1
|
Stanley CV, Xiao Y, Ling T, Li DS, Chen P. Opto-digital molecular analytics. Chem Soc Rev 2025; 54:3557-3577. [PMID: 40035639 DOI: 10.1039/d5cs00023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In contrast to conventional ensemble-average-based methods, opto-digital molecular analytic approaches digitize detection by physically partitioning individual detection events into discrete compartments or directly locating and analyzing the signals from single molecules. The sensitivity can be enhanced by signal amplification reactions, signal enhancement interactions, labelling by strong signal emitters, advanced optics, image processing, and machine learning, while specificity can be improved by designing target-selective probes and profiling molecular dynamics. With the capabilities to attain a limit of detection several orders lower than the conventional methods, reveal intrinsic molecular information, and achieve multiplexed analysis using a small-volume sample, the emerging opto-digital molecular analytics may be revolutionarily instrumental to clinical diagnosis, molecular chemistry and science, drug discovery, and environment monitoring. In this article, we provide a comprehensive review of the recent advances, offer insights into the underlying mechanisms, give comparative discussions on different strategies, and discuss the current challenges and future possibilities.
Collapse
Affiliation(s)
- Chelsea Violita Stanley
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| | - Yi Xiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| | - Tong Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
- Skin Research Institute of Singapore, 308232, Singapore
| |
Collapse
|
2
|
Labrador-Páez L, Casasnovas-Melián A, Junquera E, Guerrero-Martínez A, Ahijado-Guzmán R. Optical dark-field spectroscopy of single plasmonic nanoparticles for molecular biosciences. NANOSCALE 2024; 16:19192-19206. [PMID: 39351920 DOI: 10.1039/d4nr03055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
An ideal sensor capable of quantifying analytes in minuscule sample volumes represents a significant technological advancement. Plasmonic nanoparticles integrated with optical dark-field spectroscopy have reached this capability, demonstrating versatility and expanding applicability across in vitro and in vivo subjects. This review underscores the applicability of optical dark-field spectroscopy with single plasmonic nanoparticles to elucidate a wide range of biomolecular characteristics, including binding constants, molecular dynamics, distances, and forces, as well as recording cell communication signals. Perspectives highlight the potential for the development of implantable nanosensors for metabolite detection in animal models, illustrating the technique's efficacy without the need for labeling molecules. In summary, this review aims to consolidate knowledge of this adaptable and robust technique for decoding molecular biological phenomena within the nano- and bio-scientific community.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Alfredo Casasnovas-Melián
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Rubén Ahijado-Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Liu MS, Zhong SS, Jiang S, Wang T, Zhang KH. Bibliometric analysis of aptamer-conjugated nanoparticles for diagnosis in the last two decades. NANOTECHNOLOGY 2023; 35:055102. [PMID: 37879319 DOI: 10.1088/1361-6528/ad06d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Objective.Aptamer-conjugated nanoparticles for diagnosis have recently gained increasing attention. Here, we performed a bibliometric analysis to provide an overview of this field over the past two decades.Methods. The terms 'aptamer, nanoparticles and diagnosis' were used to search for relevant original articles published in English from 2003 to 2022 in the Web of Science database. VOSviewer and CiteSpace software were employed to analyze the development process, knowledge structure, research hotspots, and potential trends in the field of aptamer-conjugated nanoparticles for diagnosis.Results. A total of 1076 original articles were retrieved, with a rapid increase in the annual output and citation. The journal 'Biosensors and Bioelectronics' has contributed the most in this field, and the most influential researcher, institution and country were Weihong Tan, the Chinese Academy of Sciences, China, respectively. Gold nanoparticles and quantum dots were the most used, but in the past three years, research hotspots focused on carbon dots and graphene quantum dots. Diagnostic directions primarily focused on cancer. The most used strategy was label-free electrochemical detection, but in the past two years, colorimetric analysis and fluorescence imaging emerged as hot topics.Conclusion.The bibliometric analysis reveals a rapid increase in the research on aptamer-conjugated nanoparticles for diagnosis, major contributors at the levels of journals, authors, institutions, and countries, and research preferences in diagnostic objects, nanoparticle types, and detection methods, as well as the evolution of research hotspots and future trends.
Collapse
Affiliation(s)
- Mao-Sheng Liu
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Si-Si Zhong
- Department of Quality and Safety Management, the First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Song Jiang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ting Wang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
4
|
Song C, Zhang J, Jiang X, Gan H, Zhu Y, Peng Q, Fang X, Guo Y, Wang L. SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network. Biosens Bioelectron 2021; 190:113376. [PMID: 34098358 DOI: 10.1016/j.bios.2021.113376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Highly sensitive and reliable detection of disease-related nucleic acids is still a big challenge in liquid biopsy because of their homologous sequences and low abundance. Herein, a novel surface plasmon resonance/surface-enhanced Raman scattering (SPR/SERS) dual-mode plasmonic biosensor based on catalytic hairpin assembly (CHA)-induced Au nanoparticle (AuNP) network was proposed for highly sensitive and reliable detection of cancer-related miRNA-652. The biosensor includes capture DNA-functionalized AuNPs (Probe 1), H1 and 4-mercaptobenzoic acid (4-MBA) co-modified AuNPs (Probe 2), and 6-carboxyl-Xrhodamine (ROX)-labeled H2 (fuel strands). The Probe 1-Probe 2 networks were formed via the target-triggered CHA reactions, which resulted in the color change of dark-field microscopy (DFM) images and enhanced SERS effect. The SPR sensing was achieved by extracting the integral optical density of dark-field color in DFM images, and the SERS sensing was realized by the ratiometric SERS signals of ROX and internal standards 4-MBA molecules. After characterizing the feasibility and optimality of the sensing strategy, the good performance of biosensors on sensitivity, specificity and uniformity was approved. The practicability of biosensors was confirmed by detecting miRNA-652 in human serum, and both the SPR and SERS assays showed good linear calibration curves and low limit of detections (LODs) of 42.5 fM and 2.91 fM, respectively, with the recovery in the range of 94.67-111.4%. These two modes show complementary advantages, and the combined SPR/SERS dual-mode can provide more options for detection and double check the results to improve the accuracy and reliability of assays, which holds a great application prospect for cancer-related nucleic acids detection in early disease stage.
Collapse
Affiliation(s)
- Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinyu Jiang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qian Peng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yan Guo
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
5
|
Gao PF, Lei G, Huang CZ. Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications. Anal Chem 2021; 93:4707-4726. [DOI: 10.1021/acs.analchem.0c04390] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Gang Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Fortschritte in der optischen Einzelmoleküldetektion: Auf dem Weg zu höchstempfindlichen Bioaffinitätsassays. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zdeněk Farka
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
| | - Matthias J. Mickert
- Institut für Analytische Chemie, Chemo- und BiosensorikUniversität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| | - Matěj Pastucha
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Zuzana Mikušová
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Petr Skládal
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Hans H. Gorris
- Institut für Analytische Chemie, Chemo- und BiosensorikUniversität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| |
Collapse
|
7
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew Chem Int Ed Engl 2020; 59:10746-10773. [PMID: 31869502 PMCID: PMC7318240 DOI: 10.1002/anie.201913924] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The ability to detect low concentrations of analytes and in particular low-abundance biomarkers is of fundamental importance, e.g., for early-stage disease diagnosis. The prospect of reaching the ultimate limit of detection has driven the development of single-molecule bioaffinity assays. While many review articles have highlighted the potentials of single-molecule technologies for analytical and diagnostic applications, these technologies are not as widespread in real-world applications as one should expect. This Review provides a theoretical background on single-molecule-or better digital-assays to critically assess their potential compared to traditional analog assays. Selected examples from the literature include bioaffinity assays for the detection of biomolecules such as proteins, nucleic acids, and viruses. The structure of the Review highlights the versatility of optical single-molecule labeling techniques, including enzymatic amplification, molecular labels, and innovative nanomaterials.
Collapse
Affiliation(s)
- Zdeněk Farka
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
| | - Matthias J. Mickert
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| | - Matěj Pastucha
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Zuzana Mikušová
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Petr Skládal
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Hans H. Gorris
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| |
Collapse
|
8
|
Proximity ligation assay induced hairpin to DNAzyme structure switching for entropy-driven amplified detection of thrombin. Anal Chim Acta 2019; 1064:104-111. [DOI: 10.1016/j.aca.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
|
9
|
Song J, Li S, Gao F, Wang Q, Lin Z. An in situ assembly strategy for the construction of a sensitive and reusable electrochemical aptasensor. Chem Commun (Camb) 2019; 55:905-908. [DOI: 10.1039/c8cc08615j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ assembly of an electroactive AuNPs–Cu2+–l-cysteine tag was applied for the construction of a sensitive and reusable aptasensor.
Collapse
Affiliation(s)
- Juan Song
- College of Chemistry and Environment
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology
- Minnan Normal University
- Zhangzhou
- China
| | - Songling Li
- College of Chemistry and Environment
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology
- Minnan Normal University
- Zhangzhou
- China
| | - Feng Gao
- College of Chemistry and Environment
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology
- Minnan Normal University
- Zhangzhou
- China
| | - Qingxiang Wang
- College of Chemistry and Environment
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology
- Minnan Normal University
- Zhangzhou
- China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Institute of Nanomedicine and Nanobiosensing
- College of Chemistry
- Fuzhou University
| |
Collapse
|
10
|
Fu K, Zheng Y, Li J, Liu Y, Pang B, Song X, Xu K, Wang J, Zhao C. Colorimetric Immunoassay for Rapid Detection of Vibrio parahemolyticus Based on Mn 2+ Mediates the Assembly of Gold Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9516-9521. [PMID: 30133275 DOI: 10.1021/acs.jafc.8b02494] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Vibrio parahemolyticus ( V. parahemolyticus) is an important food-borne pathogen that causes food poisoning and acute gastroenteritis in humans. Herein, a novel colorimetric immunoassay was presented for rapid detection of V. parahemolyticus using gold nanoparticles (18.1 nm diameter) as chromogenic substrate, whose combination of a magnetic bead-based sandwich immunoassay and an optical sensing system via Mn2+ ions mediated aggregation of gold nanoparticles. MnO2 nanoparticles coated with polyclonal IgG antibodies (7.8 nm diameter) are used to recognize the target and can be etched to generate manganese ions by ascorbic acid. A color change ranging from red to purple to blue can be easily discerned by bare eye, corresponding to V. parahemolyticus concentration in the range between 10 and 106 cfu·mL-1. The proposed method possesses high specificity with a limit of detection of 10 cfu·mL-1 and was successfully applied to determination of V. parahemolyticus in oyster samples without pre-enrichment. In our perception, it shows promise in rapid instrumental and on-site visual detection of V. parahemolyticus.
Collapse
Affiliation(s)
- Kaiyue Fu
- School of Public Health , Jilin University , Changchun 130021 , China
| | - Yan Zheng
- School of Public Health , Jilin University , Changchun 130021 , China
- The Department of Cadre Ward , The First Hospital of Jilin University , Changchun 130021 , China
| | - Juan Li
- School of Public Health , Jilin University , Changchun 130021 , China
| | - Yushen Liu
- School of Public Health , Jilin University , Changchun 130021 , China
| | - Bo Pang
- School of Public Health , Jilin University , Changchun 130021 , China
| | - Xiuling Song
- School of Public Health , Jilin University , Changchun 130021 , China
| | - Kun Xu
- School of Public Health , Jilin University , Changchun 130021 , China
| | - Juan Wang
- School of Public Health , Jilin University , Changchun 130021 , China
| | - Chao Zhao
- School of Public Health , Jilin University , Changchun 130021 , China
| |
Collapse
|