1
|
Liu Z, Hu Z, Hu W, Ji T, Chen Z. Etched stainless steel wire modified with conjugated microporous polymers-F6 for jacket-free stir bar sorptive extraction of benzoylureas in juice sample. Analyst 2024; 149:3673-3680. [PMID: 38819227 DOI: 10.1039/d4an00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Benzoylurea (BU) insecticides have been widely used for pest control as third-generation insecticides. Considering that their residues in food may cause adverse effects on human health, the upper limits of BUs remaining in food have been set by the administration. Therefore, it is essential to develop a sensitive and efficient analytical method to determine the residues of BUs in food. Stir bar sorptive extraction (SBSE) is a novel sample preparation technique, and stainless steel wire (SSW) is an ideal substrate for an SBSE device. In this work, a novel SBSE device of SSW jacket-free stir bar with a dumbbell shape was designed and prepared. The conjugated microporous polymer CMP-F6, which possesses a porous structure, high hydrophobicity and rich fluorine-containing functional groups, was immobilized on the surface of SSW by the method of polyacrylonitrile glue adhesion. Compared with previous studies, which used SSW as a substrate, the method of etching partial SSW with hydrochloric acid, on the one hand, made the surface of SSW rough and easy to modify the extraction coating, and on the other hand, converted itself into a dumbbell-shaped structure, which is conducive to improving the extraction efficiency and stability of the SBSE device. The method of SBSE-HPLC-UV was established for determining five BUs. Owing to the hydrophobic interaction and F-F interaction between CMP-F6 and analytes, this method showed good extraction efficiency and had good linearity (R2 ≥ 0.9945) and high sensitivity (LODs in the range of 0.1-0.2 ng mL-1). It was used for the analysis of benzoylurea in an apple juice sample, and the recoveries were 74.3-117.9%.
Collapse
Affiliation(s)
- Zichun Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Zhuang Hu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Wei Hu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Tao Ji
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Zilin Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| |
Collapse
|
2
|
Chen S, Yu Z, Zhang W, Chen H, Ding Q, Xu J, Yu Q, Zhang L. Carboxylated mesoporous carbon hollow spheres for the efficient solid-phase microextraction of aromatic amines. Analyst 2023; 148:2527-2535. [PMID: 37140019 DOI: 10.1039/d3an00376k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An efficient and stable fiber coating is of great importance for solid-phase microextraction (SPME). In this study, carboxylated mesoporous carbon hollow spheres (MCHS-COOH) were developed as an efficient SPME coating of polar aromatic amines (AAs) for the first time. The MCHS-COOH coating material with high specific surface area (1182.32 m2 g-1), large pore size (10.14 nm), and rich oxygen-containing groups was fabricated via a facile H2O2 post-treatment. The as-prepared MCHS-COOH-coated fiber exhibited fast adsorption rate and excellent extraction properties, mainly due to its π-π interactions, hollow structure, and abundant affinity sites (carboxyl groups). Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method with low limits of detection (0.08-2.0 ng L-1), a wide linear range (0.3-500.0 ng L-1), and good repeatability (2.0-8.8%, n = 6) was developed for the analysis of AAs. The developed method was validated against three river water samples, with satisfactory relative recoveries being obtained. The above results demonstrated that the prepared MCHS-COOH-coated fiber exhibited good adsorption capacity, suggesting a promising application to monitor trace polar compounds in real environment.
Collapse
Affiliation(s)
- Shixiang Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zejun Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Wenmin Zhang
- Department of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
3
|
Rostami M, Farajollahi AH, Amirkhani R, Farshchi ME. A review study on methanol steam reforming catalysts: Evaluation of the catalytic performance, characterizations, and operational parameters. AIP ADVANCES 2023; 13:030701. [DOI: 10.1063/5.0137706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/26/2023] [Indexed: 08/28/2023]
Abstract
Conventional fossil-based energy sources have numerous environmental demerits; sustainable and renewable sources are attracting the undivided attention of researchers owing to their valuable physical and chemical features. Several industrial-scale technologies are employing hydrogen as a green energy source as the most preferential source. Not only is hydrogen a potent energy carrier but also it is not detrimental to the environment. Among many other hydrogen production processes, steam reforming of methanol (SRM) is deemed a practical method due to its low energy consumption. Cu, Ni, noble metals, etc., are the salient catalysts in SRM. Many researchers have conducted thorough studies incorporating improvement of the catalysts’ activity, mechanism predictions, and the impacts of operational parameters and reformers. This review concentrates on the SRM catalysts, supports, promoters, and the effect of the operational parameters on the process efficiency and H2 production yield. In this regard, the methanol conversion, H2 and CO selectivity, and operating parameters are notably contingent on the surface characterization and chemistry of the catalysts. Herein, Cu-, Ni-, and noble metal-based catalysts on various metal oxide supports, such as Al2O3 and ZnO, are assessed meticulously in the SRM process from the standpoint of mechanism and catalyst characterization. Most of the peer-reviewed studies had encountered agglomeration, metal particle sintering at high temperatures, coke formation, and deactivation of catalysts as the prevalent barriers. Hence, the novel methods of conquering the above-mentioned obstacles are evaluated in this review. Employment of diverse synthetic methods, bimetallic catalysts, distinct catalyst promoters, and unconventional supports, such as metal–organic frameworks, carbon nanotubes, and zeolites, are the salient routes to overcome the metal dispersion and thermal stability issues. In addition, the influence of operational parameters (temperature of the process, steam/carbon ratio, and feed flow rate) has been weighed painstakingly, along with introducing the research gap and future perspectives in the territory of SRM catalysts.
Collapse
Affiliation(s)
- Mohsen Rostami
- Department of Engineering, Imam Ali University, Tehran, Iran
| | | | | | - Mahdi Ebrahimi Farshchi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Convenient synthesis of a hyper-cross-linked polymer via knitting strategy for high-performance solid phase microextraction of polycyclic aromatic hydrocarbons. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
6
|
Metal organic framework derived Zn/N co-doped hydrophilic porous carbon for efficient solid phase microextraction of polar phenols. Mikrochim Acta 2021; 188:400. [PMID: 34718874 DOI: 10.1007/s00604-021-05060-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
MOF-derived zink and nitrogen co-doped porous carbon (ZNPC) was synthesized through the pyrolysis of MOF-5-NH2 and used as a solid-phase microextraction (SPME) coating material. Coupled with gas chromatography-mass spectrometry (GC-MS), headspace SPME (HS-SPME) based on ZNPC was adopted for the determination of phenols in food samples. The co-existence of N and Zn in ZNPC endows the derived carbon superior hydrophilicity, which is highly beneficial for phenols capture. After optimizing the conditions of extraction and desorption, a sensitive analytical method was established with low limits of detections (LODs, 0.73-2.3 ng g-1) and wide linear ranges (5-5000 ng g-1). Both the intra-fiber repeatability (RSDs from 2.8-7.3%) and inter-fiber reproducibility (RSDs from 9.7-11.7%) were satisfactory. The established method was applied to phenol determination in beef jerky and duck neck with satisfactory recoveries of 81.2-120.4% and RSDs of 2.8-9.9%, which met well with the requirement of practical application.
Collapse
|
7
|
Preparation of porous carbon nanomaterials and their application in sample preparation: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Zhang J, Zhang N, Tack FMG, Sato S, Alessi DS, Oleszczuk P, Wang H, Wang X, Wang S. Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126266. [PMID: 34130163 DOI: 10.1016/j.jhazmat.2021.126266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Contamination of water bodies by potentially toxic elements and organic pollutants has aroused extensive concerns worldwide. Thus it is significant to develop effective adsorbents for removing these contaminants. As a new member of carbonaceous material families (activated carbon, biochar, and graphene), ordered mesoporous carbon (OMC) with larger specific surface area, ordered pore structure, and higher pore volume are being evaluated for their use in contaminant removal. In this paper, modification techniques of OMC were systematically reviewed for the first time. These include nonmetallic doping modification (nitrogen, sulfur, and boron) and the impregnation of nano-metals and metal oxides (iron, copper, cobalt, nickel, magnesium, and rare earth element). Reaction conditions (solution pH, reaction temperature, sorbent dosage, and contact time) are of critical importance for the removal performance of contaminants onto OMC. In addition, the pristine and modified OMC have been investigated for the removal of a range of contaminants, including cationic/anionic toxic elements and organic contaminants (synthetic dye, phenol, and others), and involving different and specific mechanisms of interaction with contaminants. The future research directions of the application of pristine and modified OMC were proposed. Overall, this review can provide sights into the modification techniques of OMC for removal of environmental contaminants.
Collapse
Affiliation(s)
- Jian Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ni Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Shinjiro Sato
- Department of Science & Engineering for Sustainable Innovation, Soka University, Hachiojishi, Tokyo 192-8577, Japan
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| |
Collapse
|
9
|
Li Q, Zhang W, Guo Y, Chen H, Ding Q, Zhang L. Oxygenated carbon nanotubes cages coated solid-phase microextraction fiber for selective extraction of migrated aromatic amines from food contact materials. J Chromatogr A 2021; 1646:462031. [PMID: 33857834 DOI: 10.1016/j.chroma.2021.462031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
In this study, an oxygenated carbon nanotubes cages (OCNTCs) material was prepared by calcinating zeolitic imidazole framework-67 (ZIF-67) and then oxidizing the resulting material. The OCNTCs was used as a high efficient solid-phase microextraction (SPME) coating to extract aromatic amines (AAs). The obtained fiber exhibited high selectivity for AAs over other organic compounds in food contact materials (FCMs) due to matched pore size and abundant oxygen-containing groups. Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method with low limits of detection (0.1-2.0 ng L-1), wide linear ranges (0.5-500 ng L -1) and good precision (RSDs ≤ 8.6%) was developed for analysis of AAs. The specific migrated AAs from food simulants that prepared by standardized migration and thermal migration test were successfully analysed by this developed method with satisfactory recoveries (81.6% - 118.1%) and precision (RSDs, 2.1-9.5%). The results demonstrated that the prepared OCNTCs-coated fibers displayed excellent extraction performance, suggesting a promising application to investigate the migration behaviors of AAs.
Collapse
Affiliation(s)
- Qingqing Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Division of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Yuheng Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
10
|
Musarurwa H, Tawanda Tavengwa N. Extraction and electrochemical sensing of pesticides in food and environmental samples by use of polydopamine-based materials. CHEMOSPHERE 2021; 266:129222. [PMID: 33360614 DOI: 10.1016/j.chemosphere.2020.129222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polydopamine has high adsorption capacities for pollutants such as pesticides in food and environmental matrices. Consequently, it has found applications in some sorbent-based micro-extraction techniques such as solid phase micro-extraction and magnetic solid phase extraction. This paper gives a detailed review of the application of polydopamine-based adsorbents for the extraction of pesticides in food and environmental matrices using these techniques. The adhesive properties of polydopamine have made it to be a suitable material for the immobilisation of the components of electrochemical sensors used to detect pesticides in food and environmental matrices. This paper also gives a comprehensive review on the application of polydopamine in electrochemical sensors such as acetylcholinesterase sensors, molecularly imprinted sensors and aptasensors. The use of polydopamine-based adsorbents during the extraction and electrochemical sensing of pesticides in food and environmental matrices is not free of challenges. In this review, the challenges encountered during the use of polydopamine-based adsorbents are also discussed.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
11
|
Liu S, Fang S, Huang Y, Xiang Z, Ouyang G. A heterogeneous pore decoration strategy on a hydrophobic microporous polymer for high-coverage capture of metabolites. Chem Commun (Camb) 2020; 56:7167-7170. [DOI: 10.1039/d0cc02544e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A heterogeneous pore decoration strategy on a hydrophobic microporous polymer resulted in its hydrophobic–hydrophilic hybrid properties and high-coverage capture ability of microbial metabolites.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
| | - Shuting Fang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
| | - Yiquan Huang
- KLGHEI of Environment and Energy Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|