1
|
Jiao J, Lu L, Yin M, Wang T, Wang Z, Zhu Y, Zhao J, Wang X, Hu B, Dai F, Xue L, Qiao J, Liu Y, Chen Q. A multifunctional biosensor for linked monitoring of inflammation indicators in hypertension drug evaluation and companion diagnostics. Talanta 2025; 291:127882. [PMID: 40056652 DOI: 10.1016/j.talanta.2025.127882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Hypertension, often called the "silent killer", is a prevalent chronic disease closely linked to inflammation. However, most current methods monitor only single indicator, providing a limited view of inflammation in hypertension progression. To address this, we developed a multifunctional biosensor featuring a dual target linked monitoring (DTLM) Probe for the simultaneous detection of IL-6 and CRP, two key inflammatory markers in hypertension progression. The DTLM Probe, based on NH2-UiO-66@AuNPs with mutually non-interfering signal chains, was optimized for high performance in tracking both indicators simultaneously. The dual outputs operate independently, enabling IL-6 and CRP to be detected together or individually within a single sample injection. Under optimized conditions, the biosensor demonstrated excellent specificity and sensitivity, with detection limits of 355 fg/mL for IL-6 and 367 fg/mL for CRP. Applied to a rat model, the biosensor effectively explored the anti-inflammatory effects of Qishenyiqi, a traditional Chinese medicine, assessing its efficacy in reducing hypertensive heart damage. Additionally, it distinguished IL-6 and CRP levels between healthy and hypertensive individuals, capturing subtle changes after treatments. This ensured targeted anti-inflammatory therapies for patients who would benefit most. This biosensor provides a powerful and versatile platform for dual markers tracking, supporting both drug evaluation and companion diagnostics for tailor treatments in hypertension management.
Collapse
Affiliation(s)
- Jun Jiao
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China.
| | - Lina Lu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Mengai Yin
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Tong Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Zhijie Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Yu Zhu
- The Third Central Hospital of Tianjin, The Central Hospital of Tianjin University, Tianjin, 300170, PR China
| | - Jie Zhao
- Tianjin Hospital, Tianjin University, Tianjin, 300211, PR China
| | - Xiangrui Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Bingxin Hu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Fuju Dai
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Lan Xue
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Jiaxuan Qiao
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Yue Liu
- Nankai University Affiliated Tianjin People's Hospital, Tianjin, 300192, PR China.
| | - Qiang Chen
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China.
| |
Collapse
|
2
|
Wang X, Jiang G, Wan Y, Li J, Dauda SAA, Nalumansi HS, Wang J, Pi F. Insight into the principles and advanced construction strategies of nanoprobe based multi-targets sensing in food safety. Food Chem 2025; 476:143376. [PMID: 39965347 DOI: 10.1016/j.foodchem.2025.143376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
In real-world food safety incidents, hazards are often diverse and coexist simultaneously. Mature single-target detection technologies, while effective, are insufficient for comprehensively evaluating the overall quality and safety of food. As a result, multi-target detection, which enables a more comprehensive assessment of multiple hazards in food, has emerged as a prominent research focus. Nanomaterials have gained significant attention in sensing technologies due to their unique advantages, such as high sensitivity and potential for point-of-care detection. Furthermore, nanomaterials hold great promise for multi-target detection technologies because of their versatile properties, including fluorescence and other characteristics that make them suitable for developing a wide range of detection methods. On the basis of systematically summarizing the research achievements of multi-targets sensing in recent five years, this paper categorizes multi-targets sensing nanoprobes construction strategies into five types according to recognition/interaction relationships between the sensing units and targets. In addition, this review also elaborates some practical cases to further explain the design strategy, detection process and detection system of multi-targets sensing nanoprobes, which provides a novel and directional guidance for food detection and food industry management. Finally, according to the shortcomings of current multi-targets sensing nanoprobes, the prospect and challenges of multi-targets sensing nanoprobes are given.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingkun Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Sa-Adu Abiola Dauda
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Allied Health Sciences, University for Development Studies, P.O. Box 1883 Tamale, Ghana; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Harriet Sonia Nalumansi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.
| | - Fuwei Pi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Lei H, An B, Tian Y, Zhong D, Ping H, Dou S, Zhao W, Ren L, Huang Z, Wei F, Li H. Silicon dioxide layer thickness-dependent Au nanocube@mSiO 2@Ag with surface enhanced Raman scattering for trace detection of harmful substances. J Mater Chem B 2025; 13:5624-5633. [PMID: 40260617 DOI: 10.1039/d5tb00386e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Aunanocube@mSiO2@Ag nanocomposites were synthesized by layer-by-layer assembly with an Au nanocube core, an Ag shell, and mesoporous silica as a spacer. The thickness of the mesoporous silica layer was controlled simply by changing the amount of silica precursor. The SERS activity of the nanocomposites varied with the thickness of the SiO2 spacer layer, and the strongest SERS effect was observed when the optimized silica layer thickness was about 6 nm. The sensitivity of the synthesized nanocomposites was tested using typical representatives of organic dyes and pesticides (rhodamine 6G, crystal violet, and thiram) as probes, which have very low detection limits of 10-12, 10-11 and 10-9 M, respectively, and good stability was observed. The SERS performance of Aunanocube@mSiO2@Ag changed with the change of the thickness of SiO2, and Aunanocube@mSiO2@Ag with appropriate SiO2 thickness showed excellent SERS performance. When the thickness of the SiO2 layer is 6.0 nm, the SERS signal is strongest. It has the advantages of a fast response speed, simple operation, low detection limit and good pollutant detection ability.
Collapse
Affiliation(s)
- Hui Lei
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Baijiang An
- Shaanxi Baoguang Ceramic Technology Co., Ltd, Baoji 721304, China
| | - Yanyu Tian
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Dengqi Zhong
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Hongchao Ping
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Shumei Dou
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Weiwei Zhao
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Lijun Ren
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Zhuonan Huang
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Fenyan Wei
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Huiqin Li
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| |
Collapse
|
4
|
Mourdikoudis S, Dutta S, Kamal S, Gómez-Graña S, Pastoriza-Santos I, Wuttke S, Polavarapu L. State-of-the-Art, Insights, and Perspectives for MOFs-Nanocomposites and MOF-Derived (Nano)Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415399. [PMID: 40255059 DOI: 10.1002/adma.202415399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/21/2025] [Indexed: 04/22/2025]
Abstract
Composite structures created from metal‒organic framework (MOF) matrices are reviewed in this work. Depending on the nature of the second component apart from the MOF platform, several synergistic properties may arise; at the same time, the initial features of the single constituent materials are usually maintained, and individual shortcomings are mitigated. Currently, timely energy and environmental challenges necessitate the quest for more advanced materials and technologies. Significant developments in MOF-nanocomposites have enabled their application across a wide range of modern and traditional fields. This review demonstrates in an exhaustive and critical way a broad range of MOF-based nanocomposites, namely, MOF/perovskite nanoparticles (NPs), MOF/metal (non-iron) oxide NPs, MOF/Fe3O4 NPs, MOF/metal chalcogenide NPs, MOF/metal NPs, and MOF/carbon-based materials, as well as nanocomposites of MOFs with other semiconductor NPs. Key points related to the synthesis, characterization, and applications of these materials are provided. Depending on their configuration, the composites under discussion can be applied in domains such as photoelectrochemical sensing, antibiotic/dye degradation, optoelectronics, photovoltaics, catalysis, solar cells, supercapacitors, batteries, water remediation, and drug loading. Sometimes, MOFs can undergo certain processes (e.g. pyrolysis) and act as precursors for composite materials with appealing characteristics. Therefore, a special section in the manuscript is devoted to MOF-derived NP composites. Toward the end of the text, we conclude while also describing the challenges and possibilities for further investigations in the umbrella of material categories analyzed herein. Despite the progress achieved, key questions remain to be answered regarding the relationships among the morphology, properties, and polyvalent activity of these materials. The present work aims to shed light on most of their aspects and innovative prospects, facilitating a deeper comprehension of the underlying phenomena, functionality, and mechanistic insights governing their behavior.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48950, Spain
| | - Saqib Kamal
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
- Department of Chemistry, Emerson University Multan (EUM), Multan, 60000, Pakistan
| | - Sergio Gómez-Graña
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48950, Spain
- Academic Centre for Materials and Nanotechnology, A. Mickiewicza 30, Krakow, 30-059, Poland
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| |
Collapse
|
5
|
Quan Y, Weng G, Zhu J, Li J, Zhao J. Metal-organic framework-based SERS probes with enrichment capability for trace detection: applications in biomarkers and pollutants. Mikrochim Acta 2025; 192:200. [PMID: 40029454 DOI: 10.1007/s00604-025-07055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for trace substances detection due to its exceptional sensitivity, high anti-interference capability, and ease of operation, enabling detection at the single-molecule level. This makes SERS particularly promising for applications such as environmental monitoring, biomedical diagnostics, and food safety. Despite these advantages, SERS faces limitations due to the difficulty of enriching trace substances and the small Raman scattering cross sections of certain molecules. Metal-organic frameworks (MOFs), characterized by their high surface areas and porosity, tunable structures, and diverse functionalities, offer a promising solution to these challenges. By integrating MOFs with SERS technology, we explore how MOF-based SERS probes can enhance the sensitivity, selectivity, and efficiency of trace substance detection through mechanisms such as analyte enrichment, selective molecular capture, and electromagnetic field manipulation. In this paper, a comprehensive review of the structure and synthesis of MOF-SERS composites is presented, with an emphasis on their application in the detection of trace substances. The paper also discusses key challenges in the design and optimization of MOF-based SERS probes, particularly in terms of stability, reproducibility, and integration with existing detection platforms, aiming to broaden their practical applications and improve their detection efficiency.
Collapse
Affiliation(s)
- Yanxiao Quan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Liu X, Niu S, Yang B, Liu J, Zhang F, Wang Y, Bi S. Silver nanoparticles modified with MoS 2 and β-cyclodextrin as SERS substrate for rapid determination of cysteamine hydrochloride in meat products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125181. [PMID: 39332182 DOI: 10.1016/j.saa.2024.125181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
An efficient Surface-enhanced Raman scattering (SERS) method for the detection of cysteamine hydrochloride (CSH) was developed by synthesizing a composite substrate comprising silver nanoparticles (AgNPs) functionalized with MoS2 and β-cyclodextrin (β-CD). The enhanced Raman signals of CSH by β-CD/MoS2/AgNPs substrate were the contribution of electromagnetic enhancement (EM) as well as chemical enhancement (CM), and the enhancement factor (EF) can reach up to 3.11 × 106 (peak at 633 cm-1). Various instrumental techniques were used to characterize the substrate, such as X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and ultraviolet visible (UV-vis). The binding of β-CD/MoS2/AgNPs and CSH was confirmed by UV-vis and Fourier transform infrared (FT-IR). The optimal experimental conditions were determined by single factor experiments as well as response surface model. The influences of different metal ions and analogous drugs on the detection of CSH were investigated. Under optimum conditions, a good linear correlation (R = 0.9997) was established for CSH in the range of 10.00-1000.00 nmol/L, and the limit of detection (LOD) was as low as 0.78 nmol/L (S/N = 3). The contents of CSH in meat samples were detected. The recovery was 96.6-103.1 %, and the relative standard deviation (RSD) of the measurement was 0.7-3.9 % (n = 7).
Collapse
Affiliation(s)
- Xin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Shiyue Niu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Bin Yang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Jia Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Fengming Zhang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yuting Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| |
Collapse
|
7
|
Yang Z, Zhang N, Lv H, Ju X, Chen Y, Zhang Z, Tian Y, Zhao B. An aptamer sensor based on AgNPs@MOF for surface-enhanced Raman spectroscopy detection of sulfadimethoxine in food. Mikrochim Acta 2024; 192:29. [PMID: 39718634 DOI: 10.1007/s00604-024-06897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
A highly sensitive aptamer sensor (aptasensor) is proposed based on metal-organic frameworks-silver nanoparticles (AgNPs@MOF) to detect sulfadimethoxine (SDM) by surface-enhanced Raman spectroscopy (SERS). AgNPs@MOF with SERS activity was successfully fabricated by synthesizing AgNPs in situ on the surface of MIL-101(Fe), and SDM aptamer and Raman reporter 4-aminophenthiophenol (4-ATP) were selected as specific recognition elements and signal probes, respectively. When SDM was absent, the SDM aptamers were effectively adsorbed on the surface of AgNPs@MOF, thus keeping AgNPs@MOF in a dispersed state, resulting in a weakened SERS signal of 4-ATP. In the presence of SDM, the combination of SDM and aptamer formed a rigid hairpin SDM-aptamer complex, which bound less to AgNPs@MOF. Therefore, fewer aptamers were adsorbed on AgNPs@MOF, which exposed more hot spots, resulting in an enhanced SERS signal of 4-ATP. The aptasensor had good selectivity and sensitivity towards SDM and a good linear relationship between SERS intensity and SDM concentration in the range 6.00-150.00 ng/mL, with the limit of detection as low as 2.73 ng/mL. Further application to honey and chicken samples spiked with SDM resulted in satisfactory recoveries, and the aptasensor showed good stability and reproducibility in real samples. The aptasensor based on AgNPs@MOF was proposed for the first time to detect trace SDM by SERS, which provided a favorable way to develop various sensing platforms for antibiotic detection in food safety.
Collapse
Affiliation(s)
- Zhanye Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Nan Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Haiyang Lv
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Xinge Ju
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Yanhua Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China.
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
8
|
Li S, Guan Y, Li Y, Tuo Y, Luo Y, Si L, Hua Y, Chai F. The fabrication of phosphotungstate@UIO-Au/reduced graphene oxidation for electrochemical ultrasensitive detection of alpha-fetoprotein. Int J Biol Macromol 2024; 283:137683. [PMID: 39549811 DOI: 10.1016/j.ijbiomac.2024.137683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
As an early multi-purpose tumor marker of hepatocellular carcinoma, alpha-fetoprotein (AFP) plays a vital role in early diagnosis and treatment. To achieve the early and accurate determination of AFP, the POMOF was fabricated by embedding H3PW12O40 (PW12) into UIO-66-NH2, further immobilized on reduced GO (rGO) and fabricated an innovative POMOF nanocomposite (PW@UIO-Au/rGO) as an electrochemical immunosensor (ECI-sensor). The PW@UIO-Au/rGO achieved 17-fold signal enhancement owing to their synergistic effect, enabling PW@UIO-Au/rGO exhibit high oxidase-like catalytic activity, facilitating their sensing performance. Under optimal experimental conditions, the proposed PW@UIO-Au/rGO ECI-sensor presented excellent sensing performance over a wide range from 0.01 ng mL-1 to 500 ng mL-1 with ultra-low detection of 4.0 pg mL-1. Notably, sensing results in real serum samples were verified by the clinical enzyme-linked immunosorbent assay (ELISA) and electrochemiluminescence immunoassay (ECL) methods with excellent accuracy and consistency, indicating the excellent environmental tolerance of the proposed ECI-sensor. This work provided a promising strategy for designing feasible ultra-sensitive probe for sensing AFP in clinical test.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yawen Guan
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yunjie Li
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuzhuo Tuo
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yakun Luo
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150081, China.
| | - Liang Si
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingjie Hua
- School of Chemistry, Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Haikou 571158, China.
| | - Fang Chai
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
9
|
Fang H, Cao L, Sui J, Lin H, Wang L, Wang X, Wang K. Multifunctional metal-organic framework-enhanced sodium alginate-based intelligent indicator: Mechanism and application for freshness monitoring. Int J Biol Macromol 2024; 276:133914. [PMID: 39029842 DOI: 10.1016/j.ijbiomac.2024.133914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Intelligent food packaging has recently gained significant attention due to the heightened consumer awareness regarding food quality. Although anthocyanins avoid safety issues, the instability and leakage of anthocyanins restrict their utilization in freshness indicator labels. In this study, we introduced an innovative metal-organic framework (UiO-66-NH2) synergistic pH-colorimetric label with fast ammonia-responsive, incorporating sodium alginate, red cabbage anthocyanin, and UiO-66-NH2. The cross-linked sodium alginate substrate enabled the label to possess superior insolubility. The microscopic morphology of the labels was intricately analyzed, while their sensitivity was rigorously tested utilizing ammonia as a representative gas. Due to the remarkable UV absorption capability of UiO-66-NH2 and various molecular interactions with anthocyanins, the label exhibited good UV absorption, enhanced stability, and optimized performance in reducing anthocyanin leakage, ensuring the stability and effectiveness of the labels in practical applications. The prepared label exhibited good specificity for volatile amines and ammonia gases, and robust anti-interference properties, enabling visualization and early detection of shrimp spoilage during storage at different temperatures. The strategy employed in this study presents promising new possibilities for developing intelligent packaging solutions for food products.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiudan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
10
|
Qin M, Khan IM, Ding N, Qi S, Dong X, Zhang Y, Wang Z. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective. Biotechnol Adv 2024; 73:108368. [PMID: 38692442 DOI: 10.1016/j.biotechadv.2024.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.
Collapse
Affiliation(s)
- Mingwei Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
He MQ, Chang XY, Li HW, Wu Y. Highly Dispersive Gold Nanoclusters Confined within Micropores of Defective UiO-66 for Highly Efficient Aldehyde Oxidation at Mild Conditions. Int J Mol Sci 2024; 25:6779. [PMID: 38928488 PMCID: PMC11203797 DOI: 10.3390/ijms25126779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The oxidative esterification of aldehydes under mild conditions remains a significant challenge. This study introduces a unique defective UiO-66 to achieve gold nanoclusters (AuNCs) for efficient aldehyde oxidation under mild conditions. The construction and characterization of these materials are thoroughly investigated by techniques of XRD, SEM and TEM images, FT-IR, Raman, and XPS spectrum, emphasizing the unique microporous in defective UiO-66 are conducive to the fabrication of AuNCs. The catalytic performance of the prepared materials in aldehyde oxidation reactions is systematically evaluated, demonstrating the remarkable efficiency of dispersed Au@UiO-66-25 with high-content (9.09 wt%) Au-loading and ultra-small size (~2.7 nm). Moreover, mechanistic insights into the catalytic process under mild conditions (70 °C for 1 h) are provided, elucidating the determination of defective UiO-66 in the confined fabrication of AuNCs and subsequent furfural adsorption, which underlie the principles governing the observed enhancements. This study establishes the groundwork for the synthesis of highly dispersed and catalytically active metal nanoparticles using defective MOFs as a platform, advancing the catalytic esterification reaction of furfural to the next level.
Collapse
Affiliation(s)
- Ming-Qin He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China; (M.-Q.H.); (X.-Y.C.); (H.-W.L.)
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, China
| | - Xin-Yu Chang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China; (M.-Q.H.); (X.-Y.C.); (H.-W.L.)
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China; (M.-Q.H.); (X.-Y.C.); (H.-W.L.)
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China; (M.-Q.H.); (X.-Y.C.); (H.-W.L.)
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, China
| |
Collapse
|
12
|
Chen S, Liu Y, Qin Z, Wen G, Jiang Z. A new and highly efficient CuMOF-based nanoenzyme and its application to the aptamer SERS/FL/RRS/Abs quadruple-mode analysis of ultratrace malachite green. Analyst 2024; 149:1179-1189. [PMID: 38206348 DOI: 10.1039/d3an01902k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Malachite green (MG) is highly toxic, persistent, and carcinogenic, and its widespread use is a danger to the ecosystem and a threat to public health and food safety, making it necessary to develop new sensitive multimode molecular spectroscopy methods. In this work, a new copper-based nanomaterial (CuNM) was prepared by a high-temperature roasting using a copper metal-organic framework (CuMOF) as precursor. The as-prepared CuNM was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and BET surface area analysis. CuNM was found to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce the oxidation product TMBOX; however, subsequently, the MG aptamer (Apt) could be adsorbed on the CuNM surface by intermolecular interaction, which would inhibit the catalytic performance. After the addition of MG to be tested, the CuNM previously adsorbed by the Apt was transformed into its free state, thus restoring its catalytic activity. This new nanocatalytic indicator reaction could be monitored by surface-enhanced Raman scattering (SERS)/resonance Rayleigh scattering (RRS)/fluorescence (FL)/absorption (Abs) quadruple-mode methods. The SERS determination range was 0.004-0.4 nmol L-1 MG, with a limit of detection of 0.0032 nM. In this way, a rapid, stable, and sensitive method for the determination of MG residues in the environment was established.
Collapse
Affiliation(s)
- Shuxin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Yue Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Zhiyu Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| |
Collapse
|
13
|
Jagirani MS, Zhou W, Nazir A, Akram MY, Huo P, Yan Y. A Recent Advancement in Food Quality Assessment: Using MOF-Based Sensors: Challenges and Future Aspects. Crit Rev Anal Chem 2024; 55:581-602. [PMID: 38252119 DOI: 10.1080/10408347.2023.2300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Monitoring food safety is crucial and significantly impacts the ecosystem and human health. To adequately address food safety problems, a collaborative effort needed from government, industry, and consumers. Modern sensing technologies with outstanding performance are needed to meet the growing demands for quick and accurate food safety monitoring. Recently, emerging sensors for regulating food safety have been extensively explored. Along with the development in sensing technology, the metal-organic frameworks (MOF)-based sensors gained more attention due to their excellent sensing, catalytic, and adsorption properties. This review summarizes the current advancements and applications of MOFs-based sensors, including colorimetric, electrochemical, luminescent, surface-enhanced Raman scattering, and electrochemiluminescent sensors. and also focused on the applications of MOF-based sensors for the monitoring of toxins such as heavy metals, pesticide residues, mycotoxins, pathogens, and illegal food additives from food samples. Future trends, as well as current developments in MOF-based materials.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Yasir Akram
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
14
|
Lai H, Li G, Zhang Z. Enrichment-Sensing All-in-One Strategy Integrated in the La(OH) 3-Au@AgNPs Substrate for Rapid Surface-Enhanced Raman Spectroscopy Analysis of Purine Components. Anal Chem 2023; 95:18149-18157. [PMID: 38044549 DOI: 10.1021/acs.analchem.3c03604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Improving the speediness of complex sample analysis has attracted much research interest in analytical science. In this work, an enrichment-sensing all-in-one strategy was presented for rapid surface-enhanced Raman spectroscopy (SERS) analysis of purine components by using the La(OH)3-Au@AgNPs nanocomposite. Two-dimensional (2D) La(OH)3 nanosheets with nanothickness and accessible active sites not only acted as efficient media for the rapid enrichment of analytes but also provided flat planes for the intensive decoration of Au@AgNPs nanoparticles to amplify the SERS signals of adsorbed analytes. The nanocomposite could realize the rapid enrichment-sensing of purine components in 1 min, including mercaptopurine, thioguanine, adenine, and purine. Subsequently, the surface adsorption behaviors were explored by density functional theory and the enhancement mechanisms were simulated by the finite-difference time-domain method. Moreover, the nanocomposite also exhibited good SERS performances with relative standard deviations (RSDs) of uniformity less than 6.5% (n = 23), RSDs of batch-to-batch stability less than 7.3% (n = 9), and long-term stability over 9 weeks with RSDs within 6.6%. Finally, the enrichment-sensing strategy was applied for the rapid SERS analysis of two projects: mercaptopurine in tablets and adenine in beers with detection limits of 6.0 and 0.76 μg/L and spiked recoveries of 90.9-100 and 84.2-101%, respectively. Benefiting from the high-performance enrichment medium and closely packed plasmonic nanoparticles, the enrichment-sensing all-in-one strategy possesses great potential for rapid on-site detection in food safety and pharmaceutical analysis.
Collapse
Affiliation(s)
- Huasheng Lai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
15
|
Sun Y, Zheng X, Wang H, Yan M, Chen Z, Yang Q, Shao Y. Research advances of SERS analysis method based on silent region molecules for food safety detection. Mikrochim Acta 2023; 190:387. [PMID: 37700165 DOI: 10.1007/s00604-023-05968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Food safety is a critical issue that is closely related to people's health and safety. As a simple, rapid, and sensitive detection technique, surface-enhanced Raman scattering (SERS) technology has significant potential for food safety detection. Recently, researchers have shown a growing interest in utilizing silent region molecules for SERS analysis. These molecules exhibit significant Raman scattering peaks in the cellular Raman silent region between 1800 and 2800 cm-1 avoiding overlapping with the SERS spectrum of biological matrices in the range 600-1800 cm-1, which could effectively circumvent matrix effects and improve the SERS accuracy. In this review, the application of silent region molecules-based SERS analytical technique for food safety detection is introduced, detection strategies including label-free detection and labeled detection are discussed, and recent applications of SERS analysis technology based on molecules containing alkyne and nitrile groups, as well as Prussian blue (PB) in the detection of pesticides, mycotoxins, metal ions, and foodborne pathogens are highlighted. This review aims to draw the attention to the silent region molecules-based SERS analytical technique and to provide theoretical support for its further applications in food safety detection.
Collapse
Affiliation(s)
- Yuhang Sun
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xinxin Zheng
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Hao Wang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mengmeng Yan
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zilei Chen
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qinzheng Yang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China.
| | - Yong Shao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| |
Collapse
|
16
|
Zhang Y, Zhao X, Qin Y, Li X, Chang Y, Shi Z, Song M, Sun W, Xiao J, Li Z, Qing G. Order-order assembly transition-driven polyamines detection based on iron-sulfur complexes. Commun Chem 2023; 6:146. [PMID: 37420027 PMCID: PMC10328931 DOI: 10.1038/s42004-023-00942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Innovative modes of response can greatly push forward chemical sensing processes and subsequently improve sensing performance. Classical chemical sensing modes seldom involve the transition of a delicate molecular assembly during the response. Here, we display a sensing mode for polyamine detection based on an order-order transition of iron-sulfur complexes upon their assembly. Strong validation proves that the unique order-order transition of the assemblies is the driving force of the response, in which the polyamine captures the metal ion of the iron-sulfur complex, leading it to decompose into a metal-polyamine product, accompanied by an order-order transition of the assemblies. This mechanism makes the detection process more intuitive and selective, and remarkably improves the detection efficiency, achieving excellent polyamines specificity, second-level response, convenient visual detection, and good recyclability of the sensing system. Furthermore, this paper also provides opportunities for the further application of the iron-sulfur platform in environment-related fields.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiangyu Zhao
- Sixth Laboratory, Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, 96 Nankai Road, Dalian, 116045, P. R. China
| | - Yue Qin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaopei Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yongxin Chang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhenqiang Shi
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Mengyuan Song
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenjing Sun
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jie Xiao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zan Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
- College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan, 430200, P. R. China.
| |
Collapse
|
17
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Archana Chauhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
18
|
Anbiaee G, Khoshbin Z, Zamanian J, Samie A, Ramezani M, Alibolandi M, Danesh NM, Taghdisi SM, Abnous K. A fluorescent aptasensor for quantification of cocaine mediated by signal amplification characteristics of UiO-66/AuNPs nanocomposite. Anal Biochem 2023:115193. [PMID: 37257736 DOI: 10.1016/j.ab.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Due to the detrimental effects of cocaine on the human body such as organ damage, paranoia, immunodeficiency, cardiovascular disease, blood pressure, and stress, it is highly required to develop sensing approaches for its rapid and facile determination. Based on the signal enhancement capability of the UiO-66/AuNPs nanocomposite and acting as a capture agent, we designed a cost-effective fluorescent aptasensor for cocaine detection. The cocaine presence in the sample would cause a considerable escalation in the quenching of the fluorescence signal. The aptasensor achieved the linear response range over 0.5 μM-20 μM with a low detection limit of 0.178 μM. The selectivity of the designed aptasensing assay was successfully confirmed by examining several analgesic drugs. The aptasensor was employed for cocaine determination in human serum as the real samples. This method has a substantial benefit the for development of a low-cost and facile tool in medicine and forensic science.
Collapse
Affiliation(s)
- Ghasem Anbiaee
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammd Danesh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Bi S, Yuan Y, Zhang F, Wang Y, Liu J, Yang B, Song D. A sensitive surface-enhanced Raman spectroscopy detection for gentamicin and tobramycin using γ-Al 2O 3-modified silver nanoparticles coated with bovine serum albumin as substrate. Talanta 2023; 260:124635. [PMID: 37167676 DOI: 10.1016/j.talanta.2023.124635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Two aminoglycoside antibiotics (AGs), gentamicin (GEN) and tobramycin (TOB), have good antibacterial activity against most pseudomonas aeruginosa and staphylococcus. The molecular structure of these drugs lack chromogenic groups, which brings challenges to their detection. In this project, the detecting methods for GEN and TOB utilizing surface-enhanced Raman spectroscopy (SERS) based on γ-Al2O3-modified silver nanoparticles (AgNPs) coated with bovine serum albumin (BSA) were established. The enhancement factors (EFs) of GEN and TOB were 2.44 × 105 and 2.67 × 106, respectively. The transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and spectrophotometric techniques were used to characterize the substrate and the combination of the substance with drugs. The pH, the addition amounts for the substrate and coagulant, as well as the mixing time were optimized. On the basis of single factor experiments, a more scientific response surface model was established. The concentrations of GEN and TOB showed good linear relationships with their Raman signals in the ranges of 6.67 × 10-8 - 2.00 × 10-6 and 6.67 × 10-9 - 3.00 × 10-7 mol L-1 respectively. The limits of detection (LODs) were 11.88 and 1.26 nmol L-1 for GEN and TOB, respectively. The methods were used successfully for the samples determination of the two AGs in commercial drugs and meat products.
Collapse
Affiliation(s)
- Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| | - Yue Yuan
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Fengming Zhang
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yuting Wang
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Jia Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Bin Yang
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
20
|
Chu C, Wang X, Deng Y, Ma Y, Zou C, Yang M, Luo H, Huo D, Hou C. Discrimination of Chinese green tea according to tea polyphenols using fluorescence sensor array based on Tb (III) and Eu (III) doped Zr (IV) metal-organic frameworks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122380. [PMID: 36736046 DOI: 10.1016/j.saa.2023.122380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
A facile and rapid fluorescence sensor array based on Tb (III) and Eu (III) doped Zr (IV) metal-organic frameworks was proposed for Chinese green tea discrimination. According to large porosity of Tb@UiO-66-(COOH)2 and Eu@UiO-66-(COOH)2, phenolic hydroxyl groups of tea polyphenols could coordinate with free carboxylic acid groups and was captured into the pores, which led to the disturbance of electronic structure of ligand and inhibited the energy transfer efficiency from ligand to Tb (III) and Eu (III) center, causing the fluorescence quenching effect. Based on Hierarchy Cluster Analysis and Linear Discrimination Analysis, the fluorescence sensor array was employed for successful tea polyphenols classification through the analysis of different fluorescence quenching effect to tea polyphenols. Green tea samples within different categories and grades were also successfully discriminated using this assay according to tea polyphenols, providing a new method for Chinese green tea identification.
Collapse
Affiliation(s)
- Chengxiang Chu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xianfeng Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yuanyi Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Chengyue Zou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
21
|
Qin Y, Qiu J, Tang N, Wu Y, Yao W, He Y. Controllable preparation of mesoporous spike gold nanocrystals for surface-enhanced Raman spectroscopy detection of micro/nanoplastics in water. ENVIRONMENTAL RESEARCH 2023; 228:115926. [PMID: 37076031 DOI: 10.1016/j.envres.2023.115926] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Microplastics and nanoplastics are emerging classes of environmental contaminants that pose significant threats to human health. In particular, small nanoplastics (<1 μm) have drawn considerable attention owing to their adverse effects on human health; for example, nanoplastics have been found in the placenta and blood. However, reliable detection techniques are lacking. In this study, we developed a fast detection method that combines membrane filtration technology and surface-enhanced Raman spectroscopy (SERS), which can simultaneously enrich and detect nanoplastics with sizes as small as 20 nm. First, we synthesized spiked gold nanocrystals (Au NCs), achieving a controlled preparation of thorns ranging from 25 nm to 200 nm and regulating the number of thorns. Subsequently, mesoporous spiked Au NCs were homogeneously deposited on a glass fiber filter membrane to form an Au film as a SERS sensor. The Au-film SERS sensor achieved in-situ enrichment and sensitive SERS detection of micro/nanoplastics in water. Additionally, it eliminated sample transfer and prevented the loss of small nanoplastics. Using the Au-film SERS sensor, we detected 20 nm to 10 μm standard polystyrene (PS) microspheres with a detection limit of 0.1 mg/L. We also realized the detection of 100 nm PS nanoplastics at the 0.1 mg/L level in tap water and rainwater. This sensor provides a potential tool for rapid and susceptible on-site detection of micro/nanoplastics, especially small-sized nanoplastics.
Collapse
Affiliation(s)
- Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Jiaxin Qiu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Nan Tang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yingsheng He
- Key Laboratory of Drug Control and Monitoring, National Anti-Drug Laboratory Zhejiang Regional Center, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China.
| |
Collapse
|
22
|
Qin H, Zhao S, Gong H, Yu Z, Chen Q, Liang P, Zhang D. Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection. BIOSENSORS 2023; 13:bios13040479. [PMID: 37185554 PMCID: PMC10136131 DOI: 10.3390/bios13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic framework (MOF) compounds are centered on metal ions or metal ion clusters, forming lattices with a highly ordered periodic porous network structure by connecting organic ligands. As MOFs have the advantages of high porosity, large specific surface area, controllable pore size, etc., they are widely used in gas storage, catalysis, adsorption, separation and other fields. SERS substrate based on MOFs can not only improve the sensitivity of SERS analysis but also solve the problem of easy aggregation of substrate nanoparticles. By combining MOFs with SERS, SERS performance is further improved, and tremendous research progress has been made in recent years. In this review, three methods of preparing MOF-based SERS substrates are introduced, and the latest applications of MOF-based SERS substrates in biosensors, the environment, gases and medical treatments are discussed. Finally, the current status and prospects of MOF-based SERS analysis are summarized.
Collapse
Affiliation(s)
- Haojia Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shuai Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Huaping Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Anchoring Au on UiO-66 surface with thioglycolic acid for simultaneous SERS detection of paraquat and diquat residues in cabbage. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
24
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
25
|
Cheng Y, Ding Y, Chen J, Xu W, Wang W, Xu S. Au nanoparticles decorated covalent organic framework composite for SERS analyses of malachite green and thiram residues in foods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121644. [PMID: 35878495 DOI: 10.1016/j.saa.2022.121644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
A three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrate composed of gold nanoparticles (AuNPs) self-assembled covalent organic frameworks (COFs) was fabricated via the electrostatic interaction between positively charged COFs and negatively charged AuNPs, which exhibited excellent SERS performance and were successfully applied for the analyses of malachite green (MG) residue in different seafood products as well as thiram residue in several kinds of fruit juice. The raspberry-like structure SERS substrate has a larger surface area that can provide more adsorption sites in testing and improve the efficiency of sample enrichment. By using this developed SERS substrate, the detection linearity ranges are 1.0 × 10-9 mol·L-1-1.0 × 10-6 mol·L-1 for MG and 5.0 × 10-8 mol·L-1-1.0 × 10-5 mol·L-1 for thiram (R2 ≥ 0.995). The detection limits are 6.2 × 10-10 mol·L-1 for MG and 1.7 × 10-8 mol·L-1 for thiram, respectively. The COF-AuNPs substrate was actually applied for analysis of MG in seafood products and thiram in different fruit juice, with the recoveries in the ranges of 94.67-108.99 % for MG and 95.00-107.58 % for thiram, and both of the relative standard deviation (RSD) are no more than 5.88 %. This work indicates that the developed COF-AuNPs substrate is promising for SERS analyses and detections of residues in foods.
Collapse
Affiliation(s)
- Yuqi Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yanru Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jiamin Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Weigang Wang
- No. 2 Department of Urology, The First Hospital of Jilin University, Changchun 130021, PR China.
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China; Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
26
|
Ge K, Hu Y, Li G. Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. BIOSENSORS 2022; 12:941. [PMID: 36354450 PMCID: PMC9687977 DOI: 10.3390/bios12110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique with distinguished features of non-destructivity, ultra-sensitivity, rapidity, and fingerprint characteristics for analysis and sensors. The SERS signals are mainly dependent on the engineering of high-quality substrates. Recently, solid SERS substrates with diverse forms have been attracting increasing attention due to their promising features, including dense hot spot, high stability, controllable morphology, and convenient portability. Here, we comprehensively review the recent advances made in the field of solid SERS substrates, including their common fabrication methods, basic categories, main features, and representative applications, respectively. Firstly, the main categories of solid SERS substrates, mainly including membrane substrate, self-assembled substrate, chip substrate, magnetic solid substrate, and other solid substrate, are introduced in detail, as well as corresponding construction strategies and main features. Secondly, the typical applications of solid SERS substrates in bio-analysis, food safety analysis, environment analysis, and other analyses are briefly reviewed. Finally, the challenges and perspectives of solid SERS substrates, including analytical performance improvement and largescale production level enhancement, are proposed.
Collapse
|
27
|
Qiao W, Wang Y, Zhao Z, Wang Y, Chen K, Zhao Z, Li M. A novel SERS substrate of MIL-100(Fe)/AgNFs for sensitive detection of ascorbic acid in cellular media. RSC Adv 2022; 12:24101-24106. [PMID: 36093242 PMCID: PMC9400642 DOI: 10.1039/d2ra04146d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
A novel SERS substrate of MIL-100(Fe)/AgNFs was firstly prepared for sensitive and selective detection of ascorbic acid (L-AA), with a LOD of 10-11 M. A spectral decrease of MIL-100(Fe)/AgNFs towards L-AA solution thanks to the efficient capture and reduction of Fe3+ in MIL-100(Fe) constituted the assay, which was demonstrated to function well in food samples and in cellular media for L-AA sensing.
Collapse
Affiliation(s)
- Wang Qiao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University Nanning 530004 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| | - Yiran Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University Nanning 530004 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| | - Zhenxia Zhao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University Nanning 530004 China
| | - Yujiao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| | - Zhongxing Zhao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University Nanning 530004 China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| |
Collapse
|
28
|
Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Advanced sample preparation techniques for rapid surface-enhanced Raman spectroscopy analysis of complex samples. J Chromatogr A 2022; 1675:463181. [DOI: 10.1016/j.chroma.2022.463181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
|
30
|
Hu W, Chen Y, Xia L, Hu Y, Li G. Flexible membrane composite based on sepiolite/chitosan/(silver nanoparticles) for enrichment and surface-enhanced Raman scattering determination of sulfamethoxazole in animal-derived food. Mikrochim Acta 2022; 189:199. [PMID: 35469076 DOI: 10.1007/s00604-022-05265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
A sepiolite/chitosan/silver nanoparticles (Sep/CTs/AgNPs) membrane substrate has been developed for the fast separation, enrichment, and surface-enhanced Raman scattering (SERS) determination of sulfamethoxazole all-in-one. The Sep/CTs/AgNPs membrane substrate possessed the ability of rapid separation and enrichment to simplify the process for pretreatment and improve the efficiency of analysis. The grown AgNPs can provide abundant hot spots and plasmonic areas to amplify the Raman signals of target molecules effectively. The membrane substrate exhibited good stability with relative standard deviations of 5.8% and 7.1% to same batch and different batches membrane substrate, respectively, by detecting sulfamethoxazole. The SERS method based on Sep/CTs/AgNPs membrane substrate was used for the determination of sulfamethoxazole with a linear range of 0.05-2.0 mg/L, and the limit of detection was 0.020 mg/L. The established SERS method was finally applied to the quantification of sulfamethoxazole in animal-derived food samples. Sulfamethoxazole was actually found in crucian sample with 12.4 μg/kg, and the result was confirmed by a high-performance liquid chromatography method with relative error of 5.3%. The whole process of analysis can be finished within 25 min with recoveries of 89.3-102.2%. The SERS method based on Sep/CTs/AgNPs membrane substrate provided an integrated strategy for rapid and accurate SERS analysis in food safety issues.
Collapse
Affiliation(s)
- Wenyao Hu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Metal-organic framework-based core-shell composites for chromatographic stationary phases. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Lin C, Li L, Feng J, Zhang Y, Lin X, Guo H, Li R. Aptamer-modified magnetic SERS substrate for label-based determination of cardiac troponin I. Mikrochim Acta 2021; 189:22. [PMID: 34882274 DOI: 10.1007/s00604-021-05121-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
A sensitive label-based SERS strategy composed of magnetic bimetallic nanoparticles Fe3O4@Ag@Au, specific aptamer, and Bradford method was developed for the quantitative determination of cardiac troponin I (cTnI) in human serum. The prepared substrate with high magnetic character, signal enhancement, and uniformity exhibited significant Raman response. After the substrate was bound to the aptamer, the target protein cTnI was specifically captured, and it showed the Raman signal when the signal reporter Coomassie Brilliant Blue G-250 (CBBG) was supplied. The Raman signal intensity at 1621 cm-1 showed a wide linear relationship with the log value of the cTnI concentration in the range 0.01 to 100 ng·mL-1, and the estimated limit of detection (LOD) was 5.50 pg·mL-1. The recovery and relative standard deviation (RSD) of the spike experiment in human serum samples were 92-115% and 7.4-12.7%, respectively.
Collapse
Affiliation(s)
- Chubing Lin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China. .,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Yan Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Xin Lin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Heyuanxi Guo
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Rui Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
33
|
Yu Z, Huang L, Zhang Z, Li G. Simultaneous and Accurate Quantification of Multiple Antibiotics in Aquatic Samples by Surface-Enhanced Raman Scattering Using a Ti 3C 2T x/DNA/Ag Membrane Substrate. Anal Chem 2021; 93:13072-13079. [PMID: 34515467 DOI: 10.1021/acs.analchem.1c03019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapid and accurate analysis of multiple targets in complex samples is still a big challenge in the fast detection field. Herein, we developed a rapid and accurate strategy for simultaneous quantification of trace multiple antibiotic residues in complex aquatic samples by surface-enhanced Raman scattering (SERS) using a Ti3C2Tx/DNA/Ag membrane substrate. This membrane substrate was proven to have good uniformity, reproducibility, stability, and SERS activity by a series of characterizations. Also, this substrate combined excellent electromagnetic enhancement and chemical enhancement effects, which endowed it with good sensitivity and selectivity during SERS analysis. It achieved the integration of multitarget separation, enrichment, and in situ detection, which significantly improved the selectivity, sensitivity, accuracy, and detection throughput by membrane substrate coupling with SERS for real-sample analysis. Finally, this rapid SERS analysis strategy was successfully applied to the simultaneous quantification of trace nitrofurantoin (NFT) and ofloxacin (OFX) in aquatic samples. It was observed that trace NFT and OFX were actually detected and simultaneously quantified to be 8.0-13.7 and 42.6-49.1 μg/kg in aquatic samples, respectively, with good recoveries of 88.0-107% and relative standard deviations of 0.3-5.5%. The results were verified by a traditional high-performance liquid chromatography method with relative errors of -9.8 to 5.3%. This strategy provided a methodological reference for accurate SERS quantification of multiple targets in complex samples.
Collapse
Affiliation(s)
- Zhongning Yu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
34
|
Ding Y, Cheng Y, Hao B, Zhu L, Zhang N, Zhao B, Tian Y. Metal-organic framework modified by silver nanoparticles for SERS-based determination of sildenafil and pioglitazone hydrochloride. Mikrochim Acta 2021; 188:351. [PMID: 34554332 DOI: 10.1007/s00604-021-05008-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
A versatile surface-enhanced Raman scattering (SERS) assay has been established that can realize rapid and sensitive determination of sildenafil (SIL) and pioglitazone hydrochloride (PIO) adulteration in healthcare products. Metal-organic frameworks-silver nanoparticles (MOFs-AgNPs) with SERS activity were successfully prepared via in situ synthesis AgNPs on the MOFs surface. By virtue of the adsorptivity of MOFs, the MOFs-AgNPs could effectively concentrate the drug molecules on the electromagnetic enhancement areas of AgNPs. Moreover, the MOFs-AgNPs substrate exhibited more sensitive SERS activity than classical AgNPs with linear range of 1.0 × 10-7-1.0 × 10-5 mol L-1 for SIL and 8.0 × 10-7-3.0 × 10-5 mol L-1 for PIO and limit of detection (LOD) of 4.8 × 10-8 mol L-1 for SIL and 1.4 × 10-7 mol L-1 for PIO. The designed method realized the determination of SIL and PIO in commercial tablets and healthcare products with recoveries of 93.8-108.0% and 93.0-104.0%, respectively, with relative standard deviation (RSD) of 2.7-4.1% and 2.2-4.2%, respectively. The present system displayed little interference effect on determination. This work provides a multifunctional route for the determination of other drugs via the SERS technology.
Collapse
Affiliation(s)
- Yanru Ding
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Yuqi Cheng
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Baoqin Hao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Lin Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Nan Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
35
|
Feng J, Lu H, Yang Y, Huang W, Cheng H, Kong H, Li L. SERS-ELISA determination of human carboxylesterase 1 using metal-organic framework doped with gold nanoparticles as SERS substrate. Mikrochim Acta 2021; 188:280. [PMID: 34331134 DOI: 10.1007/s00604-021-04928-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
By in situ synthesis of gold nanoparticles (AuNPs) within the acid-etched (AE) MIL-101 (Cr) framework, AE-MIL-101 (Cr) nanocomposites embedded with AuNPs (AuNP/AE-MIL-101 (Cr)) were prepared as surface-enhanced Raman scattering (SERS) substrate. AuNPs are uniformly distributed and stabilized inside the metal-organic framework (MOF), thus forming more SERS hotspots. The SERS performance of AuNP/AE-MIL-101 (Cr) was evaluated using 4-mercaptophenylboronic acid (4-MPBA), 4-mercaptobenzoic acid (4-MBA), benzidine, and rhodamine 6G (R6G). The SERS substrate displays satisfying stability with very low background signal. When benzidine is used as the Raman reporter, the limit of detection (LOD) can reach 6.7 × 10-13 mol·L-1, and the relative standard deviation (RSD) of the intra- and inter-batch repetitive tests is less than 5.2%. On this basis, we developed a method for the detection of human carboxylesterase 1 (hCE 1) in human serum using AuNP/AE-MIL-101 (Cr) nanocomposite as SERS substrate and enzyme-linked immunosorbent assay (ELISA) colorimetric substrate as SERS marker. This method was used to determine hCE 1 in clinical serum samples without complicated sample pretreatment, and the detection results were consistent with the data determined by ELISA. In the concentration range 0.1-120 ng·mL-1, the SERS signal intensity of benzidine at 1609 cm-1 gradually decreases with the increase of hCE 1 concentration (R2 = 0.9948). The average recoveries of hCE 1 in human serum are in the range 84 to 108%, with RSDs lower than 7.7%. By using AuNP/acid etching-MIL-101(Cr) metal organic framework (MOF) as SERS substrate and enzyme-linked immunosorbent assay (ELISA) colorimetric substrate as the SERS marker, a rapid and sensitive method for the determination of human carboxylesterase 1 (hCE1) in human serum samples has been developed.
Collapse
Affiliation(s)
- Jun Feng
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, Guangxi, People's Republic of China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Hao Lu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, People's Republic of China
| | - Yu Yang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, People's Republic of China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, People's Republic of China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, People's Republic of China
| | - Hongxing Kong
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China. .,Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, People's Republic of China.
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China. .,Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|