1
|
Hu Y, Chen X, Wang K, Jiang C, Liu W, Zhang S, Zheng M, Zhou Y, Xiao Y, Liu Y. Fluorescent responsive membrane based on terbium coordination polymer and carbon dots with AIE effect for rapid and visual detection of fluoroquinolone. Biosens Bioelectron 2024; 254:116205. [PMID: 38484411 DOI: 10.1016/j.bios.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the β-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 μM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.
Collapse
Affiliation(s)
- Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chuang Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Shtepliuk I. A DFT Study of Phosphate Ion Adsorption on Graphene Nanodots: Implications for Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:5631. [PMID: 37420797 DOI: 10.3390/s23125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The optical properties of graphene nanodots (GND) and their interaction with phosphate ions have been investigated to explore their potential for optical sensing applications. The absorption spectra of pristine GND and modified GND systems were analyzed using time-dependent density functional theory (TD-DFT) calculation investigations. The results revealed that the size of adsorbed phosphate ions on GND surfaces correlated with the energy gap of the GND systems, leading to significant modifications in their absorption spectra. The introduction of vacancies and metal dopants in GND systems resulted in variations in the absorption bands and shifts in their wavelengths. Moreover, the absorption spectra of GND systems were further altered upon the adsorption of phosphate ions. These findings provide valuable insights into the optical behavior of GND and highlight their potential for the development of sensitive and selective optical sensors for phosphate detection.
Collapse
Affiliation(s)
- Ivan Shtepliuk
- Semiconductor Materials Division, Department of Physics, Chemistry and Biology-IFM, Linköping University, S-58183 Linköping, Sweden
| |
Collapse
|
3
|
SERS Determination of Trace Phosphate in Aquaculture Water Based on a Rhodamine 6G Molecular Probe Association Reaction. BIOSENSORS 2022; 12:bios12050319. [PMID: 35624620 PMCID: PMC9139008 DOI: 10.3390/bios12050319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/17/2022]
Abstract
Although phosphate (Pi) is a necessary nutrient for the growth of aquatic organisms, the presence of excess Pi leads to water eutrophication; thus, it is necessary to accurately determine the content of Pi in water. A method for the determination of trace Pi in aquaculture water was developed based on surface-enhanced Raman spectroscopy (SERS) combined with rhodamine 6G (R6G)-modified silver nanoparticles (AgNPs) as the active substrate. The adsorption of R6G on the AgNP surfaces led to a strong SERS signal. However, in the presence of Pi and ammonium molybdate, phosphomolybdic acid formed, which further associated with R6G to form a stable R6G-PMo12O403− association complex, thereby hindering the adsorption of R6G on the AgNPs, and reducing the SERS intensity; this sequence formed the basis of Pi detection. The decrease in the SERS intensity was linear with respect to the Pi concentration (0.2–20 μM), and the limit of detection was 29.3 nM. Upon the application of this method to the determination of Pi in aquaculture water, a recovery of 94.4–107.2% was obtained (RSD 1.77–6.18%). This study provides an accurate, rapid, and sensitive method for the trace determination of Pi in aquaculture water, which is suitable for on-site detection.
Collapse
|
4
|
Chen Q, Yuan C, He Z, Wang J, Zhai C, Bin D, Zhu M. A label-free photoelectrochemical sensor of S, N co-doped graphene quantum dot (S, N-GQD)-modified electrode for ultrasensitive detection of bisphenol A. Mikrochim Acta 2022; 189:208. [PMID: 35501498 DOI: 10.1007/s00604-022-05289-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/19/2022] [Indexed: 01/01/2023]
Abstract
S, N co-doped graphene quantum dot (S, N-GQD) materials have been composited via a one-pot pattern and used as photosensitive materials to construct a label-free photoelectrochemical (PEC) sensor. The PEC experiments show an enhanced photocurrent response toward Bisphenol A (BPA) sensing due to the increased charge transfer rate and the enhanced absorption of visible light. Compared with dark conditions, the photocurrent signal (- 0.2 V vs. SCE) is greatly increased because of the effective oxidation of BPA by photogenerated holes and the rapid electron transfer of S, N-GQDs on the PEC sensing platform. Under optimal conditions linear current response to BPA is in two ranges of 0.12-5 µM and 5-40 µM. The limit of detection is 0.04 µM (S/N = 3). The designed sensor has enduring stability and admirable interference immunity. It provides an alternative approach for BPA determination in real samples with recoveries of 99.3-103% and RSD of 2.0-4.1%.
Collapse
Affiliation(s)
- Qiaowei Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Chen Yuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zhilong He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Duan Bin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 510632, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Choudhary V, Philip L. Stable paper-based colorimetric sensor for selective detection of phosphate ion in aqueous phase. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Wei L, Chen H, Liu R, Wang S, Liu T, Hu Z, Lan W, Yu Y, She Y, Fu H. Fluorescent sensor based on quantum dots and nano-porphyrin for highly sensitive and specific determination of ethyl carbamate in fermented food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6193-6201. [PMID: 33904599 DOI: 10.1002/jsfa.11270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ethyl carbamate (EC) is a potentially toxic carcinogen produced during fermentation and storage of fermented foods, and many countries have set thresholds for its content in food. Therefore, sensitive, rapid and accurate detection of EC is meaningful to ensure the quality of fermented food. RESULTS This study introduces a CdTe quantum dots/nano-5,10,15,20-tetrakis (4-methoxyphenyl)-porphyrin (nano TPP-OCH3 ) fluorescence sensor system detection of EC. The specificity of this sensing mainly relies on a photo-induced electron transfer and electrostatic force interaction between EC and nano TPP-OCH3 . This sensor presented a linear range of 10 to 1000 μg L-1 (R2 = 0.9903) with a low detection limit of 7.14 μg L-1 . Meanwhile, the recovery (91.19-101.09%) and precision [relative standard deviation (RSD) = 0.64-3.05%] of the sensor for the analysis of fermented food (yellow rice wine, soy sauce, Chinese spirits, Pu-erh tea) samples were good and could meet the requirements of practical detection. Moreover, the detection results of fermented food (yellow rice wine, soy sauce, Chinese spirits, Pu-erh tea) samples by this sensor are basically consistent with those of high-performance liquid chromatography with fluorescence detector (HPLC-FLD). CONCLUSION This method was expected to provide a potential platform for sensitive and accurate detection of EC in food safety monitoring, which would provide knowledge of the flavor and quality related to fermented food. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liuna Wei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Rui Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Shuo Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Tingkai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Zikang Hu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Yongjie Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
- Key Laboratory of Hui Ethnic Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, P. R. China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| |
Collapse
|
7
|
Cheng H, Hui P, Peng J, Li W, Ma W, Wang H, Huang J, He X, Wang K. Enzymatic Behavior Regulation-Based Colorimetric and Electrochemiluminescence Sensing of Phosphate Using the Cobalt Oxyhydroxide Nanosheet. Anal Chem 2021; 93:6770-6778. [PMID: 33885275 DOI: 10.1021/acs.analchem.1c00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, a convenient and flexible assay for colorimetric and electrochemiluminescence (ECL) sensing of phosphate was proposed based on the enzymatic behavior regulation of the cobalt oxyhydroxide (CoOOH) nanosheet. CoOOH as a novel nanoenzyme exhibited a peroxidase-like activity, which could catalyze different substrates such as 2, 2'-azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS) and 4-chloro-1-naphthol (4-CN) with hydrogen peroxide (H2O2) as the electron acceptor. Phosphate could specifically regulate the enzymatic behavior of the CoOOH nanosheet via the deactivating effect. A high level of phosphate enabled a weak color change of ABTS, which offered a "turn-off" model of the colorimetric assay with a limit of detection of 0.673 μM. Based on the similar enzymatic behavior, this strategy could then be applied in the ECL assay utilizing l-arginine-6-aza-2-thiothymine-protected gold nanoclusters (Arg-ATT-AuNCs) as ECL signal indicators. Specifically, 4-CN was catalyzed to generate the precipitate and lead to the quenching on ECL emission. Different from colorimetric behavior, phosphate with a high concentration could induce strong ECL performance, which enabled the "turn-on" model of the ECL assay with a more sensitive determination down to 0.434 nM. This flexible enzymatic behavior regulation could then allow the phosphate measurement in environmental samples including tap water and river water with satisfactory accuracy, which holds the potential in the field of environmental protection.
Collapse
Affiliation(s)
- Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Pansen Hui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jiaxin Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Wang Y, Hu Y, Weng W, Chang S, Xu H, Li D, Li D. Nitrogen-doped graphene quantum dots based fluorescent probe for highly sensitive detection of thiosulfate anion and oxidative compounds. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Yazdanparast S, Benvidi A, Abbasi S, Sabbagh SK. Monitoring the mechanism of anti-cancer agents to inhibit colorectal cancer cell proliferation: Enzymatic biosensing of glucose combined with molecular docking. Enzyme Microb Technol 2021; 148:109804. [PMID: 34116755 DOI: 10.1016/j.enzmictec.2021.109804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 10/24/2022]
Abstract
Glucose, a major energy source in cellular metabolism, has a significant role in cell growth. The increase in glucose uptake is a distinguishing hallmark in cancer cells. A key step in glucose utilization is the transport of glucose to the cancer cells for supplying their additional energy. The glucose transporter (or GLUT) family is a membrane protein which facilitates the uptake of glucose in most cancer cell types. Given the increased glucose level in cancer cells and the regulatory role of GLUTs in glucose uptake, it is required to combine both experimental and theoretical studies to develop new methods to monitor cell proliferation. Herein, for the first time, a new strategy was proposed to evaluate the cell proliferation of HT-29 based on glucose consumption in the presence of resveratrol (RSV) as an anticancer agent. A hybrid nanocomposite of carbon nanofibers and nitrogen-doped graphene quantum dots was used to design an enzymatic sensor for the selective and sensitive determination of glucose in cancer cells. The results obtained from the voltammetric technique were compared with the conventional colorimetric assay. A good correlation was observed between the proliferation rate and glucose utilization by cancer cells. As it was observed, RSV induces a decrease in glucose consumption, indicating lower glucose uptake efficiency for HT-29 cells. Molecular docking studies reveal that RSV can block the interaction of glucose with the GLUT family. This is one of the possible mechanisms for the decrease of glucose level followed by the reduction of cell proliferation in the presence of RSV. Compared with traditional methods, in vitro electrochemical techniques benefit from simple, nontoxic, sensitive and low-cost detection assays and hence serve as a novel tool to pursue the growth inhibition of cancer cell in response to anti-cancer agents.
Collapse
Affiliation(s)
- Samira Yazdanparast
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | - Ali Benvidi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| | - Saleheh Abbasi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | | |
Collapse
|
10
|
Preparation of nitrogen-doped carbon quantum dots (NCQDs) and application for non-enzymatic detection of glucose. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Xie X, Lian Y, Xiao L, Wei L. Facile and label-free fluorescence sensing of β-galactosidase activity by graphene quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118594. [PMID: 32563033 DOI: 10.1016/j.saa.2020.118594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
β-Galactosidase (β-Gal), as a glycoside hydrolase, is closely associated with cell senescence and primary ovarian cancer. However, there is still lack of facile and rapid sensing approach to monitor the β-Gal activity. In this work, a label-free and convenient sensing strategy to detect β-Gal activity has been proposed based on fluorescent graphene quantum dots (GQDs). In the presence of β-Gal, 4-nitrophenyl-β-D-galactopyranoside (NPGal) can be hydrolyzed into 4-nitrophenol (4-NP), which serves as a good quencher to quench the fluorescence of GQDs. The quenching mechanism is proven to be inner filter effect (IFE). Due to the specificity of the enzymatic reaction, this sensing method displays excellent selectivity and high sensitivity. A broad dynamic range from 20 to 200 U L-1 and a detection limit of 4.4 U L-1 for the β-Gal assay are achieved. Compared with the previously reported methods, this sensing strategy only needs one fluorescent nanomaterial without any modification and avoids time-consuming handling steps. Therefore, the sensing strategy based on fluorescent GQDs offers great potential for the recognition of disease-correlated enzyme activity.
Collapse
Affiliation(s)
- Xiangjun Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yawen Lian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|