1
|
Yadav AK, Basavegowda N, Shirin S, Raju S, Sekar R, Somu P, Uthappa UT, Abdi G. Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19. Mol Biotechnol 2025; 67:1398-1422. [PMID: 38703305 DOI: 10.1007/s12033-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
In 2019, a worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. SARS-CoV-2 is the deadly microorganism responsible for coronavirus disease 2019 (COVID-19), which has caused millions of deaths and irreversible health problems worldwide. To restrict the spread of SARS-CoV-2, accurate detection of COVID-19 is essential for the identification and control of infected cases. Although recent detection technologies such as the real-time polymerase chain reaction delivers an accurate diagnosis of SARS-CoV-2, they require a long processing duration, expensive equipment, and highly skilled personnel. Therefore, a rapid diagnosis with accurate results is indispensable to offer effective disease suppression. Nanotechnology is the backbone of current science and technology developments including nanoparticles (NPs) that can biomimic the corona and develop deep interaction with its proteins because of their identical structures on the nanoscale. Various NPs have been extensively applied in numerous medical applications, including implants, biosensors, drug delivery, and bioimaging. Among them, point-of-care biosensors mediated with gold nanoparticles (GNPSs) have received great attention due to their accurate sensing characteristics, which are widely used in the detection of amino acids, enzymes, DNA, and RNA in samples. GNPS have reconstructed the biomedical application of biosensors because of its outstanding physicochemical characteristics. This review provides an overview of emerging trends in GNP-mediated point-of-care biosensor strategies for diagnosing various mutated forms of human coronaviruses that incorporate different transducers and biomarkers. The review also specifically highlights trends in gold nanobiosensors for coronavirus detection, ranging from the initial COVID-19 outbreak to its subsequent evolution into a pandemic.
Collapse
Affiliation(s)
- Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38451, Republic of Korea
| | - Saba Shirin
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
- Department of Environmental Science, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, 201312, India
| | - Shiji Raju
- Bioengineering and Nano Medicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu, Tamil Nadu, 603308, India
| | - Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil, Biotechnology and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off. Jaipur-Ajmeer Expressway, Jaipur, Rajasthan, 303007, India.
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
2
|
Wang Y, Amarasiri M, Oishi W, Kuwahara M, Kataoka Y, Kurita H, Narita F, Chen R, Li Q, Sano D. Aptamer-based biosensors for wastewater surveillance of influenza virus, SARS-CoV-2, and norovirus: A comprehensive review. WATER RESEARCH 2025; 279:123484. [PMID: 40120190 DOI: 10.1016/j.watres.2025.123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Wastewater-based epidemiological (WBE) surveillance has emerged as a crucial tool for monitoring infectious diseases within communities. However, its broader application is frequently constrained by the high costs, labor-intensive processes, and extended timeframes required for sample collection, transportation, and processing. Aptamer-based biosensors offer a promising alternative, leveraging the specific binding properties of aptamers to biomolecules for the on-site and rapid quantification of disease biomarkers in wastewater. This review systematically evaluates recent advancements in the application of aptamer-based biosensors for the detection of key pathogens, including influenza viruses, SARS-CoV-2, and norovirus, within wastewater matrices. The discussion encompasses the technical stability and reliability of signal transmission associated with these biosensors, as well as the current challenges faced in real-world implementation. Noteworthy progress has been made in the development of these biosensors for WBE, achieving detection limits as low as femtomolar (fM) levels in buffer and linear dynamic ranges extending up to five orders of magnitude for viruses such as influenza and SARS-CoV-2. Despite this progress, considerable hurdles remain to be addressed before these technologies can be effectively deployed in practical settings, especially within complex wastewater environments. Key factors affecting detection performance include matrix interference, environmental variability, and the diminished stability of both viral targets and aptamer-target interactions in wastewater. This review not only highlights these challenges but also outlines potential avenues for future research aimed at enhancing the functionality and applicability of aptamer-based biosensors in WBE, ultimately contributing to more effective public health surveillance and disease monitoring strategies.
Collapse
Affiliation(s)
- Yilei Wang
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Yuka Kataoka
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroki Kurita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Fumio Narita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
3
|
İbiş Ö, Ük N, Nar I, Ünlü C. Manipulation of defect state emission in Zn chalcogenide quantum dots and their effects on chlorophyll spectral response. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125348. [PMID: 39481170 DOI: 10.1016/j.saa.2024.125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Water soluble Zn based quantum dots (QDs) are of interest due to their biocompatibility and less toxic features. They have been frequently used in studies related to biotechnology, especially in agriculture studies. However, to control the optical properties of Zn based QDs has still been a challenge. In this work, the defect state emission of ZnSe QDs was successfully controlled through two different routes; 1) By creating a sulfur rich outer region around the Se rich core 2) By changing the capping agent. Gradient alloyed ZnSeS QDs with Se rich core and S rich outer region were successfully synthesized with two different capping agents; N-Acetyl-L-Cysteine (NAC) and 3-Mercaptopropionic Acid (3-MPA). The contribution of emission originated from surface-defects almost disappeared in NAC capped ZnSeS QDs, with causing a significant increase in photoluminescence quantum yield. The interaction between Zn based QDs with chlorophyll molecules was also investigated. The absorption capacity of chlorophylls significantly enhanced upon interaction with 3-MPA capped ZnSeS QDs. Also, the spectral response of chlorophylls could be modulated through interaction with 3-MPA capped ZnSeS QDs, which could be manipulated by using ZnSeS QDs with different chemical composition. Our results indicated that ZnSeS QDs have potential to be used in agriculture, which could act as a modulator of light-harvesting capacity of chlorophylls. The ability to modulate chlorophyll spectral responses through QD interaction opens new possibilities for optimizing light utilization in photosynthetic organisms, thereby contributing to enhanced crop yields and more efficient use of light energy in natural and artificial ecosystems.
Collapse
Affiliation(s)
- Özge İbiş
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
| | - Nida Ük
- Department of Polymer Science and Technology, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
| | - Ilgın Nar
- Istanbul Technical University Nanotechnology Research and Application Center (ITUNano), Istanbul, Türkiye
| | - Caner Ünlü
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye; Department of Polymer Science and Technology, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye.
| |
Collapse
|
4
|
Pandey V, Pandey T. Biophysical significance of fluorescence spectroscopy in deciphering nucleic acid dynamics: From fundamental to recent advancements. Biophys Chem 2025; 316:107345. [PMID: 39490135 DOI: 10.1016/j.bpc.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Fluorescence spectroscopy has revolutionized the study of nucleic acids, providing invaluable insights into the dynamic processes that underpin gene expression, replication, and repair. This review explores the application of fluorescence probes in monitoring the conformational changes, interactions, and regulatory mechanisms of DNA and RNA. We discuss the utility of intercalating and non-intercalating fluorescent probes in real-time tracking of nucleic acid dynamics, highlighting their role in elucidating the molecular mechanisms of DNA replication, transcriptional regulation, and DNA repair. By offering a detailed analysis of recent advancements, this review underscores the significance of fluorescence-based techniques in enhancing our understanding of nucleic acid behavior and their implications for genomic stability and therapeutic interventions.
Collapse
Affiliation(s)
- Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Nag S, Kar S, Mishra S, Stany B, Seelan A, Mohanto S, Haryini S S, Kamaraj C, Subramaniyan V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs) - A state-of-the-art comprehensive update. Int J Pharm 2024; 662:124535. [PMID: 39094922 DOI: 10.1016/j.ijpharm.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
The advancements in nanotechnology, pharmaceutical sciences, and healthcare are propelling the field of theranostics, which combines therapy and diagnostics, to new heights; emphasizing the emergence of selenium nanoparticles (SeNPs) as versatile theranostic agents. This comprehensive update offers a holistic perspective on recent developments in the synthesis and theranostic applications of SeNPs, underscoring their growing importance in nanotechnology and healthcare. SeNPs have shown significant potential in multiple domains, including antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic, wound healing, and cytoprotective therapies. The review highlights the adaptability and biocompatibility of SeNPs, which are crucial for advanced disease detection, monitoring, and personalized treatment. Special emphasis is placed on advancements in green synthesis techniques, underscoring their eco-friendly and cost-effective benefits in biosensing, diagnostics, imaging and therapeutic applications. Additionally, the appraisal scrutinizes the progressive trends in smart stimuli-responsive SeNPs, conferring their role in innovative solutions for disease management and diagnostics. Despite their promising therapeutic and prophylactic potential, SeNPs also present several challenges, particularly regarding toxicity concerns. These challenges and their implications for clinical translation are thoroughly explored, providing a balanced view of the current state and prospects of SeNPs in theranostic applications.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Shinjini Kar
- Department of Life Science and Biotechnology, Jadavpur University (JU), 188 Raja S.C. Mallick Road, Kolkata 700032, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shatakshi Mishra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - B Stany
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anmol Seelan
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies (NMIMS), Pherozeshah Mehta Rd., Mumbai 400056, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sree Haryini S
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India; Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Chennai, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Adeniyi K, Oyinlola K, Achadu OJ, Menard H, Grillo F, Yang Z, Adegoke O. Molecularly Imprinted Viral Protein Integrated Zn-Cu-In-Se-P Quantum Dots Superlattice for Quantitative Ratiometric Electrochemical Detection of SARS-CoV-2 Spike Protein in Saliva. ACS APPLIED NANO MATERIALS 2024; 7:17630-17647. [PMID: 39144398 PMCID: PMC11320384 DOI: 10.1021/acsanm.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Solution-processable colloidal quantum dots (QDs) are promising materials for the development of rapid and low-cost, next-generation quantum-sensing diagnostic systems. In this study, we report on the synthesis of multinary Zn-Cu-In-Se-P (ZCISeP) QDs and the application of the QDs-modified electrode (QDs/SPCE) as a solid superlattice transducer interface for the ratiometric electrochemical detection of the SARS-CoV-2-S1 protein in saliva. The ZCISeP QDs were synthesized through the formation of In(Zn)PSe QDs from InP QDs, followed by the incorporation of Cu cations into the crystal lattice via cation exchange processes. A viral-protein-imprinted polymer film was deposited onto the QDs/SPCE for the specific binding of SARS-CoV-2. Molecular imprinting of the virus protein was achieved using a surface imprinting electropolymerization strategy to create the MIP@QDs/SPCE nanosensor. Characterization through spectroscopic, microscopic, and electrochemical techniques confirmed the structural properties and electronic-band state of the ZCISeP QDs. Cyclic voltammetry studies of the QDs/SPCE superlattice confirmed efficient electron transport properties and revealed an intraband gap energy state with redox peaks attributed to the Cu1+/2+ defects. Binding of SARS-CoV-2-S1 to the MIP@QDs/SPCE cavities induced a gating effect that modulated the Fe(CN)6 3-/4- and Cu1+/2+ redox processes at the nanosensor interface, producing dual off/on ratiometric electrical current signals. Under optimal assay conditions, the nanosensor exhibited a wide linear detection range (0.001-100 pg/mL) and a low detection limit (0.34 pg/mL, 4.6 fM) for quantitative detection of SARS-CoV-2-S1 in saliva. The MIP@QDs/SPCE nanosensor demonstrated excellent selectivity against nonspecific protein targets, and the integration with a smartphone-based potentiostat confirmed the potential for point-of-care applications.
Collapse
Affiliation(s)
- Kayode
Omotayo Adeniyi
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| | - Kayode Oyinlola
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| | - Ojodomo J. Achadu
- School
of Health and Life Sciences, and National Horizon Centre, Teesside University, Middlesbrough TS1 3BA, U.K.
| | - Herve Menard
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| | - Federico Grillo
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Zhugen Yang
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, U.K.
| | - Oluwasesan Adegoke
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| |
Collapse
|
7
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|