1
|
Zhang R, Zeng X, Yu L, Meng L, Miao W, Jin L. B/N modified GDY as a rare base 2D sensor: a first-principles study. Phys Chem Chem Phys 2025; 27:7943-7953. [PMID: 40165638 DOI: 10.1039/d5cp00209e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Detecting DNA rare bases is essential for diagnosing genetic disorders and cancers. However, their low abundance and high structural similarity make selective and sensitive detection challenging. The two-dimensional functionalized carbon material graphdiyne (GDY) holds great promise for enhancing sensor performance due to its excellent electronic properties, biocompatibility, and ease of functionalization. This study employs density functional theory (DFT) to investigate the adsorption behavior of rare bases on GDY and R-GDY (R = B/N) surfaces. Essential factors, including adsorption energy, bandgap, charge transfer, and density of states, are systematically analyzed. Additionally, critical sensor performance metrics, such as deposition time, sensitivity, and selectivity are predicted, providing valuable insights into the potential applications of these materials. The results indicate that while pure GDY can specifically recognize 5-hydroxymethylcytosine, its sensitivity is limited. In contrast, R-GDY stably adsorbs rare bases via π-π interactions, exhibiting good reversibility and moderate charge transfer, which significantly enhance its sensitivity. R-GDY effectively distinguishes between rare bases based on translocation time, making it ideal for the development of efficient and reusable electrochemical biosensors, thus providing a reliable approach for clinical diagnostics.
Collapse
Affiliation(s)
- Ruiying Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Xia Zeng
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Lin Yu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Lingyu Meng
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Wenjin Miao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
2
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
3
|
Wang W, Jiang S, Li YY, Han Y, Liu M, Meng YY, Zhang CY. Construction of a glycosylation-mediated fluorescent biosensor for label-free measurement of site-specific 5-hydroxymethylcytosine in cancer cells with zero background signal. Anal Chim Acta 2024; 1300:342463. [PMID: 38521572 DOI: 10.1016/j.aca.2024.342463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND 5-hydroxymethylcytosine (5hmC) as an epigenetic modification can regulate gene expression, and its abnormal level is related with various tumor invasiveness and poor prognosis. Nevertheless, the current methods for 5hmC assay usually involve expensive instruments/antibodies, radioactive risk, high background, laborious bisulfite treatment procedures, and non-specific/long amplification time. RESULTS We develop a glycosylation-mediated fluorescent biosensor based on helicase-dependent amplification (HDA) for label-free detection of site-specific 5hmC in cancer cells with zero background signal. The glycosylated 5hmC-DNA (5ghmC) catalyzed by β-glucosyltransferase (β-GT) can be cleaved by AbaSI restriction endonuclease to generate two dsDNA fragments with sticky ends. The resultant dsDNA fragments are complementary to the biotinylated probes and ligated by DNA ligases, followed by being captured by magnetic beads. After magnetic separation, the eluted ligation products act as the templates to initiate HDA reaction, generating abundant double-stranded DNA (dsDNA) products within 20 min. The dsDNA products are measured in a label-free manner with SYBR Green I as an indicator. This biosensor can measure 5hmC with a detection limit of 2.75 fM and a wide linear range from 1 × 10-14 to 1 × 10-8 M, and it can discriminate as low as 0.001% 5hmC level in complex mixture. Moreover, this biosensor can measure site-specific 5hmC in cancer cells, and distinguish tumor cells from normal cells. SIGNIFICANCE This biosensor can achieve a zero-background signal without the need of either 5hmC specific antibody or bisulfite treatment, and it holds potential applications in biological research and disease diagnosis.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Yue-Ying Li
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Ying-Ying Meng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Jiang T, Zhou Q, Yu KK, Chen SY, Li K. Identification and quantification of N6-methyladenosine by chemical derivatization coupled with 19F NMR spectroscopy. Org Biomol Chem 2024; 22:2566-2573. [PMID: 38465392 DOI: 10.1039/d4ob00169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
N 6-Methyladenosine (6mA) is a well-known prokaryotic DNA modification that has been shown to play epigenetic roles in eukaryotic DNA. Accurate detection and quantification of 6mA are prerequisites for molecular understanding of the impact of 6mA modification on DNA. However, the existing methods have several problems, such as high false-positive rate, time-consuming and complex operating procedures. Chemical sensors for the selective detection of 6mA modification are rarely reported in the literature. Fluorinated phenylboronic acid combined with 19F NMR analysis is an effective method for determining DNA or RNA modification. In this study, we presented a simple and fast chemical method for labelling the 6th imino group of 6mA using a boric-acid-derived probe. Besides, the trifluoromethyl group of trifluoromethyl phenylboronic acid (2a) could detect 6mA modification through 19F NMR. Combined with this sensor system, 6mA modification could be detected well and quickly in 6 types of deoxynucleoside mixtures and DNA samples. Taken together, the method developed in the current study has potential for specific detection of 6mA in biological samples.
Collapse
Affiliation(s)
- Ting Jiang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Qian Zhou
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Kang-Kang Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
5
|
Wang ZY, Yuan H, Li DL, Hu J, Qiu JG, Zhang CY. Hydroxymethylation-Specific Ligation-Mediated Single Quantum Dot-Based Nanosensors for Sensitive Detection of 5-Hydroxymethylcytosine in Cancer Cells. Anal Chem 2022; 94:9785-9792. [PMID: 35749235 DOI: 10.1021/acs.analchem.2c01495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) modification is a key epigenetic regulator of cellular processes in mammalian cells, and its misregulation may lead to various diseases. Herein, we develop a hydroxymethylation-specific ligation-mediated single quantum dot (QD)-based fluorescence resonance energy transfer (FRET) nanosensor for sensitive quantification of 5hmC modification in cancer cells. We design a Cy5-modified signal probe and a biotinylated capture probe for the recognition of specific 5hmC-containing genes. 5hmC in target DNA can be selectively converted by T4 β-glucosyltransferase to produce a glycosyl-modified 5hmC, which cannot be cleaved by methylation-insensitive restriction enzyme MspI. The glycosylated 5hmC DNA may act as a template to ligate a signal probe and a capture probe, initiating hydroxymethylation-specific ligation to generate large amounts of biotin-/Cy5-modified single-stranded DNAs (ssDNAs). The assembly of biotin-/Cy5-modified ssDNAs onto a single QD through streptavidin-biotin interaction results in FRET and consequently the generation of a Cy5 signal. The nanosensor is very simple without the need for bisulfite treatment, radioactive reagents, and 5hmC-specific antibodies. Owing to excellent specificity and high amplification efficiency of hydroxymethylation-specific ligation and near-zero background of a single QD-based FRET, this nanosensor can quantify 5hmC DNA with a limit of detection of 33.61 aM and a wider linear range of 7 orders of magnitude, and it may discriminate the single-nucleotide difference among 5hmC, 5-methylcytosine, and unmodified cytosine. Moreover, this nanosensor can distinguish as low as a 0.001% 5hmC DNA in complex mixtures, and it can monitor the cellular 5hmC level and discriminate cancer cells from normal cells, holding great potential in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Huimin Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
6
|
A primer-initiated strand displacement amplification strategy for sensitive detection of 5-hydroxymethylcytosine in genomic DNA. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Yu Z, Tong Y, Liang Y, Li Y, Yang H, Liu SY, Xu Y, Dai Z, Zou X. Highly Sensitive Fluorescence Detection of Global 5-Hydroxymethylcytosine from Nanogram Input with Strongly Emitting Copper Nanotags. Anal Chem 2021; 93:14031-14035. [PMID: 34637276 DOI: 10.1021/acs.analchem.1c03266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantitative analysis of 5-hydroxymethylcytosine (5hmC) has remarkable clinical significance to early cancer diagnosis; however, it is limited by the requirement in current assays for large amounts of starting material and expensive instruments requring expertise. Herein, we present a highly sensitive fluorescence method, termed hmC-TACN, for global 5hmC quantification from several nanogram inputs based on terminal deoxynucleotide transferase (TdT)-assisted formation of fluorescent copper (Cu) nanotags. In this method, 5hmC is labeled with click tags by T4 phage β-glucosyltransferase (β-GT) and cross-linked with a random DNA primer via click chemistry. TdT initiates the template-free extension along the primer at the modified 5hmC site and then generates a long polythymine (T) tail, which can template the production of strongly emitting Cu nanoparticles (CuNPs). Consequently, an intensely fluorescent tag containing numerous CuNPs can be labeled onto the 5hmC site, providing the sensitive quantification of 5hmC with a limit of detection (LOD) as low as 0.021% of total nucleotides (S/N = 3). With only a 5 ng input (∼1000 cells) of genomic DNA, global 5hmC levels were accurately determined in mouse tissues, human cell lines (including normal and cancer cells of breast, lung, and liver), and urines of a bladder cancer patient and healthy control. Moreover, as few as 100 cells can also be distinguished between normal and cancer cells. The hmC-TACN method has great promise of being cost effective and easily mastered, with low-input clinical utility, and even for the microzone analysis of tumor models.
Collapse
Affiliation(s)
- Zhenning Yu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanli Tong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuling Liang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yunda Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongling Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Yang Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
9
|
Zahid OK, Rivas F, Wang F, Sethi K, Reiss K, Bearden S, Hall AR. Solid-state nanopore analysis of human genomic DNA shows unaltered global 5-hydroxymethylcytosine content associated with early-stage breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 35:102407. [PMID: 33905828 PMCID: PMC8238847 DOI: 10.1016/j.nano.2021.102407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/31/2021] [Accepted: 04/05/2021] [Indexed: 01/08/2023]
Abstract
5-Hydroxymethylcytosine (5hmC), the first oxidized form of the well-known epigenetic modification 5-methylcytosine, is an independent regulator of gene expression and therefore a potential marker for disease. Here, we report on methods developed for a selective solid-state nanopore assay that enable direct analysis of global 5hmC content in human tissue. We first describe protocols for preparing genomic DNA derived from both healthy breast tissue and stage 1 breast tumor tissue and then use our approach to probe the net abundance of the modified base in each cohort. Then, we employ empirical data to adjust for the impact of nanopore diameter on the quantification. Correcting for variations in nanopore diameter among the devices used for analysis reveals no detectable difference in global 5hmC content between healthy and tumor tissue. These results suggest that 5hmC changes may not be associated with early-stage breast cancer and instead are a downstream consequence of the disease.
Collapse
Affiliation(s)
- Osama K Zahid
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Felipe Rivas
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fanny Wang
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Komal Sethi
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Katherine Reiss
- Department of Engineering, Wake Forest University, Winston-Salem, NC, USA
| | - Samuel Bearden
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adam R Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA; Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
10
|
Liu B, Wang H. Detection of N 6-Methyladenine in Eukaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:83-95. [PMID: 33791976 DOI: 10.1007/978-3-030-51652-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DNA N6-methyladenine (6mA) is a chemical modification at the N6-positon of adenine. In the last decades, 6mA had been found in genome from numerous prokaryotic species, but only existed in a few lower eukaryotes. In prokaryotes, 6mA plays an important role in restriction-modification, DNA replication, and DNA mismatch repair. Because of the too low abundance of 6mA, it was long-stalled whether 6mA existed in multicellular eukaryotes and playing any functions, particularly in mammals. In recent years, partially benefitting from the advances in analytical methods, 6mA was found in the genomes from Drosophila melanogaster, Chlamydomonas algae, Caenorhabditis elegans, zebrafish, Xenopus laevis and mouse embryonic stem cells and even in the human genome. The 6mA was dynamic changed in early embryonic development of fly and zebrafish and much more enriched in gene body of transposons in fly, repetitive regions in zebrafish, around the transcription start sites in Chlamydomonas, and widespread distribution in C. elegans, indicating 6mA probably playing different functions in different species. Meanwhile, 6mA methylases and demethylases were found in fly, worm, and Chlamydomonas. In this chapter, we will briefly review the distribution, regulation, and function of 6mA in eukaryotes and focus on the advances of 6mA analysis methods, especially LC-MS/MS, immunoprecipitation, next-generation sequencing, and single-molecule real-time sequencing technology.
Collapse
Affiliation(s)
- Baodong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Li CC, Chen HY, Dong YH, Luo X, Hu J, Zhang CY. Advances in Detection of Epigenetic Modification—5-Hydroxymethylcytosine. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20120564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Kojima N, Suda T, Fujii S, Hirano K, Namihira M, Kurita R. Quantitative analysis of global 5-methyl- and 5-hydroxymethylcytosine in TET1 expressed HEK293T cells. Biosens Bioelectron 2020; 167:112472. [PMID: 32763827 DOI: 10.1016/j.bios.2020.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
Abstract
DNA methylation at the 5-position of cytosine bases (5-methylcytosine, 5mC) in genomic DNA is representative epigenetic modification and is involved in many cellular processes, including gene expression and embryonic development. The hydroxylation of 5mC provide 5-hydroxymethylcytosine (5hmC), the so-called sixth base rediscovered recently in mammalian cells, is also considered to act as an epigenetic regulator. We report herein the immunochemical assessment of 5hmC achieved by an enzyme-linked immunosorbent assay (ELISA) using our linker technology. The keys to this assay are 1) the immobilization of genomic DNA with the bifunctional linker molecule, and 2) quantitative analysis by using guaranteed standard samples containing defined amounts of 5hmC. We succeeded in the sensitive and quantitative detection of 5hmC as well as 5mC in HEK293T cells transfected with TET1, and also monitored the effect of ascorbate on the TET1 catalyzed conversion of 5mC to 5hmC. Our linker technology enables the rapid and stable immobilization of genomic samples and thus contributes to the realization of a reproducible 5hmC evaluation method.
Collapse
Affiliation(s)
- Naoshi Kojima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB) and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomomi Suda
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinichiro Fujii
- National Metrology Institute of Japan (NMIJ), AIST, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Kazumi Hirano
- Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Ryoji Kurita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB) and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
13
|
Xu T, Gao H. Hydroxymethylation and tumors: can 5-hydroxymethylation be used as a marker for tumor diagnosis and treatment? Hum Genomics 2020; 14:15. [PMID: 32375881 PMCID: PMC7201531 DOI: 10.1186/s40246-020-00265-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
5-Methylcytosine (5mC) is considered as a common epigenetic modification that plays an important role in the regulation of gene expression. At the same time, 5-hydroxymethylcytosine (5hmC) has been found as an emerging modification of cytosine bases of recent years. Unlike 5mC, global 5hmC levels vary from tissues that have differential distribution both in mammalian tissues and in the genome. DNA hydroxymethylation is the process that 5mC oxidates into 5hmC with the catalysis of TET (ten-eleven translocation) enzymes. It is an essential option of DNA demethylation, which modulates gene expression by adjusting the DNA methylation level. Various factors can regulate the demethylation of DNA, such as environmental toxins and mental stress. In this review, we summarize the progress in the formation of 5hmC, and obtaining 5hmC in a cell-free DNA sample presents multiple advantages and challenges for the subject. Furthermore, the clinical potential for 5hmC modification in dealing with cancer early diagnosis, prognostic evaluation, and prediction of therapeutic effect is also mentioned.
Collapse
Affiliation(s)
- Tianmin Xu
- The Second HospitaI of Jilin University, Changchun, Jilin, China.
| | - Haoyue Gao
- The Second HospitaI of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Liu XL, Liu HQ, Li J, Mao CY, He JT, Zhao X. Role of epigenetic in leukemia: From mechanism to therapy. Chem Biol Interact 2020; 317:108963. [PMID: 31978391 DOI: 10.1016/j.cbi.2020.108963] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions. Aberrant expression of these enzymes can trigger big chaos in the cellular gene expression networks and finally lead to cancer progression. This situation has been shown in different types of leukemia, where high or low levels of an epigenetic enzyme are partly or highly responsible for the involvement or progression of a disease. DNA hypermethylation, different histone modifications, and aberrant miRNA expressions are three main epigenetic variations, which have been shown to play a role in leukemia progression. Epigenetic based treatments now are considered as novel and effective therapies in order to decrease the abnormal epigenetic modifications in patient cells. Different epigenetic-based approaches have been developed and tested to inhibit or reverse the unusual expression of epigenetic agents in leukemia. Acute myeloid leukemia (AML), the most prevalent acute leukemia in adults, is anaggressive hematological malignancy arising in hematopoietic stem and progenitor cells. With the exception of a few specific AML subtypes, the mainstays of treatment have not significantly changed over the last 20 years, and are still based on standard cytotoxic chemotherapy. In this review, we will discuss the recent development of therapeutics specifically targeting these key epigenetic programs in AML, describe their mechanism of action and present their current clinical development. Finally, we will discuss the opportunities presented by epigenetically targeted therapy in AML and will highlight future challenges ahead for the AML community, to ensure that this novel therapeutics are optimally translated into clinical practice and result in clinical improvement for AML patients.
Collapse
Affiliation(s)
- Xiao-Liang Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China
| | - Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China.
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
15
|
Mahmood AM, Dunwell JM. Evidence for novel epigenetic marks within plants. AIMS GENETICS 2019; 6:70-87. [PMID: 31922011 PMCID: PMC6949463 DOI: 10.3934/genet.2019.4.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/07/2019] [Indexed: 12/21/2022]
Abstract
Variation in patterns of gene expression can result from modifications in the genome that occur without a change in the sequence of the DNA; such modifications include methylation of cytosine to generate 5-methylcytosine (5mC) resulting in the generation of heritable epimutation and novel epialleles. This type of non-sequence variation is called epigenetics. The enzymes responsible for generation of such DNA modifications in mammals are named DNA methyltransferases (DNMT) including DNMT1, DNMT2 and DNMT3. The later stages of oxidations to these modifications are catalyzed by Ten Eleven Translocation (TET) proteins, which contain catalytic domains belonging to the 2-oxoglutarate dependent dioxygenase family. In various mammalian cells/tissues including embryonic stem cells, cancer cells and brain tissues, it has been confirmed that these proteins are able to induce the stepwise oxidization of 5-methyl cytosine to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and finally 5-carboxylcytosine (5caC). Each stage from initial methylation until the end of the DNA demethylation process is considered as a specific epigenetic mark that may regulate gene expression. This review discusses controversial evidence for the presence of such oxidative products, particularly 5hmC, in various plant species. Whereas some reports suggest no evidence for enzymatic DNA demethylation, other reports suggest that the presence of oxidative products is followed by the active demethylation and indicate the contribution of possible TET-like proteins in the regulation of gene expression in plants. The review also summarizes the results obtained by expressing the human TET conserved catalytic domain in transgenic plants.
Collapse
Affiliation(s)
- Asaad M Mahmood
- Department of Biology, College of Education, University of Garmian, Kalar, KRG/Iraq
| | - Jim M Dunwell
- School of School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
16
|
Yuan F, Yu Y, Zhou YL, Zhang XX. 5hmC-MIQuant: Ultrasensitive Quantitative Detection of 5-Hydroxymethylcytosine in Low-Input Cell-Free DNA Samples. Anal Chem 2019; 92:1605-1610. [DOI: 10.1021/acs.analchem.9b04920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang Yuan
- Beijing National Laboratory
for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yue Yu
- Beijing National Laboratory
for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory
for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Xiang Zhang
- Beijing National Laboratory
for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Jain N, Shahal T, Gabrieli T, Gilat N, Torchinsky D, Michaeli Y, Vogel V, Ebenstein Y. Global modulation in DNA epigenetics during pro-inflammatory macrophage activation. Epigenetics 2019; 14:1183-1193. [PMID: 31262215 DOI: 10.1080/15592294.2019.1638700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA methylation patterns create distinct gene-expression profiles. These patterns are maintained after cell division, thus enabling the differentiation and maintenance of multiple cell types from the same genome sequence. The advantage of this mechanism for transcriptional control is that chemical-encoding allows to rapidly establish new epigenetic patterns 'on-demand' through enzymatic methylation and demethylation of DNA. Here we show that this feature is associated with the fast response of macrophages during their pro-inflammatory activation. By using a combination of mass spectroscopy and single-molecule imaging to quantify global epigenetic changes in the genomes of primary macrophages, we followed three distinct DNA marks (methylated, hydroxymethylated and unmethylated), involved in establishing new DNA methylation patterns during pro-inflammatory activation. The observed epigenetic modulation together with gene-expression data generated for the involved enzymatic machinery may suggest that de-methylation upon LPS-activation starts with oxidation of methylated CpGs, followed by excision-repair of these oxidized bases and their replacement with unmodified cytosine.
Collapse
Affiliation(s)
- Nikhil Jain
- Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology, Institute of Translational Medicine, ETH Zurich , Zurich , Switzerland
| | - Tamar Shahal
- Sagol Center for the Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center , Tel Aviv , Israel.,Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Tslil Gabrieli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Noa Gilat
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Dmitry Torchinsky
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Yael Michaeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Viola Vogel
- Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology, Institute of Translational Medicine, ETH Zurich , Zurich , Switzerland
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
18
|
Lai W, Mo J, Yin J, Lyu C, Wang H. Profiling of epigenetic DNA modifications by advanced liquid chromatography-mass spectrometry technologies. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|