1
|
Li W, Xu Y, Wang M, Wang Y, Wei J, Chen D. Effervescence-assisted salting-out liquid-liquid extraction for rapid and convenient analysis of pyrethroid pesticide residues. Talanta 2025; 287:127704. [PMID: 39923678 DOI: 10.1016/j.talanta.2025.127704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
A simple and efficient effervescence-assisted salting-out assisted liquid-liquid extraction (EA-SALLE) method was developed for the rapid extraction of pyrethroid insecticides in fruit juices and herbal extracts. By integrating effervescence extraction with SALLE, the extraction and phase separation processes were conducted simultaneously, significantly simplifying the experimental procedure and reducing the extraction time to just 3 min. Key factors influencing the method's efficiency were systematically optimized. Combined with gas chromatography with an electron capture detector, enabled the determination of nine pyrethroid insecticides, demonstrating excellent linearity (R2 > 0.99), low limits of detection (0.03-0.17 ng/mL), satisfactory accuracy (recoveries ranging from 83.0 % to 107.9 %), and good precision (RSD < 9.1 %). The proposed EA-SALLE method offers a simple, efficient, and cost-effective sample preparation technique. It is characterized by ease of operation, short extraction time, and high sensitivity, providing an effective tool for the monitoring and assessment of pesticide residues in complex samples.
Collapse
Affiliation(s)
- Wenxuan Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yaxi Xu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Meifei Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuyang Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinchao Wei
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Di Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
2
|
Huang L, Wang Q, He QR, Huang X, Zhang ZZ. Py-Azo-decorated covalent organic frameworks as a structure-responsive mass spectrometry probe for high-sensitivity and high-throughput screening of trace toxic chemicals in complex samples. Chem Commun (Camb) 2025; 61:6893-6896. [PMID: 40237404 DOI: 10.1039/d5cc01108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A Py-azo-decorated covalent organic framework (Py-Azo-COF) was utilized as a structure-responsive probe for SALDI-TOF MS analysis. Benefiting from its unique structure, the Py-Azo-COF probe exhibited high affinity, sensitivity (LOD: 2-200 fg mL-1), reproducibility, salt tolerance, and low background interference, enabling efficient screening of diverse trace toxic chemicals in complex samples.
Collapse
Affiliation(s)
- Li Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Qian Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiu-Rong He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiu Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Zun-Zhen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhang Y, Fan Z, Shang X, Ao L, Liu M, Lin F, Sun B, Dong W, Sun X, Xiong Y, Deng B. Novel Room-Temperature-Prepared Covalent Organic Framework as Adsorbent for Rapid Extraction of Aromatic Esters in Baijiu. J Food Sci 2025; 90:e70215. [PMID: 40260845 DOI: 10.1111/1750-3841.70215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Developing a rapid, efficient, and environmentally friendly analytical methodology for the determination of aromatic esters (AREs) in Baijiu presents a significant challenge. In this study, we developed a room-temperature method to synthesize core-shell Fe3O4@TPB-Dha in 1 h using pre-prepared Fe3O4 nanoparticles, enabling rapid and sensitive detection of AREs. The Fe3O4@TPB-Dha demonstrated exceptional adsorption capabilities (52.63-58.82 mg/g) with a brief adsorption duration (4 min) for four AREs as magnetic solid phase extraction (MSPE) adsorbent. Moreover, density functional theory (DFT) calculations revealed the key adsorption mechanisms to be hydrogen bonds, van der Waals forces, and π-π interactions. Ultimately, the method enabled the rapid and accurate quantification of the four AREs in real Baijiu samples, with concentrations spanning from 0.17 ± 6 × 10-4 to 2.40 ± 0.03 mg/L, and exhibited relative standard deviations below 6.57% (n = 3). These findings suggest that Fe3O4@TPB-Dha holds promise as an effective adsorbent for efficient extraction and precise quantification of aromatic esters in Baijiu.
Collapse
Affiliation(s)
- Yongqing Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Zhen Fan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Xiaolong Shang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Ling Ao
- Luzhou Laojiao Co. Ltd., Luzhou, China
| | - Miao Liu
- Luzhou Laojiao Co. Ltd., Luzhou, China
| | - Feng Lin
- Luzhou Laojiao Co. Ltd., Luzhou, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Wei Dong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Xiaotao Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | | | - Bo Deng
- Luzhou Laojiao Co. Ltd., Luzhou, China
| |
Collapse
|
4
|
Liu H, Di S, Liu Y, Li Z, Chen P, Zhu S. Magnetic fluorinated mesoporous metal-organic frameworks for rapid derivatization-assisted GC-MS analysis of perfluoroalkyl carboxylic acids in harsh water environment. J Chromatogr A 2025; 1741:465612. [PMID: 39729865 DOI: 10.1016/j.chroma.2024.465612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
A novel magnetic mesoporous fluorinated metal-organic framework material (Fe3O4@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed Fe3O4@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs. Adsorption mechanisms encompass acid-base interactions, hydrophobic interactions, F-F interactions, electrostatic interactions, and size complementarity. Optimization of key parameters has significantly improved the extraction efficiency of MSPE. When coupled with gas chromatography-mass spectrometry (GC-MS), MSPE offers rapid and highly sensitive analysis of PFCAs. The method demonstrates wide linear range (0.050-50 ng mL-1), low detection limits (0.0010-0.0019 ng mL-1), good recoveries (86.7 % to 111 %), and exceptional intra- and inter-day precision. This approach accurately quantifies PFCAs in lake water and groundwater samples, enabling precise assessment of environmental contamination levels and supporting targeted remediation efforts.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Di
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan Textile University, Wuhan 430200, China
| | - Yunkang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Zihan Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
5
|
da Silveira FFCL, Porto VA, de Sousa BLC, de Souza EV, Lo Nostro FL, Rocha TL, de Jesus LWO. Bioaccumulation and ecotoxicity of parabens in aquatic organisms: Current status and trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125213. [PMID: 39477001 DOI: 10.1016/j.envpol.2024.125213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Parabens are preservatives widely used in personal care products, pharmaceuticals, and foodstuffs. However, they are still unregulated chemical compounds. Given their extensive use and presence in different environmental compartments, parabens can adversely affect animal health. Thus, the current study aimed to summarize and critically analyze the bioaccumulation and ecotoxicity of parabens in aquatic species. Studies have been mostly conducted in laboratory conditions (75%), using mainly fish and crustaceans. Field studies were carried out across 128 sampling sites in six countries. Paraben bioaccumulation was predominantly detected in fish muscle, liver, brain, gills, ovary, and testes. Among the parent parabens, methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP) have been detected frequently and more abundantly in tissues of marine and freshwater specimens, as well as the metabolite 4-hydroxybenzoic acid (4-HB). Parabens can induce lethal and sublethal effects on aquatic organisms, such as oxidative stress, endocrine disruption, neurotoxicity, behavioral changes, reproductive impairment, and developmental abnormalities. The toxicity of parabens varied according to species, taxonomic group, developmental stage, exposure time, and concentrations tested. This study highlights the potential bioaccumulation and ecotoxicological impacts of parabens and their metabolites on aquatic invertebrates and vertebrates. Additionally, future research recommendations are provided to evaluate the environmental risks posed by paraben contamination more effectively.
Collapse
Affiliation(s)
- Felipe Félix Costa Lima da Silveira
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Viviane Amaral Porto
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Bianca Leite Carnib de Sousa
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Emilly Valentim de Souza
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Fabiana Laura Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, UBA-CONICET, Buenos Aires, Argentina
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
6
|
Chen P, Zhang Q, Yin H, Di S, Liu H, Qin H, Liu M, Liu Y, Li Z, Zhu S. Recent Progress and Applications of Advanced Nanomaterials in Solid-Phase Extraction. Electrophoresis 2024. [PMID: 39498723 DOI: 10.1002/elps.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Sample preparation maintains a key bottleneck in the whole analytical procedure. Solid-phase sorbents (SPSs) have garnered increasing attention in sample preparation research due to their crucial roles in achieving high clean-up and enrichment efficiency in the analysis of trace targets present in complex matrices. Novel nanoscale materials with improved characteristics have garnered considerable interest across different scientific disciplines due to the limited capabilities of traditional bulk-scale materials. The purpose of this review is to offer a thorough summary of the latest developments and uses of SPSs in preparing samples for chromatographic analysis, focusing on the years 2020-2024. The techniques for preparing SPSs are examined, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), carbon nanoparticles (CNPs), molecularly imprinted polymers (MIPs), and metallic nanomaterials (MNs). Examining the pros and cons of different extraction methods, including solid-phase extraction (SPE), magnetic SPE (MSPE), flow-based SPE (FBA-SPE), solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and dispersive SPE (DSPE), is the main focus. Furthermore, this article presents the utilization of SPE technology for isolating common contaminants in various environmental, biological, and food specimens. We highlight the persistent challenges in SPSs and anticipate future advancements and applications of novel SPSs.
Collapse
Affiliation(s)
- Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Qiuyue Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hang Yin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan Textile University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hailan Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ming Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yunkang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Zihan Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
7
|
Zhang Q, Zhu N, Lu Z, He M, Chen B, Hu B. Magnetic covalent organic frameworks as sorbents in the chromatographic analysis of environmental organic pollutants. J Chromatogr A 2024; 1728:465034. [PMID: 38824842 DOI: 10.1016/j.chroma.2024.465034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.
Collapse
Affiliation(s)
- Qiulin Zhang
- Department of Chemistry, Wuhan University, China
| | - Ning Zhu
- Department of Chemistry, Wuhan University, China
| | - Ziyang Lu
- Department of Chemistry, Wuhan University, China
| | - Man He
- Department of Chemistry, Wuhan University, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, China.
| |
Collapse
|
8
|
Zhang S, Cai T, Lin J, Liu JJ, Zhao YG, Cao MY. Analysis of 15 bile acids in human plasma based on C18 functionalized magnetic organic polymer nanocomposite coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1725:464962. [PMID: 38704923 DOI: 10.1016/j.chroma.2024.464962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Because of the "enterohepatic circulation" of bile acid, liver damage can be reflected by monitoring the content of bile acid in the serum of the organism. To monitor the concentration of 15 bile acids in plasma samples, a new technique of PRiME (process, ruggedness, improvement, matrix effect, ease of use) pass-through cleanup procedure combined with high performance liquid chromatography-tandem quadrupole mass spectrometry (HPLC-MS/MS) was developed. The sorbent used in the PRiME pass-through cleanup procedure is a new type of magnetic organic resin composite nano-material modified by C18 (C18-PS-DVB-GMA-Fe3O4), which has high cleanup efficiency of plasma samples. It also shows good performance in the separation and analysis of 15 kinds of bile acids. Under the optimal conditions, the results show higher cleanup efficiency of C18-PS-DVB-GMA-Fe3O4 with recoveries in the range of 82.1-115 %. The limit of quantitative (LOQs) of 15 bile acids were in the range of 0.033 µg/L-0.19 µg/L, and the RSD values of 15 bile acids were in the range of 3.00-11.9 %. Validation results on linearity, specificity, accuracy and precision, as well as on the application to analysis of 15 bile acids in 100 human plasma samples demonstrate the applicability to clinical studies.
Collapse
Affiliation(s)
- Shun Zhang
- Ningbo No.2 Hospital, Ningbo 315010, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Ting Cai
- Ningbo No.2 Hospital, Ningbo 315010, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Jing Lin
- Ningbo No.2 Hospital, Ningbo 315010, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Jia-Juan Liu
- Ningbo No.2 Hospital, Ningbo 315010, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Min-Yi Cao
- Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China.
| |
Collapse
|
9
|
Wang Q, Shi X, Tang SF, Wang H, Chen Y, Zhang N. Preparation of a β-cyclodextrin grafted magnetic biochar for efficient extraction of four antiepileptic drugs in plasma samples. J Chromatogr A 2024; 1724:464893. [PMID: 38643615 DOI: 10.1016/j.chroma.2024.464893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024]
Abstract
Simultaneous monitoring of plasma concentration levels of multiple antiepileptic drugs (AEDs) is essential for dose adjustment in comprehensive epilepsy treatment, necessitating a sensitive technique for accurate extraction and determination of AEDs. Herein, a magnetic solid-phase extraction (MSPE) technique on the basis of modified biochar (BC) is investigated to extract four AEDs from plasma, in conjunction with high performance liquid chromatography. BC derived from Zizyphus jujuba seed shells was activated by phosphoric acid (PBC) and magnetized via coprecipitation to produce MPBC. The MPBCCD obtained after modification with β-cyclodextrin (CD) was characterized and evaluated for adsorption. It exhibited fast adsorption kinetics based on second-order kinetics and satisfactory adsorption capacity for AEDs. Then it was employed as the MSPE adsorbent and the influencing parameters were optimized. The enrichment factor was 18.75. The validation analysis revealed a favorable linearity that ranged from 0.04 to 20 μg·mL-1 along with a low limit of detection of 6.85 to 10.19 ng·mL-1. The recovery of the AEDs ranged from 78.7 to 109.2 %, with relative standard deviations below 6.7 %. Using quantum chemistry theory calculations and experimental results analysis, the adsorption mechanism was investigated. It disclosed that the suggested strategy built upon MPBCCD was appropriate for the assessment of AEDs in plasma and expanded the usage of BC as the environmentally favorable matrix for the analysis of biological samples.
Collapse
Affiliation(s)
- Qing Wang
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China.
| | - Xinyu Shi
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Shao-Feng Tang
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Huanhuan Wang
- Department of stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yuan Chen
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Na Zhang
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
10
|
Liu Y, Yang X, Hu J, Lu N, He D, Chi H, Liu Y, Yang S, Wen X. A novel deep eutectic solvent modified magnetic covalent organic framework for the selective separation and determination of trace copper ion in medicinal plants and environmental samples. Anal Chim Acta 2024; 1290:342197. [PMID: 38246739 DOI: 10.1016/j.aca.2023.342197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Pretreatment techniques should be introduced before metal ion determination because there is very low content of heavy metals in Chinese medicinal plants and environmental samples. Magnetic dispersive micro solid phase extraction (MDMSPE) has been widely used for the separation and adsorption of heavy metal pollutants in medicinal plants and environmental samples. However, the majority of MDMSPE adsorbents have certain drawbacks, including low selectivity, poor anti-interference ability, and small adsorption capacity. Therefore, modifying currently available adsorption materials has gained attention in research. RESULTS In this study, a novel adsorbent MCOF-DES based on a magnetic covalent organic framework (MCOF) modified by a new deep eutectic solvent (DES) was synthesized for the first time and used as an adsorbent of MDMSPE. The MDMSPE was combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for selective separation, enrichment, and accurate determination of trace copper ion (Cu2+) in medicinal plants and environmental samples. Various characterization results show the successful preparation of new MCOF-DES. Under the optimal conditions, the enrichment factor (EF) of Cu2+ was 30, the limit of detection (LOD) was 0.16 μg L-1, and the limit of quantitation (LOQ) was 0.54 μg L-1. The results for the determination of Cu2+ were highly consistent with those of inductively coupled plasma mass spectrometry (ICP-MS), which verified the accuracy and reliability of the method. SIGNIFICANCE The established method based on a new adsorption material MCOF-DES has achieved the selective separation and determination of trace Cu2+ in medicinal and edible homologous medicinal materials (Phyllanthus emblica Linn.) and environmental samples (soil and water), which provides a promising, selective, and sensitive approach for the determination of trace Cu2+ in other real samples.
Collapse
Affiliation(s)
- Ya Liu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Xiaofang Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jiayi Hu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Ning Lu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Daichun He
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Huajian Chi
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Shengchun Yang
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China.
| |
Collapse
|
11
|
Chen Y, He Q, Liu Y, Wang Q, He C, Liu S. Size-controllable synthesis of large-size spherical 3D covalent organic frameworks as efficient on-line solid-phase extraction sorbents coupled to HPLC. Anal Chim Acta 2024; 1287:342061. [PMID: 38182368 DOI: 10.1016/j.aca.2023.342061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Covalent organic frameworks (COFs) have found promising applications in separation fields due to their large surface area and high adsorption capacity, but the exiting COFs can not be directly used as the packing materials of on-line solid-phase extraction (SPE) coupled to HPLC and HPLC because their nano/submicron size or irregular shapes might cause ultrahigh column back pressure and low column efficiency. To synthesize the large-size spherical COFs larger than 3 μm as sorbents might be able to address these problems, however it is still a great challenge till now. RESULTS In this work, two large-size spherical 3D COFs (COF-320 and COF-300) were size-controllably synthesized within 10-90 μm via a two-step strategy. These two spherical COFs showed large surface area, fine crystallinity, good chemical/mechanical stability, and good reproducibility. As an application case, when used as the on-line SPE sorbents coupled to HPLC, the large-size spherical COF-320 displayed high binding capacity for bisphenol F (Qmax of 452.49 mg/g), low column back pressure (6-8 psi at flow rate of 1 mL/min), and good reusability (at least 30 cycles). The developed on-line-SPE-HPLC-UV method presented good analytical performance with enrichment factor of 667 folds, linear range of 1.0-400 ng/mL, limit of detection (LOD, S/N = 3) of 0.3 ng/mL, limit of quantification (LOQ, S/N = 10) of 1.0 ng/mL, and recoveries of 100.3-103.2 % (RSDs of 2.0-3.5 %) and 95.2-97.0 % (RSDs of 4.3-5.6 %) for tap water and lake water samples, respectively. SIGNIFICANCE This is the first case to synthesize the large-size spherical COFs within 10-90 μm, and this work made it possible to directly use COFs as the filling materials of on-line SPE coupled to HPLC and HPLC. The developed analytical method can be potentially applied to the rapid and sensitive detection of trace bisphenol F in environmental water samples.
Collapse
Affiliation(s)
- Ying Chen
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Qiong He
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Yuyang Liu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Chiyang He
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China.
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, United States
| |
Collapse
|
12
|
Lu Z, Chen Z, Ping H, Chen H, Chen X. A small-scale silica gel column chromatography method for separating carbazole compounds from highly mature crude oil. J Chromatogr A 2024; 1713:464536. [PMID: 38029659 DOI: 10.1016/j.chroma.2023.464536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
The concentration of carbazoles in highly mature crude oil is quite low, making it challenging to separate carbazole compounds for the gas chromatography-mass spectrometry (GC-MS) detection. This study presents a small-scale column chromatography method for separating carbazoles from highly mature crude oil using silica gel as a solid phase adsorbent and a Pasteur pipette as a separation device. The carbazole-rich crude oil from the Pearl River Mouth Basin was selected to explore the impact of reagent polarity and injection mode on the separation of carbazoles. The oil sample was eluted with solvents mixed with different volume proportions of n-hexane and dichloromethane and each eluted fraction was collected for GC-MS testing. The results indicated that increasing the reagent polarity caused the aromatic hydrocarbons and carbazole compounds in crude oil to be eluted sequentially. Most aromatic compounds in the crude oil could be selectively eluted using a reagent polarity ratio of 9:1 (Vn-hexane: Vdichloromethane), with no carbazole compounds. A significant amount of carbazole compounds were eluted in the polar segments of 8:2-6:4, with the eluted carbazoles concentration accounting for more than 98 % of the total concentration. Moreover, the concentration and recovery of carbazoles eluted by direct injection mode were about 10 % higher than those after adsorption by silica gel. The standard deviation of the parameter ratio for the separated carbazole compounds in the three groups of repeatable parallel experiments was less than 0.2 %. Our method is superior to traditional two-step method and C18 column method in separation efficiency and damage to human body. This method can be applied to both highly mature crude oil and other kinds of oils including biodegradable oil. It could be a versatile method for the carbazoles separation and provide technical support in unveiling the geochemical implications of these compounds in complex areas.
Collapse
Affiliation(s)
- Zhongdeng Lu
- School of Earth Resources, China University of Geosciences, Wuhan, Hubei, China
| | - Zulin Chen
- Key Laboratory of Oil and Gas Geochemistry and Environment in Hubei Province (Yangtze University), Wuhan, Hubei, China
| | - Hongwei Ping
- School of Earth Resources, China University of Geosciences, Wuhan, Hubei, China; Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, Wuhan, China.
| | - Honghan Chen
- School of Earth Resources, China University of Geosciences, Wuhan, Hubei, China; Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, Wuhan, China
| | - Xu Chen
- Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, Wuhan, China; College of Earth Sciences, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
13
|
Soni V, Patial S, Kumar A, Singh P, Thakur VK, Ahamad T, Van Le Q, Luque R, Raizada P, Nguyen VH. Covalent organic frameworks (COFs) core@shell nanohybrids: Novel nanomaterial support towards environmental sustainability applications. ENVIRONMENTAL RESEARCH 2023; 232:116353. [PMID: 37295591 DOI: 10.1016/j.envres.2023.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Covalent organic frameworks (COFs) based on core@shell nanohybrids have recently received significant attention and have become one of the most promising strategies for improving the stability and catalytic activity of COFs. Compared with traditional core@shell, COF-based core@shell hybrids own remarkable advantages, including size-selective reactions, bifunctional catalysis, and integration of multiple functions. These properties could enhance the stability and recyclability, resistance to sintering, and maximize the electronic interaction between the core and the shell. The activity and selectivity of COF-based core@shell could be simultaneously improved by taking benefit of the existing synergy between the functional encapsulating shell and the covered core material. Considering that, we have highlighted various topological diagrams and the role of COFs in COF-based core@shell hybrid for activity and selectivity enhancement. This concept article provides all-inclusive advances in the design and catalytic applications of COF-based core@shell hybrids. Various synthetic techniques have been developed for the facile tailoring of functional core@shell hybrids, including novel seed growth, in-situ, layer-by-layer, and one-pot method. Importantly, charge dynamics and structure-performance relationships are investigated through different characterization techniques. Different COF-based core@shell hybrids with established synergistic interactions have been detailed, and their influence on stability and catalytic efficiency for various applications is explained and discussed in this contribution. A comprehensive discussion on the remaining challenges associated with COF-based core@shell nanoparticles and research directions has also been provided to deliver insightful ideas for additional future developments.
Collapse
Affiliation(s)
- Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India.
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
14
|
Song ZY, Li YY, Duan W, Xiao XY, Gao ZW, Zhao YH, Liang B, Chen SH, Li PH, Yang M, Huang XJ. Decisive role of electronic structure in electroanalysis for sensing materials: Insights from density functional theory. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Jin R, Liu G, Zhou X, Zhang Z, Lin B, Liu Y, Qi Z, Zheng M. Analysis of polycyclic aromatic hydrocarbon derivatives in environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|