1
|
Radomirović M, Gligorijević N, Rajković A. Immuno-PCR in the Analysis of Food Contaminants. Int J Mol Sci 2025; 26:3091. [PMID: 40243808 PMCID: PMC11988550 DOI: 10.3390/ijms26073091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Food safety is a significant issue of global concern. Consumer safety and government regulations drive the need for the accurate analysis of food contaminants, residues and other chemical constituents of concern. Traditional methods for the detection of food contaminants often present challenges, including lengthy processing times and food matrix interference; they often require expensive equipment, skilled personnel or have limitations in sensitivity or specificity. Developing novel analytical methods that are sensitive, specific, accurate and rapid is therefore crucial for ensuring food safety and the protection of consumers. The immuno-polymerase chain reaction (IPCR) method offers a promising solution in the analysis of food contaminants by combining the specificity of conventional immunological methods with the exponential sensitivity of PCR amplification. This review evaluates the current state of IPCR methods, describes a variety of existing IPCR formats and explores their application in the analysis of food contaminants, including pathogenic bacteria and their toxins, viruses, mycotoxins, allergens, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalic acid esters, pesticides, antibiotics and other food contaminants. Depending on the type of analyte, either sandwich or competitive format IPCR methods are predominantly used. This review also examines limitations of current IPCR methods and explores potential advancements for future implementation in the field of food safety.
Collapse
Affiliation(s)
- Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade—Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Center for Chemistry, University of Belgrade—Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Andreja Rajković
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Campus Coupure, Coupure Links 653, 9000 Ghent, Belgium
- Ghent University Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Republic of Korea
- University of Belgrade—Faculty of Agriculture, Department of Food Safety and Quality Management, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
2
|
Ding L, Cao S, Bai L, He S, He L, Wang Y, Wu Y, Yu S. Versatile fluorescence biosensors based on CRISPR/Cas12a for determination of site-specific DNA methylation from blood and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125520. [PMID: 39637570 DOI: 10.1016/j.saa.2024.125520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The identification of DNA methylation at specific sites is crucial for the early detection of cancer since DNA methylation is intimately associated to the occurrence and development of cancer. Herein, two types of sensors that can detect site-specific DNA methylation were developed to meet practical requirements using methylation sensitive restriction endonuclease and CRISPR/Cas12a. To accomplish rapid detection of target, an AciI-mediated CRISPR/Cas12a assay was developed by coupling AciI to recognize DNA methylation with Cas12a to identify site-specific DNA. Since protospacer adjacent motif (PAM)-dependent endonuclease activity and trans-cleavage activity of Cas12a, it is possible to detect site-specific DNA methylation within 2 h with high specificity and acceptable sensitivity. To satisfy the needs of trace target detection, we developed an GlaI-strand displacement amplification (SDA) assisted CRISPR/Cas12a system. The system converts double-stranded methylated DNA to abundant single-stranded by GlaI and SDA. Then, the combination of SDA and CRISPR/Cas12a enable cascades amplification of signal. The approach can therefore be used to detect methylation at different specified sites, even those without PAM, and can increase sensitivity with a detection limit down to 8.19 fM. Importantly, the assay can distinguish between colorectal cancer and precancerous tissue, as well as identify colorectal patients and healthy people. This study provides a new avenue for the development of new biosensors for methylation analysis, and the two methods devised have the potential to meet the multiple requirements of site-specific methylation testing in various clinical settings.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shengnan Cao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lanxin Bai
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Nursing and Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Wang T, Wang X, Luo S, Zhang P, Li N, Chen C, Li J, Shi H, Dong H, Huang RP. Constructions, Purifications and Applications of DNA-Antibody Conjugates: A Review. ACS OMEGA 2024; 9:47951-47963. [PMID: 39676968 PMCID: PMC11635685 DOI: 10.1021/acsomega.4c07714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024]
Abstract
A DNA-antibody conjugate is a synthetic molecule that combines the unique functions of both an antibody and DNA. With the increased accessibility of commercialized kits, the procedure for constructing conjugates is simplified and the requirement for chemistry background is reduced. As a result, the difficulty of preparing a DNA-antibody conjugate has been significantly lowered. Therefore, the application of DNA-antibody conjugates has attracted more interest in recent years. The most common application of DNA-antibody conjugates is based on the amplifiable property of DNA through PCR. This includes single-conjugate-based immuno-PCR, paired-conjugates-based proximity ligation assay, and proximity extension assay. These methods achieve highly sensitive or specific detection of target proteins. The conjugated single stranded DNA molecules can also specifically hybridize with another strand containing its complementary sequence. This property can be used to selectively bind fluorophore labeled DNA strands, which plays an important role in tissue imaging and spatial omics. All these factors make DNA-antibody conjugates have a broad range of applications in research, diagnosis, and potentially therapy.
Collapse
Affiliation(s)
- Tao Wang
- RayBiotech
Guangzhou Co., Ltd., 79 Ruihe Road, Huangpu District, Guangzhou, Guangdong 510535, China
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Xuelin Wang
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Shuhong Luo
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Peng Zhang
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Na Li
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Can Chen
- College
of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianwen Li
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Hao Shi
- School
of
Life Science and Food Engineering, Huaiyin
Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hua Dong
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction
(NERC-TRR), Guangzhou 510006, China
| | - Ruo-Pan Huang
- RayBiotech
Guangzhou Co., Ltd., 79 Ruihe Road, Huangpu District, Guangzhou, Guangdong 510535, China
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| |
Collapse
|
4
|
Wang W, Jiang S, Li YY, Han Y, Liu M, Meng YY, Zhang CY. Construction of a glycosylation-mediated fluorescent biosensor for label-free measurement of site-specific 5-hydroxymethylcytosine in cancer cells with zero background signal. Anal Chim Acta 2024; 1300:342463. [PMID: 38521572 DOI: 10.1016/j.aca.2024.342463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND 5-hydroxymethylcytosine (5hmC) as an epigenetic modification can regulate gene expression, and its abnormal level is related with various tumor invasiveness and poor prognosis. Nevertheless, the current methods for 5hmC assay usually involve expensive instruments/antibodies, radioactive risk, high background, laborious bisulfite treatment procedures, and non-specific/long amplification time. RESULTS We develop a glycosylation-mediated fluorescent biosensor based on helicase-dependent amplification (HDA) for label-free detection of site-specific 5hmC in cancer cells with zero background signal. The glycosylated 5hmC-DNA (5ghmC) catalyzed by β-glucosyltransferase (β-GT) can be cleaved by AbaSI restriction endonuclease to generate two dsDNA fragments with sticky ends. The resultant dsDNA fragments are complementary to the biotinylated probes and ligated by DNA ligases, followed by being captured by magnetic beads. After magnetic separation, the eluted ligation products act as the templates to initiate HDA reaction, generating abundant double-stranded DNA (dsDNA) products within 20 min. The dsDNA products are measured in a label-free manner with SYBR Green I as an indicator. This biosensor can measure 5hmC with a detection limit of 2.75 fM and a wide linear range from 1 × 10-14 to 1 × 10-8 M, and it can discriminate as low as 0.001% 5hmC level in complex mixture. Moreover, this biosensor can measure site-specific 5hmC in cancer cells, and distinguish tumor cells from normal cells. SIGNIFICANCE This biosensor can achieve a zero-background signal without the need of either 5hmC specific antibody or bisulfite treatment, and it holds potential applications in biological research and disease diagnosis.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Yue-Ying Li
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Ying-Ying Meng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Ding L, Cao S, Qu C, Wu Y, Yu S. Ratiometric CRISPR/Cas12a-Triggered CHA System Coupling with the MSRE to Detect Site-Specific DNA Methylation. ACS Sens 2024; 9:1877-1885. [PMID: 38573977 DOI: 10.1021/acssensors.3c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The precise determination of DNA methylation at specific sites is critical for the timely detection of cancer, as DNA methylation is closely associated with the initiation and progression of cancer. Herein, a novel ratiometric fluorescence method based on the methylation-sensitive restriction enzyme (MSRE), CRISPR/Cas12a, and catalytic hairpin assembly (CHA) amplification were developed to detect site-specific methylation with high sensitivity and specificity. In detail, AciI, one of the commonly used MSREs, was employed to distinguish the methylated target from nonmethylated targets. The CRISPR/Cas12a system was utilized to recognize the site-specific target. In this process, the protospacer adjacent motif and crRNA-dependent identification, the single-base resolution of Cas12a, can effectively ensure detection specificity. The trans-cleavage ability of Cas12a can convert one target into abundant activators and can then trigger the CHA reaction, leading to the accomplishment of cascaded signal amplification. Moreover, with the structural change of the hairpin probe during CHA, two labeled dyes can be spatially separated, generating a change of the Förster resonance energy transfer signal. In general, the proposed strategy of tandem CHA after the CRISPR/Cas12a reaction not only avoids the generation of false-positive signals caused by the target-similar nucleic acid but can also improve the sensitivity. The use of ratiometric fluorescence can eradicate environmental effects by self-calibration. Consequently, the proposed approach had a detection limit of 2.02 fM. This approach could distinguish between colorectal cancer and precancerous tissue, as well as between colorectal patients and healthy people. Therefore, the developed method can serve as an excellent site-specific methylation detection tool, which is promising for biological and disease studies.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shengnan Cao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Du J, He JS, Wang R, Wu J, Yu X. Ultrasensitive reporter DNA sensors built on nucleic acid amplification techniques: Application in the detection of trace amount of protein. Biosens Bioelectron 2024; 243:115761. [PMID: 37864901 DOI: 10.1016/j.bios.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The detection of protein is of great significance for the study of biological physiological function, early diagnosis of diseases and drug research. However, the sensitivity of traditional protein detection methods for detecting trace amount of proteins was relatively low. By integrating sensitive nucleic acid amplification techniques (NAAT) with protein detection methods, the detection limit of protein detection methods can be substantially improved. The DNA that can specifically bind to protein targets and convert protein signals into DNA signals is collectively referred to reporter DNA. Various NAATs have been used to establish NAAT-based reporter DNA sensors. And according to whether enzymes are involved in the amplification process, the NAAT-based reporter DNA sensors can be divided into two types: enzyme-assisted NAAT-based reporter DNA sensors and enzyme-free NAAT-based reporter DNA sensors. In this review, we will introduce the principles and applications of two types of NAAT-based reporter DNA sensors for detecting protein targets. Finally, the main challenges and application prospects of NAAT-based reporter DNA sensors are discussed.
Collapse
Affiliation(s)
- Jungang Du
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jin-Song He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Rui Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China.
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
7
|
Wang ZY, Yuan H, Li DL, Hu J, Qiu JG, Zhang CY. Hydroxymethylation-Specific Ligation-Mediated Single Quantum Dot-Based Nanosensors for Sensitive Detection of 5-Hydroxymethylcytosine in Cancer Cells. Anal Chem 2022; 94:9785-9792. [PMID: 35749235 DOI: 10.1021/acs.analchem.2c01495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) modification is a key epigenetic regulator of cellular processes in mammalian cells, and its misregulation may lead to various diseases. Herein, we develop a hydroxymethylation-specific ligation-mediated single quantum dot (QD)-based fluorescence resonance energy transfer (FRET) nanosensor for sensitive quantification of 5hmC modification in cancer cells. We design a Cy5-modified signal probe and a biotinylated capture probe for the recognition of specific 5hmC-containing genes. 5hmC in target DNA can be selectively converted by T4 β-glucosyltransferase to produce a glycosyl-modified 5hmC, which cannot be cleaved by methylation-insensitive restriction enzyme MspI. The glycosylated 5hmC DNA may act as a template to ligate a signal probe and a capture probe, initiating hydroxymethylation-specific ligation to generate large amounts of biotin-/Cy5-modified single-stranded DNAs (ssDNAs). The assembly of biotin-/Cy5-modified ssDNAs onto a single QD through streptavidin-biotin interaction results in FRET and consequently the generation of a Cy5 signal. The nanosensor is very simple without the need for bisulfite treatment, radioactive reagents, and 5hmC-specific antibodies. Owing to excellent specificity and high amplification efficiency of hydroxymethylation-specific ligation and near-zero background of a single QD-based FRET, this nanosensor can quantify 5hmC DNA with a limit of detection of 33.61 aM and a wider linear range of 7 orders of magnitude, and it may discriminate the single-nucleotide difference among 5hmC, 5-methylcytosine, and unmodified cytosine. Moreover, this nanosensor can distinguish as low as a 0.001% 5hmC DNA in complex mixtures, and it can monitor the cellular 5hmC level and discriminate cancer cells from normal cells, holding great potential in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Huimin Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|