1
|
Yan J, Huang J, Peng S, Sun D, Lu W, Song Z, Ma J, You J, Fan H, Chen L, Li J. Recent advances in molecular-imprinting-based solid-phase microextraction for determination of pharmaceutical residues. J Chromatogr A 2025; 1754:466016. [PMID: 40349500 DOI: 10.1016/j.chroma.2025.466016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Pharmaceutical residues usually exist in various complicated matrices at trace levels, but pose potential threats to human health and ecological environment. Recognition and determination of the residues are important and urgent. Therefore, efficient sample pretreatment techniques become a research hotspot for the sensitive and precise determination by chromatography and mass spectrometry. Molecular-imprinting-based solid-phase microextraction (MI-SPME) combines the rapidity, high enrichment and solvent-free property of SPME with the specific recognition and selective adsorption ability of molecularly imprinted polymers (MIPs), and shows significant advantages in the highly selective separation and enrichment of drug residues in complex samples. Herein, we review recent advances in MI-SPME for determination of pharmaceutical residues since 2019. Firstly, the basic characteristics and operation process of SPME are briefly introduced, and then the polymerization methods of MIPs including free radical polymerization, in-situ polymerization and sol-gel polymerization, and new imprinting technologies and strategies including surface imprinting, nano-imprinting, dummy template, multi-template/functional monomer imprinting and stimuli-responsive imprinting, are comprehensively overviewed. Then, various modes of MI-SPME device are meticulously discussed, mainly including MIPs-coated fiber SPME, MIPs-based in-tube SPME, dispersible SPME, MIPs in-tip SPME, MIPs stir bar sorptive extraction, and MIPs thin film microextraction. Subsequently, typical application cases of MI-SPME coupled with chromatography and mass spectrometry for the determination of drug residues are summarized, in the fields of food safety, biological medicine and environmental monitoring, specially mentioning chiral drug detection and matrix effects and interferences. Finally, the possible challenges of MI-SPME in drug residue detection are presented, and the research prospects and development trends of MI-SPME are proposed.
Collapse
Affiliation(s)
- Jingyi Yan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jingying Huang
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Siyuan Peng
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Dani Sun
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenhui Lu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhihua Song
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huaying Fan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Lingxin Chen
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
El Fiky HA, Tantawy MA, Ahmed DA, Abd El Ghanyd MF, Badawey AM, Fares NV. A stability-indicating potentiometric platform for assaying Metoprolol succinate and felodipine in their tablets and human plasma. BMC Chem 2025; 19:73. [PMID: 40108631 PMCID: PMC11924619 DOI: 10.1186/s13065-025-01435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Solid contact electrodes are prevalent in analytical applications due to their superior performance compared to traditional electrodes. Nonetheless, these electrodes have been observed to develop a water layer, which compromises their stability. In this study, we introduce an innovative solid contact ion selective electrode designed to mitigate this issue by incorporating multi-walled carbon nanotubes. This system was utilized for potentiometric sensing of metoprolol and felodipine. Furthermore, molecular imprinted polymer was developed to enhance selectivity for determination of felodipine. The electrode modified with multi-walled carbon nanotubes was employed for the quantification of metoprolol, exhibiting a Nernstian slope of 55.23 mV/decade over a linear concentration range of 1.0 × 10- 7 to 1.0 × 10- 2 mol L- 1, at a pH of 7.0. The molecularly imprinted polymer-modified electrode was utilized for the determination of felodipine, showing slope of 56.089 mV/decade across a linear range of 1.0 × 10- 7 to 1.0 × 10- 4 mol L- 1, at a pH of 3.0. Detection limits for both sensor were less than 8.0 × 10- 8 mol L- 1. The developed sensors were successfully utilized for the quantification of the aforementioned drugs in pharmaceutical tablets, in human plasma samples and in the presence of their degradates. The proposed approach showed a better linearity range and a lower limit of detection for metoprolol quantification compared to its reported potentiometric methods. Moreover, it was the first one to use such an electrochemical technique for felodipine detection.
Collapse
Affiliation(s)
- Haitham A El Fiky
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Mahmoud A Tantawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, ET-11562, Egypt.
- Department of Chemistry, Faculty of Pharmacy, October 6 University, 6 of October City, Giza, Egypt.
| | - Dina A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Maha F Abd El Ghanyd
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amr M Badawey
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, ET-11562, Egypt
| | - Nermine V Fares
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Fares NV, El Fiky HA, Ahmed DA, El Ghany MFA, Badawey AM, Tantawy MA. Molecular imprinted polymer-based potentiometric approach for the determination of carvedilol and ivabradine hydrochloride in dosage form, spiked human plasma and in presence of their oxidative degradates. BMC Chem 2025; 19:32. [PMID: 39920825 PMCID: PMC11806558 DOI: 10.1186/s13065-025-01392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
Carivalan® pharmaceutical formulation, which includes carvedilol and ivabradine hydrochloride, is commonly prescribed for alleviating pain associated with angina. Solid contact ion-selective electrodes with wide range of applications have been developed for analysis of these two active ingredients. Those types of electrodes have common drawbacks. Aside from development of aqueous layer, the incorporated ion exchanger in plasticized membrane is usually unable to differentiate in sensing between two similarly charged lipophilic organic ions. These flaws impeded simultaneous quantification of carvedilol and ivabradine hydrochloride in their dosage form. First, attempts were made to stabilize possible signals by synthesizing hydrophobic multiwall carbon nanotubes-based carbon paste. Precipitation polymerization was used to create molecular imprinted polymers (MIPs) for each drug. MIPs' graved cavities serve as artificial host-tailored receptors that are able to recognize and bind to individual drugs. Carvedilol MIP-based sensor showed Nernstian slope of 55.30 mV/decade while the corresponding value for ivabradine one was 55.50 mV/decade. The respective LODs were 7.0 × 10- 8 M and 6.0 × 10- 7 M. Interference from excipients of pharmaceutical formulation, common plasma ions, and possible oxidation byproducts was not witnessed, permitting direct and simultaneous measurement of carvedilol and ivabradine in their tablet solution and spiked human plasma. Furthermore, the proposed technique was compared favorably with the official titrimetric and reported spectrophotometric methods for analyzing carvedilol and ivabradine, respectively.
Collapse
Affiliation(s)
- Nermine V Fares
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haitham A El Fiky
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Dina A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Maha F Abd El Ghany
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amr M Badawey
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, ET-11562, Egypt
| | - Mahmoud A Tantawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, ET-11562, Egypt.
- Department of Chemistry, Faculty of Pharmacy, October 6 University, 6 of October City, Giza, Egypt.
| |
Collapse
|
4
|
Gouda AS, Rezk MR, Abdel-Megied AM, Marzouk HM. Ultrasensitive turn-off fluorescent sensor for estimation of the new influenza antiviral prodrug baloxavir marboxil in its pharmaceutical formulation. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241634. [PMID: 39780967 PMCID: PMC11706661 DOI: 10.1098/rsos.241634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Carbon quantum dots (CQDs) are a recently developed class of fluorescent nanoparticles made from carbon. Co-doping with heteroatoms such as nitrogen and sulfur improved the properties and generated a high quantum yield. In the proposed study, we utilized a simple, cost-effective, single-stage hydrothermal approach to produce extreme photoluminescence co-doped, nitrogen and sulfur, CQDs (N,S-CODs). Thiosemicarbazide was used as a nitrogen and sulfur source, while citric acid was used as a carbon source to produce fluorescent probes. The prepared N,S-CQDs were subjected to extensive characterization. The generated N,S-CQDs yielded strong fluorescence emission at λ em 430.0 nm after excitation at λ ex 360.0 nm, with a relatively high quantum yield of 41.3% utilizing quinine sulfate as a reference fluorescent compound. These N,S-CQDs were applied as fluorescent nanosensors for the ultrasensitive spectrofluorimetric determination of baloxavir marboxil (BXM) directly without pre-derivatization for the first time. BXM effectively quenches the native fluorescence of N,S-CQDs. Considering the optimal conditions, the fluorescence intensity reduction of N,S-CQDs exhibited a 'turn-off' response to BXM at concentrations of 10.0-100.0 ng ml-1, with detection limits of 1.88 ng ml-1 and quantitation limits of 5.69 ng ml-1, respectively. The proposed method determined BXM successfully in its tablet dosage form and further expanded to confirm the content uniformity of the tablet units in agreement with USP guidelines.
Collapse
Affiliation(s)
- Amira S. Gouda
- Zi diligence Biocenter, Bioequivalence Research, El-Mokattam, Cairo11571, Egypt
| | - Mamdouh R. Rezk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo11562, Egypt
| | - Ahmed M. Abdel-Megied
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafr El-Sheikh University, Kafr El-Sheikh City33511, Egypt
- Department of Pharmaceutical Sciences, Notre Dame of Maryland University, School of Pharmacy, Baltimore, MD21210, USA
| | - Hoda M. Marzouk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo11562, Egypt
| |
Collapse
|
5
|
Adawy HA, Hegazy MA, Saad SS, Bekhet AM, Boltia SA. Greenness assessment of a molecularly imprinted polymeric sensor based on a bio-inspired polymer. BMC Chem 2024; 18:207. [PMID: 39438928 PMCID: PMC11515674 DOI: 10.1186/s13065-024-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Methyldopa, a synthesized dopamine substitute with phenolic, amine, and carboxylic groups, was used to create a selective molecular imprinted polymer (MIP) for detecting formoterol fumarate dihydrate (FFD), a long-acting beta2-agonist for asthma and COPD. The bio-inspired polymer (MD) was electro-grafted onto a pencil graphite electrode (PGE) using cyclic voltammetry in a phosphate buffer (pH 6.5). An indirect method involving a redox probe (ferrocyanide/ferricyanide) and differential pulse voltammetry measured FFD binding to the MIP's 3D cavities. The sensor showed a linear response range from 1 × 10⁻⁹ M to 2 × 10⁻¹⁰ M, with a detection limit of 1.7 × 10⁻¹¹ M. The polymethyldopa (PMD) and FFD interaction was assessed by UV spectroscopy, and the method was validated per ICH guidelines. Green analytical approaches, including RGB and GAPI, were also implemented. The goal was to use advances in molecularly imprinted polymers to develop a more precise and selective electrochemical sensor for FFD quantification.
Collapse
Affiliation(s)
- Hamees A Adawy
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, 16878, Egypt
| | - Maha A Hegazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Samah S Saad
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, 16878, Egypt
| | - Amr M Bekhet
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo, 11562, Egypt
| | - Shereen A Boltia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
6
|
Hussein OG, Ahmed DA, Abdelkawy M, Rezk MR, Rostom Y. A novel green spectrofluorimetric method for simultaneous determination of antazoline and tetryzoline in their ophthalmic formulation. LUMINESCENCE 2024; 39:e4728. [PMID: 38516711 DOI: 10.1002/bio.4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
A novel spectrofluorimetric method has been developed for determination of antazoline (ANT) and tetryzoline (TET) in their pharmaceutical formulation. A combined application of synchronous spectrofluorimetry and second derivative mathematical treatment was developed. The proposed method depends on reacting the cited drugs with dansyl chloride (DNS-Cl) being a suitable derivatizing agent generating highly fluorescent derivatives measured at emission wavelengths of 703.0 and 642.0 nm after excitation wavelengths of 350.0 and 320.0 nm for ANT and TET, respectively. The joint use of synchronous spectrofluorimetry with second derivative mathematical treatment is for the first time to be developed and optimized in aid of using fluorescence data manager software generating second derivative peak amplitudes at 556.5 nm for ANT and 516.7 nm for TET. Linear responses have been represented over a wide range of concentration (0.5-12.0 μg/mL for ANT and 0.5-10.0 μg/mL for TET). Additionally, statistical comparison of the developed method with the official ones has been carried out where no significant difference was found. Additionally, greenness profile assessment was accomplished by means of four metric tools. Indeed, the method developed is found to be precise, sensitive, and discriminating to assess the cited drugs for regular analysis.
Collapse
Affiliation(s)
- Ola G Hussein
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Dina A Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Mohamed Abdelkawy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mamdouh R Rezk
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yasmin Rostom
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Rostom Y, Rezk MR, Wadie M, Abdel-Moety EM, Marzouk HM. State-of-the-art mathematically induced filtration approaches for smart spectrophotometric assessment of silodosin and solifenacin mixture in their new challenging formulation: Multi-tool greenness and whiteness evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123650. [PMID: 37979536 DOI: 10.1016/j.saa.2023.123650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Benign prostatic hyperplasia is one of the most predominant health disorders in men with increasing incidence by age and usually accompanied with other bothersome symptoms. A new fixed dose combination, containing Silodosin and Solifenacin, has been recently launched for relieving such disorder associated with overactive bladder syndrome. In the current work, three smart, innovative and white spectrophotometric methods have been newly developed and optimized for simultaneous determination of the studied drugs in their binary mixture using water as an eco-friendly solvent. The adopted strategy relied on calculation of one or two factors as numerical constant or spectrum allowing mathematical filtration of desired analyte and full removal of any overlapped components in the mixture. The developed methods are categorized over two spectrophotometric platform windows. Window I deals with absorption spectra in its native forms (zero-order) including a newly developed method termed induced concentration subtraction (ICS) as well as induced dual wavelength (IDW) methods. Whereas window III is concerned with ratio spectra as in induced amplitude modulation (IAM) method. Compared to classical spectrophotometric methods, the proposed ones are superior in overcoming the inherited challenges in zero-order absorption spectrum of Solifenacin, particularly its very low absorptivity and lack of unique absorption maximum. Validity of the methods were thoroughly assured as per ICH guidelines with unified regression over 3.0-50.0 µg/mL in ICS method while IDW and IAM ones possessed linearity ranges of 3.0-50.0 µg/mL of Silodosin and 5.0-60.0 µg/mL of Solifenacin. The work was also extended to verify content uniformity of dosage units in accordance with USP recommendations. Greenness profile of the proposed methods was clearly assessed, in comparison to the reported analysis ones, via state-of-the-art software metrics, namely, green solvent selection tool (GSST), complementary green analytical procedure index (ComplexGAPI) and analytical greenness (AGREE). Finally, the proposed methods were in good adherence to the recently published postulates of white analytical chemistry.
Collapse
Affiliation(s)
- Yasmin Rostom
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt.
| | - Mamdouh R Rezk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt
| | - Mina Wadie
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt
| | - Ezzat M Abdel-Moety
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt
| | - Hoda M Marzouk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt
| |
Collapse
|
8
|
Hassan AM, Kelani KM, Hegazy MA, Nadim AH, Tantawy MA. A probe of new molecularly imprinted solid-phase extraction coupled with HPLC-DAD and atomic absorption spectrophotometry for quantification of tetracycline HCl, metronidazole and bismuth subcitrate in combination with their official impurities: Application in dosage form and human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124032. [PMID: 38301337 DOI: 10.1016/j.jchromb.2024.124032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
The integration of molecular imprinting technique with chromatographic one has a great impact on the assay's selectivity and sensitivity. Herein, a molecularly imprinted solid-phase extraction associated with high performance liquid chromatography (MISPE-HPLC) was employed for simultaneous determination of the co-formulated drugs; tetracycline hydrochloride (TET) and metronidazole (MET), in plasma and in their anti-H-pylori drug for the first time. Two sorts of molecularly imprinted polymers (MIPs) were fabricated using TET and MET as the template molecules, while ethylene glycol dimethacrylate and methacrylic acid were used as a cross-linker and a monomer, respectively. The synthesized MIPs were identified using different techniques. The adsorption-desorption capability of each template was investigated towards its corresponding MIP. The extraction conditions of MISPE was optimized with respect to TET/MIP and MET/MIP sorbent. Bismuth subcitrate (BSC), the third co-formulated drug was analyzed in spiked human plasma using an atomic absorption spectrometric (AAS) method. The performance of the developed methods was assured as per ICH guidelines for analyzing the studied drugs in their pharmaceutical dosage form along with two of their official impurities. In addition, bioanalytical method validation was conducted where linearity was achieved at 2.0-40.0 μg mL-1, 2.0-40.0 μg mL-1 and 5.0-80.0 μg mL-1 for TET, MET and BSC, respectively.
Collapse
Affiliation(s)
- Amal M Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, El-hadaba El-Wosta, Mokatam, 5th District, Cairo, Egypt
| | - Khadiga M Kelani
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, El-hadaba El-Wosta, Mokatam, 5th District, Cairo, Egypt; Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha A Hegazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Ahmed H Nadim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud A Tantawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Chemistry, Faculty of Pharmacy, October 6 University, 6 of October City, Giza, Egypt.
| |
Collapse
|
9
|
Faysal AA, Kaya SI, Cetinkaya A, Ozkan SA, Gölcü A. The Effect of Polymerization Techniques on the Creation of Molecularly Imprinted Polymer Sensors and Their Application on Pharmaceutical Compounds. Crit Rev Anal Chem 2024:1-20. [PMID: 38252120 DOI: 10.1080/10408347.2023.2301652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Molecularly imprinted polymers (MIPs) have become more prevalent in fabricating sensor applications, particularly in medicine, pharmaceuticals, food quality monitoring, and the environment. The ease of their preparation, adaptability of templates, superior affinity and specificity, improved stability, and the possibility for downsizing are only a few benefits of these sensors. Moreover, from a medical perspective, monitoring therapeutic medications and determining pharmaceutical compounds in their pharmaceutical forms and biological systems is very important. Additionally, because medications are hazardous to the environment, effective, quick, and affordable determination in the surrounding environment is of major importance. Concerning a variety of performance criteria, including sensitivity, specificity, low detection limits, and affordability, MIP sensors outperform other published technologies for analyzing pharmaceutical drugs. MIP sensors have, therefore, been widely used as one of the most crucial techniques for analyzing pharmaceuticals. The first part of this review provides a detailed explanation of the many polymerization techniques that were employed to create high-performing MIP sensors. In the subsequent section of the review, the utilization of MIP-based sensors for quantifying the drugs in their pharmaceutical preparation, biological specimens, and environmental samples are covered in depth. Finally, a critical evaluation of the potential future research paths for MIP-based sensors clarifies the use of MIP in pharmaceutical fields.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
- Graduate School of Health Sciences, Ankara University, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
| | - Ayşegül Gölcü
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
10
|
Hassan AM, Kelani KM, Hegazy MA, Tantawy MA. Molecular imprinted polymer-based potentiometric approach for the assay of the co-formulated tetracycline HCl, metronidazole and bismuth subcitrate in capsules and spiked human plasma. Anal Chim Acta 2023; 1278:341707. [PMID: 37709450 DOI: 10.1016/j.aca.2023.341707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND An anti-H-pylori co-formulated mixture of tetracycline HCl (TET), metronidazole (MET), and bismuth subcitrate (BSC) is recently available. Only two chromatographic and spectrophotometric methods are reported for determining those drugs simultaneously where the effect of impurities that could be present as well as the biological fluids matrix influence do not be taken into consideration. There is a need to develop an easy-to-use potentiometric technique for analysis of TET, MET, and BSC in their co-formulated capsules, in presence of some official impurities and in spiked human plasma. RESULTS Three carbon paste electrodes (CPEs) were fabricated for this purpose. Being a solid contact ion-selective electrode, CPE suffers from the creation of a water layer affecting its stability and reproducibility. Besides, it has a common problem in differentiation between two drugs carrying the same charge (positively charged TET and MET). Water layer formation was prevented through inserting polyaniline nanoparticles (≈10.0 nm diameter) between solid contact and ion-sensing membrane in the three proposed sensors. TET and MET interference was overcome by synthesizing a corresponding molecular imprinted polymer (MIP) for each drug. The synthesized MIPs were inserted in equivalent sensing membranes and characterized using several techniques. The suggested MIPs have a noticeable enhanced sensitivity in potentiometric determination. The obtained LODs were 5.88 × 10-8, 5.19 × 10-7, and 1.73 × 10-6 M for TET, MET and BSC proposed CPEs, respectively, with corresponding slopes of 57.37, 56.20, and -57.40 mV decade-1. SIGNIFICANCE The proposed potentiometric method makes the detection of the three cited drugs simple, fast, and feasible. This approach is the first for determining three drugs potentiometrically in one combined formulation. The obtained results were compared favorably with previously reported potentiometric methods.
Collapse
Affiliation(s)
- Amal M Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, El-hadaba El-Wosta, Mokatam, 5th District, Cairo, Egypt
| | - Khadiga M Kelani
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, El-hadaba El-Wosta, Mokatam, 5th District, Cairo, Egypt; Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, 11562, Cairo, Egypt
| | - Maha A Hegazy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, 11562, Cairo, Egypt
| | - Mahmoud A Tantawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, 11562, Cairo, Egypt; Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.
| |
Collapse
|
11
|
Tantawy MA, Yehia AM, Elbalkiny HT. All-solid-state chip utilizing molecular imprinted polymer for erythromycin detection in milk samples: Printed circuit board-based potentiometric system. Mikrochim Acta 2023; 190:408. [PMID: 37733266 PMCID: PMC10514120 DOI: 10.1007/s00604-023-05959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
Detection of erythromycin (ERY) residues in commercial milk samples is crucial for the safety assessment. Herein, a printed circuit board was patterned as a feasible miniaturized potentiometric sensor for ERY determination in dairy samples. The proposed chip design fits to a 3.5-mm female audio plug to facilitate the potential measurements of working electrode versus reference one in this all-solid-state system. The sensor utilizes molecular imprinted polymer (MIP) for the selective recognition of the studied drug in such challenging matrix. The electrode stability is achieved through the addition of poly (3,4-ethylenedioxythiophene) nano-dispersion on its surface. The proposed device detects down to 6.6 × 10-8 M ERY with a slope of 51 mV/decade in the 1 × 10-7-1 × 10-3 M range. The results display high accuracy (99.9% ± 2.6) with satisfactory relative standard deviation for repeatability (1.6%) and reproducibility (5.0%). The effect of common antibiotic classes, namely, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, can be neglected as evidenced by their calculated binding capacities towards the proposed MIP. The calculated selectivity coefficients also show a good electrode performance in the presence of naturally present inorganic ions allowing its application to different milk samples.
Collapse
Affiliation(s)
- Mahmoud A Tantawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini St, Cairo, 11562, Egypt.
- Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.
| | - Ali M Yehia
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini St, Cairo, 11562, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Capital, Garden City, Cairo, R5 New, Egypt
| | - Heba T Elbalkiny
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, 6th October City, 11787, Egypt
| |
Collapse
|
12
|
Soliman MA, Mahmoud AM, Elzanfaly ES, Abdel Fattah LE. Electrochemical sensor based on bio-inspired molecularly imprinted polymer for sofosbuvir detection. RSC Adv 2023; 13:25129-25139. [PMID: 37614794 PMCID: PMC10443622 DOI: 10.1039/d3ra03870j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
The electropolymerized molecularly imprinted polymers (MIP) have enabled the utilization of various functional monomers with superior selective recognition of the target analyte template. Methyldopa is an attractive synthetic dopamine analogue which has phenolic, carboxylic, and aminic functional groups. In this research, methyldopa was exploited to fabricate selective MIPs, for the detection of sofosbuvir (SFB), by a simple electropolymerization step onto a disposable pencil graphite electrode (PGE) substrate. The interaction between methyldopa, as a functional monomer, and a template has been investigated experimentally by UV spectroscopy. A polymethyldopa (PMD) polymer was electrografted onto PGE in the presence of SFB as a template. X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (ESI), and cyclic voltammetry (CV) were used for the characterization of the fabricated sensor. Differential pulse voltammetry (DPV) of a ferrocyanide/ferricyanide redox probe was employed to indirectly detect the SFB binding to the MIP cavities. The sensor shows a reproducible and linear response over a dynamic linear range from 1.0 × 10-11 M to 1.0 × 10-13 M of SFB with a limit of detection of 3.1 × 10-14 M. The sensor showed high selectivity for the target drug over structurally similar and co-administered interfering drugs, and this enabled its application to detect SFB in its pharmaceutical dosage form and in spiked human plasma samples.
Collapse
Affiliation(s)
- Mahmoud A Soliman
- Misr University for Science and Technology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Department of Analytical Chemistry 6th of October City 12566 Egypt
| | - Amr M Mahmoud
- Cairo University, Faculty of Pharmacy, Department of Analytical Chemistry Cairo 12613 Egypt
| | - Eman S Elzanfaly
- Cairo University, Faculty of Pharmacy, Department of Analytical Chemistry Cairo 12613 Egypt
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University Cairo Egypt
| | - Laila E Abdel Fattah
- Misr University for Science and Technology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Department of Analytical Chemistry 6th of October City 12566 Egypt
- Cairo University, Faculty of Pharmacy, Department of Analytical Chemistry Cairo 12613 Egypt
| |
Collapse
|
13
|
Sayed RA, Mohamed AR, Shalaby A, Ibrahim H. Micellar-enhanced and green-assessed first-derivative synchronous spectrofluorimetric approach for concurrent determination of alfuzosin hydrochloride and solifenacin succinate in different matrices: Docking simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122442. [PMID: 36758367 DOI: 10.1016/j.saa.2023.122442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Alfuzosin hydrochloride (AZH) is co-formulated with solifenacin succinate (SOS) in Solitral® capsules for treating prostate hyperplasia in patients with overactive bladder syndrome. Herein and for the first time, an ultrasensitive synchronous spectrofluorimetric approach coupled with first-order derivative signal processing was designed for simultaneous determination of AZH and SOS in their pure forms, newly-released pharmaceutical capsules, and human biological fluids. AZH and SOS showed their conventional emission spectra in bi-distilled water at 382 nm and 294 nm after excitation at 325 nm and 250 nm, respectively. The native fluorescence intensities of AZH and SOS were greatly enhanced through micellar formation using sodium dodecyl sulfate surfactant (2%). The proposed approach included the use of synchronous mode at Δλ of 60 nm where the overlap between the studied analytes' fluorescence spectra wasn't completely resolved. The complete resolution was achieved by derivatization of the synchronized spectra to the first-order yielding two zero-crossing points which allowed the determination of AZH and SOS simultaneously without interference at 408 nm and 321 nm, respectively. Under optimum experimental circumstances, good linearities were accomplished over the concentration ranges of (1-24) ng/mL and (4-250) ng/mL with LOD of 0.26 ng/mL and 1.31 ng/mL for AZH and SOS, respectively. The proposed approach was validated successfully according to guidelines adopted by the ICH and compared statistically with the reported LC method with no discernible differences concerning accuracy or precision at p = 0.05. Successful application of the proposed approach achieved with excellent recovery percentages for analysis of the studied analytes in different matrices (pharmaceutical capsules and biological fluids) confirms its suitability for use in QC laboratories and other bioanalytical applications. The proposed approach's greenness was evaluated using two tools namely; penalty points scoring system and green analytical procedure index (GAPI) divulging excellent greenness of this approach relative to the reported LC method. The proposed approach relied chiefly on water as the cheapest and greenest solvent.
Collapse
Affiliation(s)
- Rania A Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed R Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Abdalla Shalaby
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hany Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| |
Collapse
|
14
|
Wadie M, Abdel-Moety EM, Rezk MR, Marzouk HM. A novel smartphone HPTLC assaying platform versus traditional densitometric method for simultaneous quantification of alfuzosin and solifenacin in their dosage forms as well as monitoring content uniformity and drug residues on the manufacturing equipment. RSC Adv 2023; 13:11642-11651. [PMID: 37063718 PMCID: PMC10102882 DOI: 10.1039/d3ra01211e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023] Open
Abstract
The large popularity and rapid technology of smartphones have opened new avenues for their integration into different analytical methodologies and drug quality monitoring as a portable, easily accessible, and user-friendly detector. Herein, a novel and portable smartphone-based high-performance thin layer chromatographic (HPTLC) approach is proposed for the simultaneous analysis of two urological drugs, alfuzosin and solifenacin, which treat benign prostatic hyperplasia accompanied by overactive bladder syndrome. First, chromatographic separation was accomplished using an ecofriendly mobile phase, then the developed plates were visualized using Dragendorff's reagent and photographed via a smartphone's rear-facing camera fixed on a fabricated two-illumination-source chamber. The intensities of the drug spots were quantified using open-source image analysis software ImageJ over the concentration ranges of 2.0 to 30.0 μg per band for both drugs with acceptable results in ICH validation parameters. To improve the method's accuracy and reproducibility, various construction and shooting key parameters were investigated and optimized. Moreover, the study was extended to compare the obtained results with those of a benchtop densitometric method using a Camag TLC Scanner 3 at 215.0 nm; the densitometric method provided an additional assessment tool for peak purity and was capable of assaying lower drug concentrations over a linearity range of 0.2-8.0 μg per band for alfuzosin and 0.1-6.0 μg per band for solifenacin. The fast, simple, reliable, green merits of the proposed HPTLC/smartphone method suggest that it is an excellent platform for assaying marketed combined capsules and assuring their content uniformity. Moreover, the high sensitivity of the densitometric method was used, for the first time, to determine the residual content of the cited drugs on manufacturing equipment surfaces for cleaning validation. Finally, the environmental impact of the developed methods was evaluated based on green analytical chemistry principles.
Collapse
Affiliation(s)
- Mina Wadie
- Analytical Chemistry Department, Faculty of Pharmacy - Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt +20 1277978958
| | - Ezzat M Abdel-Moety
- Analytical Chemistry Department, Faculty of Pharmacy - Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt +20 1277978958
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy - Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt +20 1277978958
| | - Hoda M Marzouk
- Analytical Chemistry Department, Faculty of Pharmacy - Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt +20 1277978958
| |
Collapse
|
15
|
Parshina A, Yelnikova A, Kolganova T, Titova T, Yurova P, Stenina I, Bobreshova O, Yaroslavtsev A. Perfluorosulfonic Acid Membranes Modified with Polyaniline and Hydrothermally Treated for Potentiometric Sensor Arrays for the Analysis of Combination Drugs. MEMBRANES 2023; 13:311. [PMID: 36984697 PMCID: PMC10058550 DOI: 10.3390/membranes13030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
A novel potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. The potentiometric sensors (Donnan potential (DP) was used as an analytical signal) with an inner reference solution were based on perfluorosulfonic acid (PFSA) membranes modified with polyaniline (PANI) by in situ oxidative polymerization. The order of the membrane treatment with precursor solutions and their concentrations was varied. Additionally, the PFSA/PANI composite membranes were hydrothermally treated at 120 °C. The influence of the preparation conditions and the composition of membranes on their sorption and transport properties was studied. We estimated the factors affecting the sensitivity of DP-sensors based on the PFSA/PANI composite membranes to ions of sulfamethoxazole and trimethoprim simultaneously presented in solutions. A developed multisensory system provided a simultaneous determination of two analytes in aqueous solutions without preliminary separation, derivatization, or probe treatment. The re-estimation of the calibration characteristics of the multisensory system did not show a statistically significant difference after a year of its use. The limits of detection of sulfamethoxazole and trimethoprim were 1.4 × 10-6 and 8.5 × 10-8 M, while the relative errors of their determination in the combination drug were 4 and 5% (at 5 and 6% relative standard deviation), respectively.
Collapse
Affiliation(s)
- Anna Parshina
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Anastasia Yelnikova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Tatyana Kolganova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Tatyana Titova
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Polina Yurova
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Olga Bobreshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| |
Collapse
|
16
|
Afsharara H, Asadian E, Mostafiz B, Banan K, Bigdeli SA, Hatamabadi D, Keshavarz A, Hussain CM, Keçili R, Ghorbani-Bidkorpeh F. Molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPE): A review on sensitive electrochemical sensors for pharmaceutical determinations. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Two fabricated carbon paste electrodes for novel potentiometric determination of probenecid in dosage form and human plasma. Sci Rep 2022; 12:20418. [PMID: 36443448 PMCID: PMC9705367 DOI: 10.1038/s41598-022-24920-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Solid contact ion selective electrodes are extensively utilized owing to their marvelous performance over traditional liquid contact ones. The main drawback of those solid contact electrodes is aqueous layer formation which affects their constancy. Herein and to overcome this common drawback, a carbon paste electrode containing poly(3,4-ethylenedioxythiophene) was constructed and used for determination of probenecid at variant pH values. This modification decreased the potential drift down to 0.8 mV/h and improved its stability over 30 days. A Nernstian slope of - 57.8 mV/decade associated with a linear range of 1.0 × 10-6-1.0 × 10-2 mol/L was obtained. The modified carbon paste electrode successfully detected up to 8.0 × 10-7 mol/L probenecid. Results of this modified carbon paste electrode were also compared to unmodified one.
Collapse
|
18
|
Wang Y, Shi H, Sun J, Xu J, Yang M, Yu J. Hollow-Channel Paper Analytical Devices Supported Biofuel Cell-Based Self-Powered Molecularly Imprinted Polymer Sensor for Pesticide Detection. BIOSENSORS 2022; 12:974. [PMID: 36354483 PMCID: PMC9687901 DOI: 10.3390/bios12110974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Herein, a paper-based glucose/air biofuel cell (BFC) was constructed and implemented for self-powered pesticide detection. Our developed paper-based chip relies on a hollow-channel to transport fluids rather than capillarity, which reduces analysis times as well as physical absorption. The gold nanoparticles (Au NPs) and carbon nanotubes (CNTs) were adapted to modify the paper fibers to fabricate the flexible conductive paper anode/cathode electrode (Au-PAE/CNT-PCE). Molecularly imprinted polymers (MIPs) using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template were synthesized on Au-PAE for signal control. In the cathode, bilirubin oxidase (BOD) was used for the oxygen reduction reaction. Based on a competitive reaction between 2,4-D and glucose-oxidase-labeled 2,4-D (GOx-2,4-D), the amount of GOx immobilized on the bioanode can be simply tailored, thus a signal-off self-powered sensing platform was achieved for 2,4-D determination. Meanwhile, the coupling of the paper supercapacitor (PS) with the paper-based chip provides a simple route for signal amplification. Combined with a portable digital multi-meter detector, the amplified signal can be sensitively readout. Through rational design of the paper analytical device, the combination of BFC and PS provides a new prototype for constructing a low-cost, simple, portable, and sensitive self-powered biosensor lab-on-paper, which could be easily expanded in the field of clinical analysis and drug delivery.
Collapse
Affiliation(s)
- Yanhu Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Huihui Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiantao Sun
- Shandong Institute for Product Quality Inspection, Jinan 250102, China
| | - Jianjian Xu
- Department of Food and Drug, Weihai Ocean Vocational College, Weihai 264300, China
| | - Mengchun Yang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
19
|
Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Tantawy MA, Elshabasy DA, Youssef NF, Amer SM. Stability indicating potentiometric method for the determination of palonosetron HCl using two different sensors. Sci Rep 2022; 12:12966. [PMID: 35902725 PMCID: PMC9334296 DOI: 10.1038/s41598-022-17349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
This paper presents a novel potentiometric approach for the determination of palonosetron HCl using two sensors; ionophore-free and ionophore-doped ones. The two sensors successfully determined the cited drug in the range of 1 × 10-5-1 × 10-2 M with respective Nernstian slopes of 54.9 ± 0.25 and 59.3 ± 0.16 mV/decade. Incorporating calix[8]arene as an ionophore resulted in a lower detection limit (LOD = 3.1 × 10-6 M) and enhanced selectivity when compared to the ionophore-free sensor (LOD = 7.9 × 10-6 M). This modification was also associated with faster response for the ionophore-doped sensor (response time = 20 s) compared to the ionophore-free one (response time = 30 s). The two sensors showed a stable response over a pH range of 3.0-8.0. They successfully determined palonosetron HCl in presence of its oxidative degradation products. They were also used for direct determination of the drug in commercially available parenteral solution without any interference from other dosage forms' additives.
Collapse
Affiliation(s)
- Mahmoud A Tantawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
- Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.
| | | | | | - Sawsan M Amer
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Wen Z, Gao D, Lin J, Li S, Zhang K, Xia Z, Wang D. Magnetic porous cellulose surface-imprinted polymers synthetized with assistance of deep eutectic solvent for specific recognition and purification of bisphenols. Int J Biol Macromol 2022; 216:374-387. [PMID: 35798079 DOI: 10.1016/j.ijbiomac.2022.06.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 01/13/2023]
Abstract
Magnetic porous cellulose molecularly imprinted polymers-based bisphenols have been developed using Fe3O4 as the magnetic material, a deep eutectic solvent as the assisted solvent, and N-isopropylacrylamide as the functional monomer. The resulting magnetic porous cellulose molecularly imprinted polymers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometry, thermal gravimetric analysis, and Brunauer-Emmett-Teller analysis. Moreover, the adsorption properties of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A, bisphenol F, and bisphenol AF were investigated using static, dynamic, and selective adsorption experiments. The introduction of porous cellulose materials significantly improves the capabilities of the material. The adsorption capacity, mass transfer efficiency, and selectivity of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A were 5.9, 4.0, and 4.4 times those of traditional molecularly imprinted polymers. Moreover, the adsorption stability of the magnetic porous cellulose molecularly imprinted polymers was investigated under different temperature and pH conditions. The adsorption characteristics of the magnetic porous cellulose molecularly imprinted polymers toward the target molecules were investigated using adsorption isotherm, kinetic, and thermodynamic models. Hydrogen bonding is the main interaction formed between the magnetic porous cellulose molecularly imprinted polymers and the target molecules. Magnetic porous cellulose molecularly imprinted polymers have great application value with excellent stability and reusability. Finally, the combination of the magnetic porous cellulose molecularly imprinted polymers and high-performance liquid chromatography or ultra-performance liquid chromatography-mass spectrometry was successfully used for the purification and detection of bisphenols in milk (1.349 ng/mL bisphenol F and 3.014 ng/mL bisphenol AF), canned fruits (1129 ng/mL bisphenol A, 10.11 ng/mL bisphenol F, and 91.87 ng/mL bisphenol AF), and fish (11.91 ng/mL bisphenol AF) samples. Furthermore, the magnetic porous cellulose molecularly imprinted polymer method is more selective, sensitive, and accurate than the traditional precipitation method.
Collapse
Affiliation(s)
- Zeng Wen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Siyi Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
22
|
Magdy N, sobaih A, Hussein L, Mahmoud A. Graphene‐based Disposable Electrochemical Sensor for Chlorhexidine Determination. ELECTROANAL 2022. [DOI: 10.1002/elan.202200119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nancy Magdy
- Faculty of Pharmacy, Ain Shams University EGYPT
| | | | | | | |
Collapse
|
23
|
Kelani K, Hegazy M, Hassan A, Tantawy M. A new comparative potentiometric method for analysis of omarigliptin using three different sensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Amal Hassan
- Modern University For Technology and Information EGYPT
| | | |
Collapse
|