1
|
Su L, Lai X, Zhang G, Liu C, He W, Zhang G, Lai W, Deng S. Multiplex immunochromatographic assay based on triple-color aggregation-induced emission fluorescent microspheres with good biocompatibility for the simultaneous detection of veterinary drugs in aquatic products. Anal Chim Acta 2025; 1345:343700. [PMID: 40015768 DOI: 10.1016/j.aca.2025.343700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND The simultaneous presence of multiple veterinary drug residues in a single sample poses a significant challenge for food safety analysis. Compared with traditional single-target detection, multiplex detection can not only provide richer sample information to raise the detection efficiency and reduce the possibility of false positives and omissions, but also decrease sample volume, shorten detection time, and lower costs. The luminance of aggregation-induced emission fluorescent microspheres (AIEFMs) can be enhanced by loading more fluorophores. The AIEFMs exhibit more advantages such as bright colors, excellent monodispersity, and high photostability, making them widely applicable in food safety. RESULTS We successfully developed a multiplex immunochromatographic assay (ICA) using triple-color AIEFMs as signal labels for the simultaneous detection of three veterinary drugs: chloramphenicol (CAP), diethylstilbestrol (DES), and diazepam (DZP). AIEFMs with good biocompatibility were synthesized via a simple and quick one-pot method based on the self-aggregation of AIEgens and the coating of metal-polyphenol network formed through the coordination of proanthocyanidin and Fe3+ in a tetrahydrofuran/water mixed solution. The as-prepared AIEFMs were rapidly conjugated with antibodies to synthesize AIEFM probes without any coupling reagent, and the multiplex AIEFMs-ICA was established for the detection of CAP, DES, and DZP. Under optimal conditions, the detection limits for CAP, DES, and DZP were 1.67, 410, and 5 pg/mL, respectively. The average recoveries of these veterinary drugs in fish and shrimp samples ranged from 85.40 % to 113.15 %, demonstrating the reliability and stability of the multiplex AIEFMs-ICA. SIGNIFICANCE The multiplex AIEFMs-ICA exhibited excellent signal output capacity, high specificity, and remarkable sensitivity. In brief, the developed multiplex AIEFMs-ICA shows great potential in the on-site detection of veterinary drugs and other targets.
Collapse
Affiliation(s)
- Liu Su
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Xiaocui Lai
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Cong Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Weihua He
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Gan Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| |
Collapse
|
2
|
Qin M, Ding N, Ma P, Jiang H, Li Y, Chen P, Wang Z, Yang J. Development of a dual-mode lateral flow assay based on structure-guided aptamers for the detection of capsaicin in gutter oils. Biosens Bioelectron 2025; 271:117100. [PMID: 39731823 DOI: 10.1016/j.bios.2024.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The construction of structure-guided aptamers and the ultra-sensitive aptamer-based lateral flow assays (Apt-LFA) integrated detection method hold significant potential for food analysis. Using an engineered modified sequence strategy, we successfully developed the aptamer Cap-1-2M4, significantly enhancing its affinity for capsaicin (CAP) to 0.6197 ± 0.0689 nM. We developed a highly sensitive method for CAP detection based on Vap@AuNFs, leveraging their superior colorimetric and photothermal signals and high aptamer coupling performance. The Vap@AuNFs-based Apt-LFA (Vap@AuNFs-Apt-LFA) achieve signal amplification through catalytic hairpin assembly (CHA) and exonuclease III (Exo III). Additionally, dual-mode (colorimetric and photothermal) quantitative detection via lateral flow test strips was achieved by capturing the nucleic acid effect of Vap@AuNFs. The limit of detection (LOD) of Vap@AuNFs-Apt-LFA by colorimetric/photothermal method was 0.043 ng mL-1 and 0.011 ng mL-1, with linear ranges of 0.1-500 ng mL-1 and 0.05-500 ng mL-1, respectively. This aptamer engineering strategy and the developed Vap@AuNFs-Apt-LFA offer new directions for food safety and provide a reference for feasible portable detection methods.
Collapse
Affiliation(s)
- Mingwei Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Pengfei Ma
- Textile Industrial Products Testing Center of Nanjing Customs District, Wuxi Customs District PR China, Wuxi, 214100, China
| | - Hongtao Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Peifang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Teaching and Research Office of Food Safety, School of Public Course, Bengbu Medical College, Bengbu, 233000, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
| | - Junsong Yang
- Teaching and Research Office of Food Safety, School of Public Course, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
3
|
Lamprou E, Kalligosfyri PM, Kalogianni DP. Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies. BIOSENSORS 2025; 15:68. [PMID: 39996970 PMCID: PMC11853705 DOI: 10.3390/bios15020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Multiplex lateral flow assays are one of the greatest advancements in the world of rapid diagnostics, achieving the performance of several tests in one. These tests meet the basic requirements of increasing ease of use, low detection limit, and high specificity, as they combine the use of novel strategies, such as the exploitation of multiple detection labels, and a variety of amplification methods. These tests have proven their usefulness in many different areas, including clinical diagnostics, food, and environmental monitoring. In this review paper, we attempt to highlight and discuss the predominant changes in multianalyte LFAs, as related to their principle, their development, and their combination with other methods. Attention is paid to their flexibility and the challenges associated with the use of LFA arrays, including strategies to improve the detectability, sensitivity, and reliability of the assays. Therefore, this review emphasizes the current advances in the field to underline the possible impact of multiplex LFAs on the future of diagnostics and analytical sciences.
Collapse
Affiliation(s)
- Eleni Lamprou
- Department of Chemistry, University of Patras, Rio, GR26504 Patras, Greece;
| | | | | |
Collapse
|
4
|
Martinelli S, Fortuna L, Coratti F, Passagnoli F, Amedei A, Cianchi F. Potential Probes for Targeted Intraoperative Fluorescence Imaging in Gastric Cancer. Cancers (Basel) 2024; 16:4141. [PMID: 39766041 PMCID: PMC11675003 DOI: 10.3390/cancers16244141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract associated with high mortality rates and accounting for approximately 1 million new cases diagnosed annually. Surgery, particularly radical gastrectomy, remains the primary treatment; however, there are currently no specific approaches to better distinguish malignant from healthy tissue or to differentiate between metastatic and non-metastatic lymph nodes. As a result, surgeons have to remove all lymph nodes indiscriminately, increasing intraoperative risks for patients and prolonging hospital stay. Near-infrared fluorescence imaging with indocyanine green (ICG) can provide real-time visualization of the surgical field using both conventional laparoscopy and robotic mini-invasive precision surgery platforms. However, its application shows some limits, as ICG is a non-targeted contrast agent. Several studies are now investigating the potential efficacy of fluorescent targeted agents that could selectively bind to the tumor tissue, offering a valuable tool for metastatic mapping during robotic gastrectomy. This review aims to summarize the key fluorescent agents that have been developed to recognize GC markers, as well as those targeting the tumor microenvironment (TME) and metabolic features. These agents hold great potential as valuable tools for enhancing precision surgery in robotic gastrectomy procedures improving the clinical recovery of GC patients.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Laura Fortuna
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Francesco Coratti
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Federico Passagnoli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50134 Florence, Italy
| | - Fabio Cianchi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| |
Collapse
|
5
|
Chen Z, Xie Y, Cao Y, Wang Y, Zhao M, Wu Y, Xu B, Lin G. Rapid and sensitive detection of heart-type fatty acid binding protein using aggregation-induced emission nanoparticles on digital microfluidics workstation. Biosens Bioelectron 2024; 262:116563. [PMID: 39013359 DOI: 10.1016/j.bios.2024.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Early and rapid diagnostic of acute myocardial infarction (AMI) during its developing stage is crucial due to its high fatality rate. Heart-type fatty acid binding protein (h-FABP) is an ideal biomarker for the quantitative diagnosis of AMI, surpassing traditional markers such as myoglobin, creatine phosphokinase-MB, and troponin in terms of sensitivity, specificity, and prognostic value. To obtain diagnostic and prognostic information, a precise and fully quantitative measurement of h-FABP is essential, typically achieved through an immunosorbent assay like the enzyme-linked immunosorbent assay. Nevertheless, this method has several limitations, including extended detection time, complex assay procedures, the necessity for skilled technicians, and challenges in implementing automated detection. This research introduces a novel biosensor, utilizing aggregation-induced emission nanoparticles (AIENPs) and integrated with a digital microfluidic (DMF) workstation, designed for the sensitive, rapid, and automated detection of h-FABP in low-volume serum samples. AIENPs and magnetic beads in nanoscale were served as the capture particles and the fluorescent probe, which were linked covalently to anti-h-FABP antibodies respectively. The approach was based on a sandwich immunoassay and performed on a fully automated DMF workstation with assay time by 15 min. We demonstrated the determination of h-FABP in serum samples with detection limit of 0.14 ng/mL using this biosensor under optimal condition. Furthermore, excellent correlations (R2 = 0.9536, n = 50) were obtained between utilizing this biosensor and commercialized ELISA kits in clinical serum detecting. These results demonstrate that our flexible and reliable biosensor is suitable for direct integration into clinical diagnostics, and it is expected to be promising diagnostic tool for early detection and screening tests as well as prognosis evaluation for AMI patients.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Laboratory Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yang Xie
- Department of Laboratory Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yue Cao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yu Wang
- Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, Guangdong, 510000, China
| | - Meng Zhao
- Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, Guangdong, 510000, China
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Guanfeng Lin
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China.
| |
Collapse
|
6
|
Zhang H, Cai B, Cai F, Lian M, Wang Y. Ultrasensitive fluorescence immunoassay of pepsinogen I based on enzyme-triggered decomposition of AuNCs/MnO 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:122-127. [PMID: 38086630 DOI: 10.1039/d3ay01821k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Gastric cancer is a prevalent malignant tumor of the gastrointestinal tract accompanied by a high mortality rate; therefore, early gastric cancer screening is critical for improving patient survival. In this study, we present a facile fluorescence immunoassay for highly sensitive screening of pepsinogen I (PG I) based on a one-pot biomimetic mineralization process for the synthesis of gold nanocluster-anchored manganese dioxide (AuNCs/MnO2) nanosheets. MnO2 first quenches the fluorescence of AuNCs through the Förster resonance energy transfer effect, whereas the introduction of ascorbic acid (AA) leads to the decomposition of MnO2 and rapidly recovers the fluorescence of AuNCs. Based on the above principles and phenomena, we developed a sensitive fluorescence immunoassay for the in situ generation of AA to detect PG I. Specifically, in the presence of PG I, the sandwich-type immunoreactivity-enriched alkaline phosphatase-labeled secondary antibody catalyzes the production of AA from the substrate, which enhances the fluorescence intensity. Under optimized conditions, the fluorescence intensity increased linearly with the concentration of PG I (0.05 to 200 ng mL-1) with a limit of detection (LOD) of 0.013 ng mL-1 (S/N = 3). The designed sensing platform has good stability (more than one year) and excellent anti-interference capability and demonstrates satisfactory accuracy for detection in real samples compared to commercial ELISA kits.
Collapse
Affiliation(s)
- Huanzong Zhang
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian Province, People's Republic of China.
| | - Binhuang Cai
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian Province, People's Republic of China.
| | - Fan Cai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China.
| | - Mingzhe Lian
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian Province, People's Republic of China.
| | - Yinghui Wang
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian Province, People's Republic of China.
| |
Collapse
|
7
|
Nan X, Yao X, Yang L, Cui Y. Lateral flow assay of pathogenic viruses and bacteria in healthcare. Analyst 2023; 148:4573-4590. [PMID: 37655501 DOI: 10.1039/d3an00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Healthcare-associated pathogenic viruses and bacteria can have a serious impact on human health and have attracted widespread global attention. The lateral flow assay is a unidirectional detection based on the binding of a target analyte and a bioreceptor on the device via lateral flow. With incredible advantages over traditional chromatographic methods, such as rapid detection, ease of manufacture and cost effectiveness, these test strips are increasingly considered the ideal form for point-of-care applications. This review explores lateral flow assays for pathogenic viruses and bacteria, with a particular focus on methodologies, device components, construction methods, and applications. We anticipate that this review could provide exciting opportunities for developing new lateral flow devices for pathogens and advance related healthcare applications.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Xuesong Yao
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Li Yang
- Peking University First Hospital; Peking University Institute of Nephrology, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
8
|
Xie Z, Feng S, Pei F, Xia M, Hao Q, Liu B, Tong Z, Wang J, Lei W, Mu X. Magnetic/fluorescent dual-modal lateral flow immunoassay based on multifunctional nanobeads for rapid and accurate SARS-CoV-2 nucleocapsid protein detection. Anal Chim Acta 2022; 1233:340486. [PMID: 36283777 PMCID: PMC9544234 DOI: 10.1016/j.aca.2022.340486] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
Abstract
The SARS-CoV-2 pandemic has posed a huge challenge to rapid and accurate diagnosis of SARS-CoV-2 in the early stage of infection. In this work, we developed a novel magnetic/fluorescent dual-modal lateral flow immunoassay (LFIA) based on multifunctional nanobeads for rapid and accurate determination of SARS-CoV-2 nucleocapsid protein (NP). The multifunctional nanobeads were fabricated by using polyethyleneimine (PEI) as a mediate shell to combine superparamagnetic Fe3O4 core with dual quantum dot shells (MagDQD). The core-shell structure of MagDQD label with high loading density of quantum dots (QDs) and superior magnetic content realized LFIA with dual quantitative analysis modal from the assemblies of individual single nanoparticles. The LFIA integrated the advantages of magnetic signal and fluorescent signal, resulting excellent accuracy for quantitative analysis and high elasticity of the overall detection. In addition, magnetic signal and fluorescent signal both had high sensitivity with the limit of detection (LOD) as 0.235 ng mL-1 and 0.012 ng mL-1, respectively. The recovery rates of the methods in simulated saliva samples were 91.36%-103.60% (magnetic signal) and 94.39%-104.38% (fluorescent signal). The results indicate the method has a considerable potential to be an effective tool for diagnose SARS-CoV-2 in the early stage of infection.
Collapse
Affiliation(s)
- Zihao Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shasha Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,Corresponding author
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China,Corresponding author
| |
Collapse
|
9
|
Zhong ZT, Ashraf G, Chen W, Liu B, Wang GP, Zhao YD. Detection of Matrix Metalloproteinase-1 in Human Saliva Based on a Pregnancy Test Strip Platform. Anal Chem 2022; 94:16384-16392. [DOI: 10.1021/acs.analchem.2c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Guo-Ping Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
10
|
Saadati A, Farshchi F, Hasanzadeh M, Liu Y, Seidi F. Colorimetric and naked-eye detection of arsenic(iii) using a paper-based microfluidic device decorated with silver nanoparticles. RSC Adv 2022; 12:21836-21850. [PMID: 36091189 PMCID: PMC9358409 DOI: 10.1039/d2ra02820d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023] Open
Abstract
Arsenic (As) as a metal ion has long-term toxicity and its presence in water poses a serious threat to the environment and human health. So, rapid and accurate recognition of traces of As is of particular importance in environmental and natural resources. In this study, a fast and sensitive colorimetric method was developed using silver nano prisms (Ag NPrs), cysteine-capped Ag NPrs, and methionine-capped Ag NPrs for accurate detection of arsenic-based on transforming the morphology of silver nanoparticles (AgNPs). The generated Ag atoms from the redox reaction of silver nitrate and As(iii) were deposited on the surface of Ag NPrs and their morphology changed to a circle. The morphological changes resulted in a change in the color of the nanoparticles from blue to purple, which was detectable by the naked eye. The rate of change was proportional to the concentration of arsenic. The changes were also confirmed using UV-Vis absorption spectra and showed a linear relationship between the change in adsorption peak and the concentration of arsenic in the range of 0.0005 to 1 ppm with a lower limit of quantification (LLOQ) of 0.0005 ppm. The proposed probes were successfully used to determine the amount of As(iii) in human urine samples. In addition, modified microfluidic substrates were fabricated with Ag NPrs, Cys-capped Ag NPrs, and methionine-capped Ag NPrs nanoparticles that are capable of arsenic detection in the long-time and can be used in the development of on-site As(iii) detection kits. In addition, silver nanowires (AgNWs) were used as a probe to detect arsenic, but good results were not obtained in human urine specimens and paper microfluidic platforms. In this study, for the first time, AgNPs were developed for optical colorimetric detection of arsenic using paper-based microfluidics. Ag NPrs performed best in both optical and colorimetric techniques. Therefore, they can be a promising option for the development of sensitive, inexpensive, and portable tools in the environmental and biomedical diagnosis of As(iii).
Collapse
Affiliation(s)
- Arezoo Saadati
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Central European Institute of Technology, Brno University of Technology Brno CZ-612 00 Czech Republic
| | - Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas Avenida Brasil No. 4365 - Manguinhos Rio de Janeiro 21040-900 RJ Brazil
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Yuqian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|