated. This study focuses on the mechanistic aspects of the gas-phase dissociation of protonated β-cyclodextrins. Elucidation of the dissociation mechanisms is supported by tandem mass spectrometric experiments and by experiments on di- and trimethylated cyclodextrin derivatives. The fragmentation pathway comprises the linearization of the macrocyclic structure as the initial step of the decomposition, followed by the elimination of glucose subunits and the subsequent release of water and formaldehyde moieties from the glucose monomer and dimer fragment ions. Linearization of the macrocycle occurs due to proton-driven scission of the glycosidic bond adjacent to carbon atom C1 in conjunction with the formation of a new hydroxy group. The resulting ring-opened structure further decomposes in charge-independent processes forming either zwitterionic fragments, a 1,4-anhydroglucose moiety, or a new macrocyclic structure, that is lost as a neutral, and an oxonium ion. Since the hydroxy group formed at the ring-opening site can be regarded as the non-reducing end of the linearized structure, the fragment ion nomenclature commonly used for linear and branched oligosaccharides, which relies on the designation of a reducing and a non-reducing end, can also be applied to the description of fragment ions derived from cyclic structures.
Collapse
Affiliation(s)
- Pia S Bruni
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Stefan Schürch
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
7
|
Hong T, Qiu L, Zhou S, Cai Z, Cui P, Zheng R, Wang J, Tan S, Jiang P. How does DNA 'meet' capillary-based microsystems? Analyst 2021; 146:48-63. [PMID: 33211035 DOI: 10.1039/d0an01336f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA possesses various chemical and physical properties which make it important in biological analysis. The opportunity for DNA to 'meet' capillary-based microsystems is rapidly increasing owing to the expanding development of miniaturization. Novel capillary-based methods can provide favourable platforms for DNA-ligand interaction assay, DNA translocation study, DNA separation, DNA aptamer selection, DNA amplification assay, and DNA digestion. Meanwhile, DNA exhibits great potential in the fabrication of new capillary-based biosensors and enzymatic bioreactors. Moreover, DNA has received significant research interest in improving capillary electrophoresis (CE) performance. We focus on highlighting the advantages of combining DNA and capillary-based microsystems. The general trend presented in this review suggests that the 'meeting' has offered a stepping stone for the application of DNA and capillary-based microsystems in the field of analytical chemistry.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Santos IC, Brodbelt JS. Recent developments in the characterization of nucleic acids by liquid chromatography, capillary electrophoresis, ion mobility, and mass spectrometry (2010-2020). J Sep Sci 2021; 44:340-372. [PMID: 32974962 PMCID: PMC8378248 DOI: 10.1002/jssc.202000833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
The development of new strategies for the analysis of nucleic acids has gained momentum due to the increased interest in using these biomolecules as drugs or drug targets. The application of new mass spectrometry ion activation techniques and the optimization of separation methods including liquid chromatography, capillary electrophoresis, and ion mobility have allowed more detailed characterization of nucleic acids and oligonucleotide therapeutics including confirmation of sequence, localization of modifications and interaction sites, and structural analysis as well as identification of failed sequences and degradation products. This review will cover tandem mass spectrometry methods as well as the recent developments in liquid chromatography, capillary electrophoresis, and ion mobility coupled to mass spectrometry for the analysis of nucleic acids and oligonucleotides.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
9
|
Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2517. [PMID: 33333914 PMCID: PMC7765426 DOI: 10.3390/nano10122517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | - Juan Manuel Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | | |
Collapse
|
10
|
Neva T, Ortiz Mellet C, Fernández JMG, Benito JM. Multiply–linked cyclodextrin–aromatic hybrids: Caps, hinges and clips. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1609020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Tania Neva
- Instituto de Investigaciones Químicas (IIQ), CSIC–University of Seville, Seville, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | | | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC–University of Seville, Seville, Spain
| |
Collapse
|
11
|
Neva T, Carmona T, Benito JM, Przybylski C, Ortiz Mellet C, Mendicuti F, García Fernández JM. Dynamic Control of the Self-Assembling Properties of Cyclodextrins by the Interplay of Aromatic and Host-Guest Interactions. Front Chem 2019; 7:72. [PMID: 30873399 PMCID: PMC6401617 DOI: 10.3389/fchem.2019.00072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
The presence of a doubly-linked naphthylene clip at the O-2I and O-3II positions in the secondary ring of β-cyclodextrin (βCD) derivatives promoted their self-assembly into head-to-head supramolecular dimers in which the aromatic modules act either as cavity extension walls (if the naphthalene moiety is 1,8-disubstituted) or as folding screens that separate the individual βCD units (if 2,3-disubstituted). Dimer architecture is governed by the conformational properties of the monomer constituents, as determined by NMR, fluorescence, circular dichroism, and computational techniques. In a second supramolecular organization level, the topology of the assembly directs host-guest interactions and, reciprocally, guest inclusion impacts the stability of the supramolecular edifice. Thus, inclusion of adamantane carboxylate, a well-known βCD cavity-fitting guest, was found to either preserve the dimeric arrangement, leading to multicomponent species, or elicit dimer disruption. The ensemble of results highlights the potential of the approach to program self-organization and external stimuli responsiveness of CD devices in a controlled manner while keeping full diastereomeric purity.
Collapse
Affiliation(s)
- Tania Neva
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Sevilla, Spain
| | - Thais Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Sevilla, Spain
| | - Cédric Przybylski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Paris, France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
12
|
Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis 2019; 40:625-642. [PMID: 30600537 DOI: 10.1002/elps.201800367] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
Nearly all processes in living organisms are controlled and regulated by the synergy of many biomolecule interactions involving proteins, peptides, nucleic acids, nucleotides, saccharides, and small molecular weight ligands. There is growing interest in understanding them, not only for the purposes of interactomics as an essential part of system biology, but also in their further elucidation in disease pathology, diagnostics, and treatment. The necessity of detailed investigation of these interactions leads to the requirement of laboratory methods characterized by high efficiency and sensitivity. As a result, many instrumental approaches differing in their fundamental principles have been developed, including those based on capillary electrophoresis. Although capillary electrophoresis offers numerous advantages for such studies, it still has one serious limitation, its poor concentration sensitivity with the most commonly used detection method-ultraviolet-visible spectrometry. However, coupling capillary electrophoresis with a more sensitive detector fulfils the above-mentioned requirement. In this review, capillary electrophoresis combined with fluorescence, mass spectrometry, and several nontraditional detection techniques in affinity interaction studies are summarized and discussed, together with the possibility of conducting these measurements in microchip format.
Collapse
Affiliation(s)
- Hana Nevídalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
13
|
Yu F, Zhao Q, Zhang D, Yuan Z, Wang H. Affinity Interactions by Capillary Electrophoresis: Binding, Separation, and Detection. Anal Chem 2019; 91:372-387. [PMID: 30392351 DOI: 10.1021/acs.analchem.8b04741] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fangzhi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
| | - Zheng Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
14
|
Evenou P, Rossignol J, Pembouong G, Gothland A, Colesnic D, Barbeyron R, Rudiuk S, Marcelin AG, Ménand M, Baigl D, Calvez V, Bouteiller L, Sollogoub M. Bridging β-Cyclodextrin Prevents Self-Inclusion, Promotes Supramolecular Polymerization, and Promotes Cooperative Interaction with Nucleic Acids. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pierre Evenou
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Julien Rossignol
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Gaëlle Pembouong
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Adélie Gothland
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Dmitri Colesnic
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Renaud Barbeyron
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Sergii Rudiuk
- PASTEUR; Département de chimie; École normale supérieure; PSL University; Sorbonne Université; CNRS; 75005 Paris France
| | - Anne-Geneviève Marcelin
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Mickaël Ménand
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Damien Baigl
- PASTEUR; Département de chimie; École normale supérieure; PSL University; Sorbonne Université; CNRS; 75005 Paris France
| | - Vincent Calvez
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Laurent Bouteiller
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| |
Collapse
|
15
|
Evenou P, Rossignol J, Pembouong G, Gothland A, Colesnic D, Barbeyron R, Rudiuk S, Marcelin AG, Ménand M, Baigl D, Calvez V, Bouteiller L, Sollogoub M. Bridging β-Cyclodextrin Prevents Self-Inclusion, Promotes Supramolecular Polymerization, and Promotes Cooperative Interaction with Nucleic Acids. Angew Chem Int Ed Engl 2018; 57:7753-7758. [DOI: 10.1002/anie.201802550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Pierre Evenou
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Julien Rossignol
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Gaëlle Pembouong
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Adélie Gothland
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Dmitri Colesnic
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Renaud Barbeyron
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Sergii Rudiuk
- PASTEUR; Département de chimie; École normale supérieure; PSL University; Sorbonne Université; CNRS; 75005 Paris France
| | - Anne-Geneviève Marcelin
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Mickaël Ménand
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Damien Baigl
- PASTEUR; Département de chimie; École normale supérieure; PSL University; Sorbonne Université; CNRS; 75005 Paris France
| | - Vincent Calvez
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Laurent Bouteiller
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| |
Collapse
|
16
|
Gallego-Yerga L, Benito JM, Blanco-Fernández L, Martínez-Negro M, Vélaz I, Aicart E, Junquera E, Ortiz Mellet C, Tros de Ilarduya C, García Fernández JM. Plasmid-Templated Control of DNA-Cyclodextrin Nanoparticle Morphology through Molecular Vector Design for Effective Gene Delivery. Chemistry 2018; 24:3825-3835. [PMID: 29341305 DOI: 10.1002/chem.201705723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Indexed: 12/14/2022]
Abstract
Engineering self-assembled superstructures through complexation of plasmid DNA (pDNA) and single-isomer nanometric size macromolecules (molecular nanoparticles) is a promising strategy for gene delivery. Notably, the functionality and overall architecture of the vector can be precisely molded at the atomic level by chemical tailoring, thereby enabling unprecedented opportunities for structure/self-assembling/pDNA delivery relationship studies. Beyond this notion, by judiciously preorganizing the functional elements in cyclodextrin (CD)-based molecular nanoparticles through covalent dimerization, here we demonstrate that the morphology of the resulting nanocomplexes (CDplexes) can be tuned, from spherical to ellipsoidal, rod-type, or worm-like nanoparticles, which makes it possible to gain understanding of their shape-dependent transfection properties. The experimental findings are in agreement with a shift from chelate to cross-linking interactions on going from primary-face- to secondary-face-linked CD dimers, the pDNA partner acting as an active payload and as a template. Most interestingly, the transfection efficiency in different cells was shown to be differently impacted by modifications of the CDplex morphology, which has led to the identification of an optimal prototype for tissue-selective DNA delivery to the spleen in vivo.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Juan M Benito
- Institute for Chemical Research (IIQ), CSIC, University of Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31080, Pamplona, Spain
| | - María Martínez-Negro
- Department of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Itziar Vélaz
- Department of Chemistry, Faculty of Sciences, University of Navarra, E-31080, Pamplona, Spain
| | - Emilio Aicart
- Department of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Elena Junquera
- Department of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31080, Pamplona, Spain
| | - Jose M García Fernández
- Institute for Chemical Research (IIQ), CSIC, University of Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|