1
|
İlerler EE, Ayhan YE, Yalçinkaya E, Karakurt S, Sancar M. Clinical pharmacist-led problem-specific education as a strategy for addressing suboptimal antimicrobial use in intensive care unit: a prospective pre-post analysis. Front Pharmacol 2025; 16:1556884. [PMID: 40492136 PMCID: PMC12146280 DOI: 10.3389/fphar.2025.1556884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/13/2025] [Indexed: 06/11/2025] Open
Abstract
Background Antimicrobial use in ICUs is challenging due to altered pharmacokinetics, severe infections, and the burden of comorbidities. This study aims to investigate the contribution of clinical pharmacy services in reducing antimicrobial drug therapy problems (ADTPs) in the intensive care unit. Methods This study was a prospective, pre-post intervention study conducted over a total duration of 6 months (15 January 2023-15 July 2023) in Türkiye. During both control period (CP) and intervention period (IP), ADTPs were identified and classified according to established definitions describing each day of therapy with a specific antimicrobial agent. In IP, clinical pharmacist-led services were implemented for the ICU team, encompassing problem-targeted educational sessions and bedside intervention recommendations. Results A total of 85 patients (CP, n = 43; IP, n = 42) were included in the study. The mean age of the patients was 68.87 years (SD = 16.09). The most common indication for antimicrobial initiation was pneumonia (56.5%), while the most frequently used antimicrobial agent throughout the study was piperacillin-tazobactam (44.7%). It was found that 5.5% of patients across all periods received unnecessary, 2.2% inappropriate, and 92.3% sub-optimal antimicrobial therapy. During both CP and IP, almost all ATDPs were categorized under sub-optimal treatment problems related to medication dosage and/or administration regimens (93.94% vs. 88%). A statistically significant 62% reduction in total ADTPs was observed during IP compared to CP (total ADTPs, 66 vs. 25; p = 0.001). Conclusion This study identified a high incidence of ADTPs in the ICU, with the majority classified as sub-optimal. The significant reduction in ADTPs observed between the periods with the provision of clinical pharmacy services highlights the effective role of clinical pharmacists in reducing ADTPs.
Collapse
Affiliation(s)
- Enes Emir İlerler
- Department of Clinical Pharmacy, Marmara University, Istanbul, Türkiye
| | - Yunus Emre Ayhan
- Department of Clinical Pharmacy, Cemil Taşcıoğlu City Hospital, Istanbul, Türkiye
| | - Erdem Yalçinkaya
- Department of Pulmonary and Critical Care Medicine, Marmara University, Istanbul, Türkiye
| | - Sait Karakurt
- Department of Pulmonary and Critical Care Medicine, Marmara University, Istanbul, Türkiye
| | - Mesut Sancar
- Department of Clinical Pharmacy, Marmara University, Istanbul, Türkiye
| |
Collapse
|
2
|
Adamiszak A, Pietrzkiewicz K, Bartkowska-Śniatkowska A, Smuszkiewicz P, Kusza K, Grześkowiak E, Bienert A. Do Critically Ill Patients Undergoing Continuous Renal Replacement Therapy Require Ceftaroline Dosage Adjustments? Ceftaroline PopPK Model and Dosage Simulations with the Probability of Target Attainment Analysis Based on Retrospective Data. Antibiotics (Basel) 2025; 14:347. [PMID: 40298514 PMCID: PMC12024021 DOI: 10.3390/antibiotics14040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives: We aimed to develop a population pharmacokinetic (PopPK) model and evaluate dosing regimens for different renal clearances and continuous renal replacement therapy (CRRT) settings. Methods: Data were collected from four studies in intensive care unit (ICU) adult patients receiving 400-600 mg of ceftaroline every 8-12 h in a one-hour infusion. The PopPK model was developed according to non-linear mixed effects modeling implemented in Monolix 2024R1. To investigate dosing recommendations, Monte Carlo simulations and probability of target attainment (PTA) analysis were performed in Simulx 2024R1. Results: We collected 296 plasma concentrations from 29 non-CRRT patients and 24 pre-filter (systemic), 23 post-filter, and 23 effluent concentrations from four CRRT patients using WebPlotDigitizer (Version 4.7). A five-compartment model, with the first-order elimination from the central compartment and additional elimination with the effluent during CRRT, best described the ceftaroline concentrations. Creatinine clearance (ClCr) was identified as a covariate on the clearance of elimination (Cl) and CRRT modality on the central and peripheral compartments' volumes and intercompartmental clearance. The results of dosage simulations for different CRRT modalities and ClCr, S. pneumoniae (MIC = 0.25 mg/L) and methicillin-resistant S. aureus (MRSA) (MIC = 1 mg/L) infections, and assumed 100%ƒT>MIC target, revealed that registered ceftaroline dosages are sufficient to achieve assumed PTA, except MRSA infection in patients with augmented renal clearance (ARC). Conclusions: Our successfully developed model allows flexible PK simulations of ceftaroline, including real-time changes in settings and even temporary or permanent cessation of CRRT. However, the results of our study warrant clinical validation and should be used with caution primarily due to the limited CRRT patient number included in the analysis.
Collapse
Affiliation(s)
- Arkadiusz Adamiszak
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Krzysztof Pietrzkiewicz
- Department of Paediatric Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (K.P.); (A.B.-Ś.)
| | - Alicja Bartkowska-Śniatkowska
- Department of Paediatric Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (K.P.); (A.B.-Ś.)
| | - Piotr Smuszkiewicz
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-352 Poznan, Poland; (P.S.); (K.K.)
| | - Krzysztof Kusza
- Department of Anesthesiology, Intensive Therapy and Pain Management, Poznan University of Medical Sciences, 60-352 Poznan, Poland; (P.S.); (K.K.)
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Agnieszka Bienert
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| |
Collapse
|
3
|
Ma P, Shang S, Liu R, Dong Y, Wu J, Gu W, Yu M, Liu J, Li Y, Chen Y. Prediction of teicoplanin plasma concentration in critically ill patients: a combination of machine learning and population pharmacokinetics. J Antimicrob Chemother 2024; 79:2815-2827. [PMID: 39207798 DOI: 10.1093/jac/dkae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Teicoplanin has been widely used in patients with infections caused by Staphylococcus aureus, especially for critically ill patients. The pharmacokinetics (PK) of teicoplanin vary between individuals and within the same individual. We aim to establish a prediction model via a combination of machine learning and population PK (PPK) to support personalized medication decisions for critically ill patients. METHODS A retrospective study was performed incorporating 33 variables, including PPK parameters (clearance and volume of distribution). Multiple algorithms and Shapley additive explanations were employed for feature selection of variables to determine the strongest driving factors. RESULTS The performance of each algorithm with PPK parameters was superior to that without PPK parameters. The composition of support vector regression, categorical boosting and a backpropagation neural network (7:2:1) with the highest R2 (0.809) was determined as the final ensemble model. The model included 15 variables after feature selection, of which the predictive performance was superior to that of models considering all variables or using only PPK. The R2, mean absolute error, mean squared error, absolute accuracy (±5 mg/L) and relative accuracy (±30%) of external validation were 0.649, 3.913, 28.347, 76.12% and 76.12%, respectively. CONCLUSIONS Our study offers a non-invasive, fast and cost-effective prediction model of teicoplanin plasma concentration in critically ill patients. The model serves as a fundamental tool for clinicians to determine the effective plasma concentration range of teicoplanin and formulate individualized dosing regimens accordingly.
Collapse
Affiliation(s)
- Pan Ma
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Shenglan Shang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province 430070, China
| | - Ruixiang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Yuzhu Dong
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jiangfan Wu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenrui Gu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Mengchen Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province 430070, China
| | - Jing Liu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province 430070, China
| | - Ying Li
- Medical Big Data and Artificial Intelligence Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Yongchuan Chen
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| |
Collapse
|
4
|
Berinson B, Davies E, Torpner J, Flinkfeldt L, Fernberg J, Åman A, Bergqvist J, Öhrn H, Ångström J, Johansson C, Jäder K, Andersson H, Ghaderi E, Rolf M, Sundqvist M, Rohde H, Fernandez-Zafra T, Malmberg C. A multicenter evaluation of a novel microfluidic rapid AST assay for Gram-negative bloodstream infections. J Clin Microbiol 2024; 62:e0045824. [PMID: 39324811 PMCID: PMC11481479 DOI: 10.1128/jcm.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024] Open
Abstract
Common phenotypic methods for antimicrobial susceptibility testing (AST) of bacteria are slow, labor intensive, and display considerable technical variability. The QuickMIC system provides rapid AST using a microfluidic linear gradient. Here, we evaluate the performance of QuickMIC at four different laboratories with regard to speed, precision, accuracy, and reproducibility in comparison to broth microdilution (BMD). Spiked (n = 411) and clinical blood cultures (n = 148) were tested with the QuickMIC Gram-negative panel and compared with BMD for the 12 on-panel antibiotics, and 10 defined strains were run at each site to measure reproducibility. Logistic and linear regression analysis was applied to explore factors affecting assay performance. The overall essential agreement and categorical agreement between QuickMIC and BMD were 95.6% and 96.0%, respectively. Very major error, major error, and minor error rates were 1.0%, 0.6%, and 2.4%, respectively. Inter-laboratory reproducibility between the sites was high at 98.9% using the acceptable standard of ±1 twofold dilution. The mean in-instrument analysis time overall was 3 h 13 min (SD: 29 min). Regression analysis indicated that QuickMIC is robust with regard to initial inoculum and delay time after blood culture positivity. We conclude that QuickMIC can be used to rapidly measure MIC directly from blood cultures in clinical settings with high reproducibility, precision, and accuracy. The microfluidics-generated linear gradient ensures high reproducibility between laboratories, thus allowing a high level of trust in MIC values from single testing, at the cost of reduced measurement range compared to BMD. IMPORTANCE Increasing antimicrobial resistance underscores the need for new diagnostic solutions to guide therapy, but traditional antimicrobial susceptibility testing (AST) is often inadequate in time-critical diseases such as sepsis. This work presents a novel and rapid AST system with a rapid turnaround of results, which may help reduce the time to guided therapy, possibly allowing early de-escalation of broad-spectrum empirical therapy as well as rapid adjustments to treatments when coverage is lacking.
Collapse
Affiliation(s)
- Benjamin Berinson
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | - Klara Jäder
- Department of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Helena Andersson
- Department of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Ehsan Ghaderi
- Department of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Maria Rolf
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Martin Sundqvist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christer Malmberg
- Gradientech AB, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Wang Y, Ye Q, Li P, Huang L, Qi Z, Chen W, Zhan Q, Wang C. Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients. Pharmaceuticals (Basel) 2024; 17:665. [PMID: 38931333 PMCID: PMC11206427 DOI: 10.3390/ph17060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS The pharmacokinetic (PK) profiles of voriconazole in intensive care unit (ICU) patients differ from that in other patients. We aimed to develop a population pharmacokinetic (PopPK) model to evaluate the effects of using extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) and those of various biological covariates on the voriconazole PK profile. METHODS Modeling analyses of the PK parameters were conducted using the nonlinear mixed-effects modeling method (NONMEM) with a two-compartment model. Monte Carlo simulations (MCSs) were performed to observe the probability of target attainment (PTA) when receiving CRRT or not under different dosage regimens, different stratifications of quick C-reactive protein (qCRP), and different minimum inhibitory concentration (MIC) ranges. RESULTS A total of 408 critically ill patients with 746 voriconazole concentration-time data points were included in this study. A two-compartment population PK model with qCRP, CRRT, creatinine clearance rate (CLCR), platelets (PLT), and prothrombin time (PT) as fixed effects was developed using the NONMEM. CONCLUSIONS We found that qCRP, CRRT, CLCR, PLT, and PT affected the voriconazole clearance. The most commonly used clinical regimen of 200 mg q12h was sufficient for the most common sensitive pathogens (MIC ≤ 0.25 mg/L), regardless of whether CRRT was performed and the level of qCRP. When the MIC was 0.5 mg/L, 200 mg q12h was insufficient only when the qCRP was <40 mg/L and CRRT was performed. When the MIC was ≥2 mg/L, a dose of 300 mg q12h could not achieve ≥ 90% PTA, necessitating the evaluation of a higher dose.
Collapse
Affiliation(s)
- Yuqiong Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Qinghua Ye
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Linna Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Zhijiang Qi
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Qingyuan Zhan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
7
|
Poulain C, Launey Y, Bouras M, Lakhal K, Dargelos L, Crémet L, Gibaud SA, Corvec S, Seguin P, Rozec B, Asehnoune K, Feuillet F, Roquilly A. Clinical evaluation of the BioFire Respiratory Pathogen Panel for the guidance of empirical antimicrobial therapy in critically ill patients with hospital-acquired pneumonia: A multicenter, quality improvement project. Anaesth Crit Care Pain Med 2024; 43:101353. [PMID: 38355044 DOI: 10.1016/j.accpm.2024.101353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND We aimed to determine whether implementing antimicrobial stewardship based on multiplex bacterial PCR examination of respiratory fluid can enhance outcomes of critically ill patients with hospital-acquired pneumonia (HAP). METHODS We conducted a quality improvement study in two hospitals in France. Adult patients requiring invasive mechanical ventilation with a diagnosis of HAP were included. In the pre-intervention period (August 2019 to April 2020), antimicrobial therapy followed European guidelines. In the «intervention» phase (June 2020 to October 2021), treatment followed a multiplex PCR-guided protocol. The primary endpoint was a composite endpoint made of mortality on day 28, clinical cure between days 7 and 10, and duration of invasive mechanical ventilation on day 28. The primary outcome was analyzed with a DOOR strategy. RESULTS A total of 443 patients were included in 3 ICUs from 2 hospitals (220 pre-intervention; 223 intervention). No difference in the ranking of the primary composite outcome was found (DOOR: 50.3%; 95%CI, 49.9%-50.8%). The number of invasive mechanical ventilation-free days at day 28 was 10.0 [0.0; 19.0] in the baseline period and 9.0 [0.0; 20.0] days during the intervention period (p = 0.95). The time-to-efficient antimicrobial treatment was 0.43 ± 1.29 days before versus 0.55 ± 1.13 days after the intervention (p = 0.56). CONCLUSION Implementation of Rapid Multiplex PCR to guide empirical antimicrobial therapy for critically ill patients with HAP was not associated with better outcomes. However, adherence to stewardship was low, and the study may have had limited power to detect a clinically important difference.
Collapse
Affiliation(s)
- Cécile Poulain
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 0004, F-44000 Nantes, France; Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France.
| | - Yoann Launey
- Univ Rennes, CHU Rennes, Department of Anaesthesia, Critical Care and Perioperative Medicine, F-35000 Rennes, France
| | - Marwan Bouras
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 0004, F-44000 Nantes, France; Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Karim Lakhal
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 0004, F-44000 Nantes, France
| | - Laura Dargelos
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 0004, F-44000 Nantes, France
| | - Lise Crémet
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France; Nantes Université, CHU Nantes, Service de bactériologie-hygiène, pôle de biologie, Nantes, France
| | - Sophie-Anne Gibaud
- Nantes Université, CHU Nantes, Service de bactériologie-hygiène, pôle de biologie, Nantes, France
| | - Stéphane Corvec
- Nantes Université, CHU Nantes, Service de bactériologie-hygiène, pôle de biologie, Nantes, France
| | - Philippe Seguin
- Univ Rennes, CHU Rennes, Department of Anaesthesia, Critical Care and Perioperative Medicine, F-35000 Rennes, France
| | - Bertrand Rozec
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 0004, F-44000 Nantes, France
| | - Karim Asehnoune
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 0004, F-44000 Nantes, France; Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Fanny Feuillet
- Nantes Université, CHU de Nantes, DRI, Département promotion, cellule vigilances, Nantes, France; Nantes Université, CHU de Nantes, DRI, Plateforme de Méthodologie et de Biostatistique, Nantes, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 0004, F-44000 Nantes, France; Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| |
Collapse
|
8
|
Ragonnet G, Guilhaumou R, Hanafia O, Néant N, Denante S, Vanel N, Honoré S, Michel F. Continuous infusion of beta-lactam antibiotics in pediatric intensive care unit: A monocenter before/after implementation study. Anaesth Crit Care Pain Med 2024; 43:101354. [PMID: 38360404 DOI: 10.1016/j.accpm.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
CONTEXT Beta-lactam continuous infusion (CI) is currently recommended in adult intensive care units to achieve target concentrations. In pediatric intensive care (PICU), few studies suggest the value of Beta-lactam CI to achieve target concentration. Our objective was to analyze the impact of Beta-lactam CI protocolization on the achievement of target concentration in PICU patients. MATERIAL AND METHODS We conducted a single-center retrospective study in patients with beta-lactam treatment for more than 2 days and at least one sample for therapeutic drug monitoring (TDM). From January 2018 to February 2022 (period 1, P1), BL were administered as an intermittent infusion with TDM upon request. From February to September 2022 (period 2, P2), Beta-lactam CI with TDM at day one was protocolized. The primary endpoint concerned achieving fT>4× Minimum Inhibitory Concentration = 100%. RESULTS In P1, 214 assays involved 103 patients; in P2, 199 assays involved 72 patients. Target concentration achievement was more frequent in P2 (P2 = 73.7% vs. P1 = 29.1%; p < 0.001). At day 5/6 after Beta-lactam initiation, c-reactive protein concentrations were P1 = 84.9 ± 79.2 mg/L; P2 = 53.7±49.8 mg/L (p < 0.05). In the multivariable logistic regression model: P2, BSA, and albumin were positively associated with target achievement; urea, and male sex were negatively associated with target achievement. The daily average cost of beta-lactam vial consumption per child was: P1 = 5.04 ± 2.6 € vs. P2 = 3.21 ± 2.7 € (p-value < 0.001). The daily average reconstitution time of Beta-lactam syringes per child was: P1 = 23.5 ± 8.7 min, P2 = 13.9 ± 9.2 min (p-value < 0.001). CONCLUSION Protocolization of Beta-lactam continuous infusion was associated with more frequent target concentration achievements in PICU. This implementation could be cost-effective and nurse time-saving.
Collapse
Affiliation(s)
- Gwendoline Ragonnet
- Pharmacie à Usage Intérieur Centre Hospitalo-Universitaire Timone, 13385 Marseille Cedex 5, France.
| | - Romain Guilhaumou
- Aix Marseille Univ, APHM, Institut des Neurosciences des Systèmes, Inserm UMR 11600, Service de Pharmacologie Clinique et PharmaSurveillance, 13385 Marseille Cedex 5, France
| | - Omar Hanafia
- Pharmacie à Usage Intérieur Centre Hospitalo-Universitaire Timone, 13385 Marseille Cedex 5, France
| | - Nadège Néant
- Laboratoire de Pharmacocinétique et Toxicologie, 13385 Marseille Cedex 5, France
| | - Solène Denante
- Réanimation Pédiatrique Centre Hospitalo-universitaire Timone, 13385 Marseille Cedex 5, France
| | - Noémie Vanel
- Réanimation Pédiatrique Centre Hospitalo-universitaire Timone, 13385 Marseille Cedex 5, France
| | - Stéphane Honoré
- Pharmacie à Usage Intérieur Centre Hospitalo-Universitaire Timone, 13385 Marseille Cedex 5, France; Aix Marseille Univ, EA 3279, CEReSS, Research Centre on Health Services and Quality of Life, Observatoire des Médicaments, Dispositifs Médicaux et Innovations Thérapeutiques (OMéDIT PACA Corse), Marseille, France
| | - Fabrice Michel
- Réanimation Pédiatrique Centre Hospitalo-universitaire Timone, 13385 Marseille Cedex 5, France
| |
Collapse
|
9
|
Fischer MO, Guinot PG, Mallat J. Heading toward a personalized approach for ECMO patient management. Anaesth Crit Care Pain Med 2024; 43:101325. [PMID: 37952728 DOI: 10.1016/j.accpm.2023.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Marc-Olivier Fischer
- Institut Aquitain du Cœur, Clinique Saint Augustin, Elsan, 114 avenue d'Arès, Bordeaux Cedex, 33 074, France.
| | - Pierre-Grégoire Guinot
- Department of Anaesthesiology and Critical Care Medicine, Dijon University Medical Centre, 21000, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, 21000, Dijon, France
| | - Jihad Mallat
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Ramasco F, Méndez R, Suarez de la Rica A, González de Castro R, Maseda E. Sepsis Stewardship: The Puzzle of Antibiotic Therapy in the Context of Individualization of Decision Making. J Pers Med 2024; 14:106. [PMID: 38248807 PMCID: PMC10820263 DOI: 10.3390/jpm14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The main recent change observed in the field of critical patient infection has been universal awareness of the need to make better use of antimicrobials, especially for the most serious cases, beyond the application of simple and effective formulas or rigid protocols. The increase in resistant microorganisms, the quantitative increase in major surgeries and interventional procedures in the highest risk patients, and the appearance of a significant number of new antibiotics in recent years (some very specifically directed against certain mechanisms of resistance and others with a broader spectrum of applications) have led us to shift our questions from "what to deal with" to "how to treat". There has been controversy about how best to approach antibiotic treatment of complex cases of sepsis. The individualized and adjusted dosage, the moment of its administration, the objective, and the selection of the regimen are pointed out as factors of special relevance in a critically ill patient where the frequency of resistant microorganisms, especially among the Enterobacterales group, and the emergence of multiple and diverse antibiotic treatment alternatives have made the appropriate choice of antibiotic treatment more complex, requiring a constant updating of knowledge and the creation of multidisciplinary teams to confront new infections that are difficult to treat. In this article, we have reviewed the phenomenon of the emergence of resistance to antibacterials and we have tried to share some of the ideas, such as stewardship, sparing carbapenems, and organizational, microbiological, pharmacological, and knowledge tools, that we have considered most useful and effective for individualized decision making that takes into account the current context of multidrug resistance. The greatest challenge, therefore, of decision making in this context lies in determining an effective, optimal, and balanced empirical antibiotic treatment.
Collapse
Affiliation(s)
- Fernando Ramasco
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain; (R.M.); (A.S.d.l.R.)
| | - Rosa Méndez
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain; (R.M.); (A.S.d.l.R.)
| | - Alejandro Suarez de la Rica
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain; (R.M.); (A.S.d.l.R.)
| | - Rafael González de Castro
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de León, 24071 León, Spain;
| | - Emilio Maseda
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario Quirón Sur Salud, 28922 Madrid, Spain;
| |
Collapse
|
11
|
McKenzie C, Spriet I, Hunfeld N. Ten reasons for the presence of pharmacy professionals in the intensive care unit. Intensive Care Med 2024; 50:147-149. [PMID: 38172297 DOI: 10.1007/s00134-023-07285-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Cathrine McKenzie
- NIHR Biomedical Research Centre, School of Medicine, Perioperative and Critical Care Theme and NIHR Applied Research Collaborative (ARC), University of Southampton, Wessex, Southampton, S016 6YD, UK
- Pharmacy and Critical Care, University Hospital, Southampton NHS Foundation Trust, Southampton, S016 6YD, UK
- Centre for Human and Institute of Pharmaceutical Sciences, School of Cancer and Pharmacy, King's College London, London, SE1 9RT, UK
| | - Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium.
- Department of Pharmaceutical and Pharmacological Sciences, Clinical Pharmacology and Pharmacotherapy, University of Leuven, Leuven, Belgium.
| | - Nicole Hunfeld
- Department of Intensive Care, Erasmus MC, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Qin Y, Jiao Z, Ye YR, Shen Y, Chen Z, Chen YT, Li XY, Lv QZ. External evaluation of the predictive performance of published population pharmacokinetic models of linezolid in adult patients. J Glob Antimicrob Resist 2023; 35:347-353. [PMID: 37573945 DOI: 10.1016/j.jgar.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVES Several linezolid population pharmacokinetic (popPK) models have been established to facilitate optimal therapy; however, their extrapolated predictive performance to other clinical sites is unknown. This study aimed to externally evaluate the predictive performance of published pharmacokinetic models of linezolid in adult patients. METHODS For the evaluation dataset, 150 samples were collected from 70 adult patients (72.9% of which were critically ill) treated with linezolid at our center. Twenty-five published popPK models were identified from PubMed and Embase. Model predictability was evaluated using prediction-based, simulation-based, and Bayesian forecasting-based approaches to assess model predictability. RESULTS Prediction-based diagnostics found that the prediction error within ±30% (F30) was less than 40% in all models, indicating unsatisfactory predictability. The simulation-based prediction- and variability-corrected visual predictive check and normalized prediction distribution error test indicated large discrepancies between the observations and simulations in most of the models. Bayesian forecasting with one or two prior observations significantly improved the models' predictive performance. CONCLUSION The published linezolid popPK models showed insufficient predictive ability. Therefore, their sole use is not recommended, and incorporating therapeutic drug monitoring of linezolid in clinical applications is necessary.
Collapse
Affiliation(s)
- Yan Qin
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Chen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue-Ting Chen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian-Zhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Kanji S, Roger C, Taccone FS, Muller L. Practical considerations for individualizing drug dosing in critically ill adults receiving renal replacement therapy. Pharmacotherapy 2023; 43:1194-1205. [PMID: 37491976 DOI: 10.1002/phar.2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 07/27/2023]
Abstract
Critically ill patients with sepsis admitted to the intensive care unit (ICU) often present with or develop renal dysfunction requiring renal replacement therapy (RRT) in addition to antimicrobial therapy. While early and appropriate antimicrobials for sepsis have been associated with an increased probability of survival, adequate dosing is also required in these patients. Adequate dosing of antimicrobials refers to dosing strategies that achieve serum drug levels at the site of infection that are able to provide a microbiological and/or clinical response while avoiding toxicity from excessive antibiotic exposure. Therapeutic drug monitoring (TDM) is the recommended strategy to achieve this goal, however, TDM is not routinely available in all ICUs and for all antimicrobials. In the absence of TDM, clinicians are therefore required to make dosing decisions based on the clinical condition of the patient, the causative organism, the characteristics of RRT, and an understanding of the physicochemical properties of the antimicrobial. Pharmacokinetics (PK) of antimicrobials can be highly variable between critically ill patients and also within the same patient over the course of their ICU stay. The initiation of RRT, which can be in the form of intermittent hemodialysis, continuous, or prolonged intermittent therapy, further complicates the predictability of drug disposition. This variability highlights the need for individualized dosing. This review highlights the practical considerations for the clinician for antimicrobial dosing in critically ill patients receiving RRT.
Collapse
Affiliation(s)
- Salmaan Kanji
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Claire Roger
- Department of Anaesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes University Hospital, Nîmes, France
- UR UM 103 IMAGINE, Faculty of Medicine, University of Montpellier, Nîmes, France
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Muller
- Department of Anaesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes University Hospital, Nîmes, France
- UR UM 103 IMAGINE, Faculty of Medicine, University of Montpellier, Nîmes, France
| |
Collapse
|
14
|
Vintila BI, Arseniu AM, Butuca A, Sava M, Bîrluțiu V, Rus LL, Axente DD, Morgovan C, Gligor FG. Adverse Drug Reactions Relevant to Drug Resistance and Ineffectiveness Associated with Meropenem, Linezolid, and Colistin: An Analysis Based on Spontaneous Reports from the European Pharmacovigilance Database. Antibiotics (Basel) 2023; 12:antibiotics12050918. [PMID: 37237821 DOI: 10.3390/antibiotics12050918] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance is considered one of the major threats to public health and is an important factor that influences the patient's outcome in the intensive care unit. Pharmacovigilance can help raise awareness of potential drug resistance (DR) or ineffectiveness (DI) through adverse drug reaction reports that are submitted to different spontaneous reporting systems. Based on spontaneous Individual Case Safety Reports from EudraVigilance, we conducted a descriptive analysis of adverse drug reactions associated with meropenem, colistin, and linezolid, with a focus on DR and DI. Of the total adverse drug reactions (ADRs) reported for each analyzed antibiotic by 31 December 2022, between 2.38-8.42% and 4.15-10.14% of the reports were related to DR and DI, respectively. A disproportionality analysis was conducted to evaluate the frequency of reporting adverse drug reactions relevant to the DR and DI of the analyzed antibiotics compared to other antimicrobials. Based on the analysis of the collected data, this study underlines the importance of post-marketing drug safety monitoring in raising a warning signal regarding antimicrobial resistance, thereby potentially contributing to the reduction in antibiotic treatment failure in an intensive care setting.
Collapse
Affiliation(s)
- Bogdan Ioan Vintila
- Clinical Surgical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Mihai Sava
- Clinical Surgical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Victoria Bîrluțiu
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
- Clinical Medical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Luca Liviu Rus
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Dan Damian Axente
- Fifth Surgical Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
15
|
Legg A, Carmichael S, Chai MG, Roberts JA, Cotta MO. Beta-Lactam Dose Optimisation in the Intensive Care Unit: Targets, Therapeutic Drug Monitoring and Toxicity. Antibiotics (Basel) 2023; 12:antibiotics12050870. [PMID: 37237773 DOI: 10.3390/antibiotics12050870] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Beta-lactams are an important family of antibiotics used to treat infections and are commonly used in critically ill patients. Optimal use of these drugs in the intensive care unit (ICU) is important because of the serious complications from sepsis. Target beta-lactam antibiotic exposures may be chosen using fundamental principles of beta-lactam activity derived from pre-clinical and clinical studies, although the debate regarding optimal beta-lactam exposure targets is ongoing. Attainment of target exposures in the ICU requires overcoming significant pharmacokinetic (PK) and pharmacodynamic (PD) challenges. For beta-lactam drugs, the use of therapeutic drug monitoring (TDM) to confirm if the desired exposure targets are achieved has shown promise, but further data are required to determine if improvement in infection-related outcomes can be achieved. Additionally, beta-lactam TDM may be useful where a relationship exists between supratherapeutic antibiotic exposure and drug adverse effects. An ideal beta-lactam TDM service should endeavor to efficiently sample and report results in identified at-risk patients in a timely manner. Consensus beta-lactam PK/PD targets associated with optimal patient outcomes are lacking and should be a focus for future research.
Collapse
Affiliation(s)
- Amy Legg
- Menzies School of Health Research, Tiwi, Darwin, NT 0810, Australia
- Herston Infectious Diseases Institute, Herston, Brisbane, QLD 4029, Australia
| | - Sinead Carmichael
- Royal Brisbane and Women's Hospital, Departments of Intensive Care Medicine and Pharmacy, Brisbane, QLD 4029, Australia
| | - Ming G Chai
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| | - Jason A Roberts
- Herston Infectious Diseases Institute, Herston, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women's Hospital, Departments of Intensive Care Medicine and Pharmacy, Brisbane, QLD 4029, Australia
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Menino O Cotta
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| |
Collapse
|
16
|
Galvidis IA, Surovoy YA, Tsarenko SV, Burkin MA. Tigecycline Immunodetection Using Developed Group-Specific and Selective Antibodies for Drug Monitoring Purposes. BIOSENSORS 2023; 13:343. [PMID: 36979555 PMCID: PMC10046529 DOI: 10.3390/bios13030343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Tigecycline (TGC), a third-generation tetracycline, is characterized by a more potent and broad antibacterial activity, and the ability to overcome different mechanisms of tetracycline resistance. TGC has proven to be of value in treatment of multidrug-resistant infections, but therapy can be complicated by multiple dangerous side effects, including direct drug toxicity. Given that, a TGC immunodetection method has been developed for therapeutic drug monitoring to improve the safety and efficacy of therapy. The developed indirect competitive ELISA utilized TGC selective antibodies and group-specific antibodies interacting with selected coating TGC conjugates. Both assay systems showed high sensitivity (IC50) of 0.23 and 1.59 ng/mL, and LOD of 0.02 and 0.05 ng/mL, respectively. Satisfactory TGC recovery from the spiked blood serum of healthy volunteers was obtained in both assays and laid in the range of 81-102%. TGC concentrations measured in sera from COVID-19 patients with secondary bacterial infections were mutually confirmed by ELISA based on the other antibody-antigen interaction and showed good agreement (R2 = 0.966). A TGC pharmacokinetic (PK) study conducted in three critically ill patients proved the suitability of the test to analyze the therapeutic concentrations of TGC. Significant inter-individual PK variability revealed in this limited group supports therapeutic monitoring of TGC in individual patients and application of the test for population pharmacokinetic modelling.
Collapse
Affiliation(s)
- Inna A. Galvidis
- I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
| | - Yury A. Surovoy
- I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
- Faculty of Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergei V. Tsarenko
- Faculty of Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Federal Center for Treatment and Rehabilitation Ministry of Health, Moscow 125367, Russia
| | - Maksim A. Burkin
- I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
| |
Collapse
|
17
|
Voriconazole exposure is influenced by inflammation: A population pharmacokinetic model. Int J Antimicrob Agents 2023; 61:106750. [PMID: 36758777 DOI: 10.1016/j.ijantimicag.2023.106750] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Voriconazole is an antifungal drug used for the treatment of invasive fungal infections. Due to highly variable drug exposure, therapeutic drug monitoring (TDM) has been recommended. TDM may be helpful to predict exposure accurately, but covariates, such as severe inflammation, that influence the metabolism of voriconazole have not been included in the population pharmacokinetic (popPK) models suitable for routine TDM. OBJECTIVES To investigate whether the effect of inflammation, reflected by C-reactive protein (CRP), could improve a popPK model that can be applied in clinical care. PATIENTS AND METHODS Data from two previous studies were included in the popPK modelling. PopPK modelling was performed using Edsim++. Different popPK models were compared using Akaike Information Criterion and goodness-of-fit plots. RESULTS In total, 1060 voriconazole serum concentrations from 54 patients were included in this study. The final model was a one-compartment model with non-linear elimination. Only CRP was a significant covariate, and was included in the final model and found to affect the maximum rate of enzyme activity (Vmax). For the final popPK model, the mean volume of distribution was 145 L [coefficient of variation percentage (CV%)=61%], mean Michaelis-Menten constant was 5.7 mg/L (CV%=119%), mean Vmax was 86.4 mg/h (CV%=99%) and mean bioavailability was 0.83 (CV%=143%). Internal validation using bootstrapping resulted in median values close to the population parameter estimates. CONCLUSIONS This one-compartment model with non-linear elimination and CRP as a covariate described the pharmacokinetics of voriconazole adequately.
Collapse
|
18
|
Tabah A, Buetti N, Staiquly Q, Ruckly S, Akova M, Aslan AT, Leone M, Conway Morris A, Bassetti M, Arvaniti K, Lipman J, Ferrer R, Qiu H, Paiva JA, Povoa P, De Bus L, De Waele J, Zand F, Gurjar M, Alsisi A, Abidi K, Bracht H, Hayashi Y, Jeon K, Elhadi M, Barbier F, Timsit JF, Pollock H, Margetts B, Young M, Bhadange N, Tyler S, Ledtischke A, Finnis M, Ledtischke A, Finnis M, Dwivedi J, Saxena M, Biradar V, Soar N, Sarode V, Brewster D, Regli A, Weeda E, Ahmed S, Fourie C, Laupland K, Ramanan M, Walsham J, Meyer J, Litton E, Palermo AM, Yap T, Eroglu E, Attokaran AG, Jaramillo C, Nafees KMK, Rashid NAHA, Walid HAMI, Mon T, Moorthi PD, Sudhirchandra S, Sridharan DD, Haibo Q, Jianfeng X, Wei-Hua L, Zhen W, Qian C, Luo J, Chen X, Wang H, Zhao P, Zhao J, Wusi Q, Mingmin C, Xu L, Yin C, Wang R, Wang J, Yin Y, Zhang M, Ye J, Hu C, Zhou S, Huang M, Yan J, Wang Y, Qin B, Ye L, Weifeng X, Peije L, Geng N, Hayashi Y, Karumai T, Yamasaki M, Hashimoto S, Hosokawa K, Makino J, Matsuyoshi T, et alTabah A, Buetti N, Staiquly Q, Ruckly S, Akova M, Aslan AT, Leone M, Conway Morris A, Bassetti M, Arvaniti K, Lipman J, Ferrer R, Qiu H, Paiva JA, Povoa P, De Bus L, De Waele J, Zand F, Gurjar M, Alsisi A, Abidi K, Bracht H, Hayashi Y, Jeon K, Elhadi M, Barbier F, Timsit JF, Pollock H, Margetts B, Young M, Bhadange N, Tyler S, Ledtischke A, Finnis M, Ledtischke A, Finnis M, Dwivedi J, Saxena M, Biradar V, Soar N, Sarode V, Brewster D, Regli A, Weeda E, Ahmed S, Fourie C, Laupland K, Ramanan M, Walsham J, Meyer J, Litton E, Palermo AM, Yap T, Eroglu E, Attokaran AG, Jaramillo C, Nafees KMK, Rashid NAHA, Walid HAMI, Mon T, Moorthi PD, Sudhirchandra S, Sridharan DD, Haibo Q, Jianfeng X, Wei-Hua L, Zhen W, Qian C, Luo J, Chen X, Wang H, Zhao P, Zhao J, Wusi Q, Mingmin C, Xu L, Yin C, Wang R, Wang J, Yin Y, Zhang M, Ye J, Hu C, Zhou S, Huang M, Yan J, Wang Y, Qin B, Ye L, Weifeng X, Peije L, Geng N, Hayashi Y, Karumai T, Yamasaki M, Hashimoto S, Hosokawa K, Makino J, Matsuyoshi T, Kuriyama A, Shigemitsu H, Mishima Y, Nagashima M, Yoshida H, Fujitani S, Omori K, Rinka H, Saito H, Atobe K, Kato H, Takaki S, Hasan MS, Jamaluddin MFH, Pheng LS, Visvalingam S, Liew MT, Wong SLD, Fong KK, Rahman HBA, Noor ZM, Tong LK, Azman AH, Mazlan MZ, Ali S, Jeon K, Lee SM, Park S, Park SY, Lim SY, Goh QY, Ng SY, Lie SA, Kwa ALH, Goh KJ, Li AY, Ong CYM, Lim JY, Quah JL, Ng K, Ng LXL, Yeh YC, Chou NK, Cia CT, Hu TY, Kuo LK, Ku SC, Wongsurakiat P, Apichatbutr Y, Chiewroongroj S, Nadeem R, Houfi AE, Alsisi A, Elhadidy A, Barsoum M, Osman N, Mostafa T, Elbahnasawy M, Saber A, Aldhalia A, Elmandouh O, Elsayed A, Elbadawy MA, Awad AK, Hemead HM, Zand F, Ouhadian M, Borsi SH, Mehraban Z, Kashipazha D, Ahmadi F, Savaie M, Soltani F, Rashidi M, Baghbanian R, Javaherforoosh F, Amiri F, Kiani A, Zargar MA, Mahmoodpoor A, Aalinezhad F, Dabiri G, Sabetian G, Sarshad H, Masjedi M, Tajvidi R, Tabatabaei SMN, Ahmed AK, Singer P, Kagan I, Rigler M, Belman D, Levin P, Harara B, Diab A, Abilama F, Ibrahim R, Fares A, Buimsaedah A, Gamra M, Aqeelah A, AliAli AM, Homaidan AGS, Almiqlash B, Bilkhayr H, Bouhuwaish A, Taher AS, Abdulwahed E, Abousnina FA, Hdada AK, Jobran R, Hasan HB, Hasan RSB, Serghini I, Seddiki R, Boukatta B, Kanjaa N, Mouhssine D, Wajdi MA, Dendane T, Zeggwagh AA, Housni B, Younes O, Hachimi A, Ghannam A, Belkhadir Z, Amro S, Jayyab MA, Hssain AA, Elbuzidi A, Karic E, Lance M, Nissar S, Sallam H, Elrabi O, Almekhlafi GA, Awad M, Aljabbary A, Chaaban MK, Abu-Sayf N, Al-Jadaan M, Bakr L, Bouaziz M, Turki O, Sellami W, Centeno P, Morvillo LN, Acevedo JO, Lopez PM, Fernández R, Segura M, Aparicio DM, Alonzo MI, Nuccetelli Y, Montefiore P, Reyes LF, Reyes LF, Ñamendys-Silva SA, Romero-Gonzalez JP, Hermosillo M, Castillo RA, Leal JNP, Aguilar CG, Herrera MOG, Villafuerte MVE, Lomeli-Teran M, Dominguez-Cherit JG, Davalos-Alvarez A, Ñamendys-Silva SA, Sánchez-Hurtado L, Tejeda-Huezo B, Perez-Nieto OR, Tomas ED, De Bus L, De Waele J, Hollevoet I, Denys W, Bourgeois M, Vanderhaeghen SFM, Mesland JB, Henin P, Haentjens L, Biston P, Noel C, Layos N, Misset B, De Schryver N, Serck N, Wittebole X, De Waele E, Opdenacker G, Kovacevic P, Zlojutro B, Custovic A, Filipovic-Grcic I, Radonic R, Brajkovic AV, Persec J, Sakan S, Nikolic M, Lasic H, Leone M, Arbelot C, Timsit JF, Patrier J, Zappela N, Montravers P, Dulac T, Castanera J, Auchabie J, Le Meur A, Marchalot A, Beuzelin M, Massri A, Guesdon C, Escudier E, Mateu P, Rosman J, Leroy O, Alfandari S, Nica A, Souweine B, Coupez E, Duburcq T, Kipnis E, Bortolotti P, Le Souhaitier M, Mira JP, Garcon P, Duprey M, Thyrault M, Paulet R, Philippart F, Tran M, Bruel C, Weiss E, Janny S, Foucrier A, Perrigault PF, Djanikian F, Barbier F, Gainnier M, Bourenne J, Louis G, Smonig R, Argaud L, Baudry T, Dessap AM, Razazi K, Kalfon P, Badre G, Larcher R, Lefrant JY, Roger C, Sarton B, Silva S, Demeret S, Le Guennec L, Siami S, Aparicio C, Voiriot G, Fartoukh M, Dahyot-Fizelier C, Imzi N, Klouche K, Bracht H, Hoheisen S, Bloos F, Thomas-Rueddel D, Petros S, Pasieka B, Dubler S, Schmidt K, Gottschalk A, Wempe C, Lepper P, Metz C, Viderman D, Ymbetzhanov Y, Mugazov M, Bazhykayeva Y, Kaligozhin Z, Babashev B, Merenkov Y, Temirov T, Arvaniti K, Smyrniotis D, Psallida V, Fildisis G, Soulountsi V, Kaimakamis E, Iasonidou C, Papoti S, Renta F, Vasileiou M, Romanou V, Koutsoukou V, Matei MK, Moldovan L, Karaiskos I, Paskalis H, Marmanidou K, Papanikolaou M, Kampolis C, Oikonomou M, Kogkopoulos E, Nikolaou C, Sakkalis A, Chatzis M, Georgopoulou M, Efthymiou A, Chantziara V, Sakagianni A, Athanasa Z, Papageorgiou E, Ali F, Dimopoulos G, Almiroudi MP, Malliotakis P, Marouli D, Theodorou V, Retselas I, Kouroulas V, Papathanakos G, Montrucchio G, Sales G, De Pascale G, Montini LM, Carelli S, Vargas J, Di Gravio V, Giacobbe DR, Gratarola A, Porcile E, Mirabella M, Daroui I, Lodi G, Zuccaro F, Schlevenin MG, Pelosi P, Battaglini D, Cortegiani A, Ippolito M, Bellina D, Di Guardo A, Pelagalli L, Covotta M, Rocco M, Fiorelli S, Cotoia A, Rizzo AC, Mikstacki A, Tamowicz B, Komorowska IK, Szczesniak A, Bojko J, Kotkowska A, Walczak-Wieteska P, Wasowska D, Nowakowski T, Broda H, Peichota M, Pietraszek-Grzywaczewska I, Martin-Loeches I, Bisanti A, Cartoze N, Pereira T, Guimarães N, Alves M, Marques AJP, Pinto AR, Krystopchuk A, Teresa A, de Figueiredo AMP, Botelho I, Duarte T, Costa V, Cunha RP, Molinos E, da Costa T, Ledo S, Queiró J, Pascoalinho D, Nunes C, Moura JP, Pereira É, Mendes AC, Valeanu L, Bubenek-Turconi S, Grintescu IM, Cobilinschi C, Filipescu DC, Predoi CE, Tomescu D, Popescu M, Marcu A, Grigoras I, Lungu O, Gritsan A, Anderzhanova A, Meleshkina Y, Magomedov M, Zubareva N, Tribulev M, Gaigolnik D, Eremenko A, Vistovskaya N, Chukina M, Belskiy V, Furman M, Rocca RF, Martinez M, Casares V, Vera P, Flores M, Amerigo JA, Arnillas MPG, Bermudez RM, Armestar F, Catalan B, Roig R, Raguer L, Quesada MD, Santos ED, Gomà G, Ubeda A, Salgado DM, Espina LF, Prieto EG, Asensio DM, Rodriguez DM, Maseda E, De La Rica AS, Ayestaran JI, Novo M, Blasco-Navalpotro MA, Gallego AO, Sjövall F, Spahic D, Svensson CJ, Haney M, Edin A, Åkerlund J, De Geer L, Prazak J, Jakob S, Pagani J, Abed-Maillard S, Akova M, Aslan AT, Timuroglu A, Kocagoz S, Kusoglu H, Mehtap S, Ceyhun S, Altintas ND, Talan L, Kayaaslan B, Kalem AK, Kurt I, Telli M, Ozturk B, Erol Ç, Demiray EKD, Çolak S, Akbas T, Gundogan K, Sari A, Agalar C, Çolak O, Baykam NN, Akdogan OO, Yilmaz M, Tunay B, Cakmak R, Saltoglu N, Karaali R, Koksal I, Aksoy F, Eroglu A, Saracoglu KT, Bilir Y, Guzeldag S, Ersoz G, Evik G, Sungurtekin H, Ozgen C, Erdoğan C, Gürbüz Y, Altin N, Bayindir Y, Ersoy Y, Goksu S, Akyol A, Batirel A, Aktas SC, Morris AC, Routledge M, Morris AC, Ercole A, Antcliffe D, Rojo R, Tizard K, Faulkner M, Cowton A, Kent M, Raj A, Zormpa A, Tinaslanidis G, Khade R, Torlinski T, Mulhi R, Goyal S, Bajaj M, Soltan M, Yonan A, Dolan R, Johnson A, Macfie C, Lennard J, Templeton M, Arias SS, Franke U, Hugill K, Angell H, Parcell BJ, Cobb K, Cole S, Smith T, Graham C, Cerman J, Keegan A, Ritzema J, Sanderson A, Roshdy A, Szakmany T, Baumer T, Longbottom R, Hall D, Tatham K, Loftus S, Husain A, Black E, Jhanji S, Baikady RR, Mcguigan P, Mckee R, Kannan S, Antrolikar S, Marsden N, Torre VD, Banach D, Zaki A, Jackson M, Chikungwa M, Attwood B, Patel J, Tilley RE, Humphreys MSK, Renaud PJ, Sokhan A, Burma Y, Sligl W, Baig N, McCoshen L, Kutsogiannis DJ, Sligl W, Thompson P, Hewer T, Rabbani R, Huq SMR, Hasan R, Islam MM, Gurjar M, Baronia A, Kothari N, Sharma A, Karmakar S, Sharma P, Nimbolkar J, Samdani P, Vaidyanathan R, Rubina NA, Jain N, Pahuja M, Singh R, Shekhar S, Muzaffar SN, Ozair A, Siddiqui SS, Bose P, Datta A, Rathod D, Patel M, Renuka MK, Baby SK, Dsilva C, Chandran J, Ghosh P, Mukherjee S, Sheshala K, Misra KC, Yakubu SY, Ugwu EM, Olatosi JO, Desalu I, Asiyanbi G, Oladimeji M, Idowu O, Adeola F, Mc Cree M, Karar AAA, Saidahmed E, Hamid HKS, on behalf of the EUROBACT-2 Study Group, ESICM, ESCMID ESGCIP and the OUTCOMEREA Network. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study. Intensive Care Med 2023; 49:178-190. [PMID: 36764959 PMCID: PMC9916499 DOI: 10.1007/s00134-022-06944-2] [Show More Authors] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/23/2022] [Indexed: 02/12/2023]
Abstract
PURPOSE In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. METHODS We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. RESULTS 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. CONCLUSIONS HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes.
Collapse
Affiliation(s)
- Alexis Tabah
- Intensive Care Unit, Redcliffe Hospital, Brisbane, Australia. .,Queensland Critical Care Research Network (QCCRN), Brisbane, QLD, Australia. .,Queensland University of Technology, Brisbane, QLD, Australia. .,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Niccolò Buetti
- Infection Control Program and WHO Collaborating Centre on Patient Safety, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.,Université de Paris, INSERM, IAME UMR 1137, 75018, Paris, France
| | | | - Stéphane Ruckly
- Université de Paris, INSERM, IAME UMR 1137, 75018, Paris, France.,ICUREsearch, Biometry, 38600, Fontaine, France
| | - Murat Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine, Ankara, Turkey
| | - Abdullah Tarik Aslan
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Marc Leone
- Department of Anesthesiology and Intensive Care Unit, Hospital Nord, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Marseille, France
| | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.,Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, Cb2 1QP, UK.,JVF Intensive Care Unit, Addenbrooke's Hospital, Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Matteo Bassetti
- Infectious Diseases Clinic, Department of Health Sciences, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Kostoula Arvaniti
- Intensive Care Unit, Papageorgiou University Affiliated Hospital, Thessaloníki, Greece
| | - Jeffrey Lipman
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Nimes University Hospital, University of Montpellier, Nimes, France.,Jamieson Trauma Institute, Royal Brisbane and Women's Hospital, Herston, Australia
| | - Ricard Ferrer
- Intensive Care Department, SODIR-VHIR Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Nanjing Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - José-Artur Paiva
- Intensive Care Medicine Department, Centro Hospitalar Universitário Sao Joao, Porto, Portugal.,Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Infection and Sepsis ID Group, Porto, Portugal
| | - Pedro Povoa
- NOVA Medical School, New University of Lisbon, Lisbon, Portugal.,Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark.,Polyvalent Intensive Care Unit, Hospital de São Francisco Xavier, CHLO, Lisbon, Portugal
| | - Liesbet De Bus
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan De Waele
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Farid Zand
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohan Gurjar
- Department of Critical Care Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Adel Alsisi
- ICU Department, Prime Hospital, Dubai, United Arab Emirates.,Critical Care Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Khalid Abidi
- Medical ICU, Ibn Sina University Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Hendrik Bracht
- Central Interdisciplinary Emergency Medicine, University Hospital Ulm, Ulm, Germany
| | - Yoshiro Hayashi
- Department of Intensive Care Medicine, Kameda General Hospital, Kamogawa, Japan
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - François Barbier
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Régional d'Orléans, 14, avenue de L'Hôpital, 45100, Orléans, France
| | - Jean-François Timsit
- Université Paris-Cité, INSERM, IAME UMR 1137, 75018, Paris, France.,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat-Claude Bernard University Hospital, 46 Omdurman maternity hospitalrue Henri Huchard, 75877, Paris Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bakdach D, Elajez R, Bakdach AR, Awaisu A, De Pascale G, Ait Hssain A. Pharmacokinetics, Pharmacodynamics, and Dosing Considerations of Novel β-Lactams and β-Lactam/β-Lactamase Inhibitors in Critically Ill Adult Patients: Focus on Obesity, Augmented Renal Clearance, Renal Replacement Therapies, and Extracorporeal Membrane Oxygenation. J Clin Med 2022; 11:6898. [PMID: 36498473 PMCID: PMC9738279 DOI: 10.3390/jcm11236898] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Dose optimization of novel β-lactam antibiotics (NBLA) has become necessary given the increased prevalence of multidrug-resistant infections in intensive care units coupled with the limited number of available treatment options. Unfortunately, recommended dose regimens of NBLA based on PK/PD indices are not well-defined for critically ill patients presenting with special situations (i.e., obesity, extracorporeal membrane oxygenation (ECMO), augmented renal clearance (ARC), and renal replacement therapies (RRT)). This review aimed to discuss and summarize the available literature on the PK/PD attained indices of NBLA among critically ill patients with special circumstances. DATA SOURCES PubMed, MEDLINE, Scopus, Google Scholar, and Embase databases were searched for studies published between January 2011 and May 2022. STUDY SELECTION AND DATA EXTRACTION Articles relevant to NBLA (i.e., ceftolozane/tazobactam, ceftazidime/avibactam, cefiderocol, ceftobiprole, imipenem/relebactam, and meropenem/vaborbactam) were selected. The MeSH terms of "obesity", "augmented renal clearance", "renal replacement therapy", "extracorporeal membrane oxygenation", "pharmacokinetic", "pharmacodynamic" "critically ill", and "intensive care" were used for identification of articles. The search was limited to adult humans' studies that were published in English. A narrative synthesis of included studies was then conducted accordingly. DATA SYNTHESIS Available evidence surrounding the use of NBLA among critically ill patients presenting with special situations was limited by the small sample size of the included studies coupled with high heterogeneity. The PK/PD target attainments of NBLA were reported to be minimally affected by obesity and/or ECMO, whereas the effect of renal functionality (in the form of either ARC or RRT) was more substantial. CONCLUSION Critically ill patients presenting with special circumstances might be at risk of altered NBLA pharmacokinetics, particularly in the settings of ARC and RRT. More robust, well-designed trials are still required to define effective dose regimens able to attain therapeutic PK/PD indices of NBLA when utilized in those special scenarios, and thus aid in improving the patients' outcomes.
Collapse
Affiliation(s)
- Dana Bakdach
- Department of Clinical Pharmacy, Critical Care, Hamad Medical Corporation, Doha 3050, Qatar
| | - Reem Elajez
- Department of Pharmacy, Infectious Diseases, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Rahman Bakdach
- School of Medicine, Jordan University of Science and Technology, Irbid 3030, Jordan
| | - Ahmed Awaisu
- Clinical Pharmacy and Practice, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Gennaro De Pascale
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ali Ait Hssain
- Department of Medicine, Critical Care Services, Hamad Medical Corporation, P.O. Box 305, Doha 3050, Qatar
| |
Collapse
|
20
|
Viaggi B, Cangialosi A, Langer M, Olivieri C, Gori A, Corona A, Finazzi S, Di Paolo A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part II. Antibiotics (Basel) 2022; 11:antibiotics11091193. [PMID: 36139972 PMCID: PMC9495066 DOI: 10.3390/antibiotics11091193] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
In patients that are admitted to intensive care units (ICUs), the clinical outcome of severe infections depends on several factors, as well as the early administration of chemotherapies and comorbidities. Antimicrobials may be used in off-label regimens to maximize the probability of therapeutic concentrations within infected tissues and to prevent the selection of resistant clones. Interestingly, the literature clearly shows that the rate of tissue penetration is variable among antibacterial drugs, and the correlation between plasma and tissue concentrations may be inconstant. The present review harvests data about tissue penetration of antibacterial drugs in ICU patients, limiting the search to those drugs that mainly act as protein synthesis inhibitors and disrupting DNA structure and function. As expected, fluoroquinolones, macrolides, linezolid, and tigecycline have an excellent diffusion into epithelial lining fluid. That high penetration is fundamental for the therapy of ventilator and healthcare-associated pneumonia. Some drugs also display a high penetration rate within cerebrospinal fluid, while other agents diffuse into the skin and soft tissues. Further studies are needed to improve our knowledge about drug tissue penetration, especially in the presence of factors that may affect drug pharmacokinetics.
Collapse
Affiliation(s)
- Bruno Viaggi
- Department of Anesthesiology, Neuro-Intensive Care Unit, Careggi University Hospital, 50139 Florence, Italy
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Alice Cangialosi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Martin Langer
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Carlo Olivieri
- Anesthesia and Intensive Care, Sant’Andrea Hospital, ASL VC, 13100 Vercelli, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alberto Corona
- ICU and Accident & Emergency Department, ASST Valcamonica, 25043 Breno, Italy
| | - Stefano Finazzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
21
|
Kim YK, Lee JH, Jang HJ, Zang DY, Lee DH. Predicting Antibiotic Effect of Vancomycin Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation: Dense Sampling versus Sparse Sampling. Antibiotics (Basel) 2022; 11:743. [PMID: 35740150 PMCID: PMC9220236 DOI: 10.3390/antibiotics11060743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the effect of a structural pharmacokinetic (PK) model with fewer compartments developed following sparse sampling on the PK parameter estimation and the probability of target attainment (PTA) prediction of vancomycin. Two- and three-compartment PK models of vancomycin were used for the virtual concentration-time profile simulation. Datasets with reduced blood sampling times were generated to support a model with a lesser number of compartments. Monte Carlo simulation was conducted to evaluate the PTA. For the two-compartment PK profile, the total clearance (CL) of the reduced one-compartment model showed a relative bias (RBias) and relative root mean square error (RRMSE) over 90%. For the three-compartment PK profile, the CL of the reduced one-compartment model represented the largest RBias and RRMSE, while the steady-state volume of distribution of the reduced two-compartment model represented the largest absolute RBias and RRMSE. A lesser number of compartments corresponded to a lower predicted area under the concentration-time curve of vancomycin. The estimated PK parameters and predicted PK/PD index from models built with sparse sampling designs that cannot support the PK profile can be significantly inaccurate and unprecise. This might lead to the misprediction of the PTA and selection of improper dosage regimens when clinicians prescribe antibiotics.
Collapse
Affiliation(s)
- Yong Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14066, Korea;
| | - Jae Ha Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea; (J.H.L.); (H.-J.J.)
| | - Hang-Jea Jang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea; (J.H.L.); (H.-J.J.)
| | - Dae Young Zang
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14066, Korea;
| | - Dong-Hwan Lee
- Department of Clinical Pharmacology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14066, Korea
| |
Collapse
|
22
|
Kelly EJ, Oliver MA, Carney BC, Shupp JW. Infection and Burn Injury. EUROPEAN BURN JOURNAL 2022; 3:165-179. [PMID: 39604183 PMCID: PMC11575387 DOI: 10.3390/ebj3010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2024]
Abstract
Burn injury is debilitating and among one of the most frequently occurring traumas. Critical care improvements have allowed for increasingly positive outcomes. However, infection, whether it be localized to the site of the wound or systemic in nature, remains a serious cause of morbidity and mortality. Immune suppression predisposes the burn population to the development of invasive infections; and this along with the possibility of inhalation injury puts them at a significant risk for mortality. Emerging multi-drug-resistant pathogens, including Staphylococcus aureus, Enterococcus, Pseudomonas, Acinetobacter, Enterobacter, and yeast spp., continue to complicate clinical care measures, requiring innovative therapies and antimicrobial treatment. Close monitoring of antimicrobial regimens, strict decontamination procedures, early burn eschar removal, adequate wound closure, proper nutritional maintenance, and management of shock and resuscitation all play a significant role in mitigating infection. Novel antimicrobial therapies such as ultraviolet light, cold plasma and topical antiseptics must continue to evolve in order to lower the burden of infection in burn.
Collapse
Affiliation(s)
- Edward J. Kelly
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Mary A. Oliver
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Bonnie C. Carney
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jeffrey W. Shupp
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC 20057, USA
| |
Collapse
|
23
|
Watkins RR, Bonomo RA, Rello J. Managing sepsis in the era of precision medicine: challenges and opportunities. Expert Rev Anti Infect Ther 2022; 20:871-880. [PMID: 35133228 DOI: 10.1080/14787210.2022.2040359] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Precision medicine is a medical model in which decisions, practices, interventions and therapies are tailored to the individual patient based on their predicted response or risk of disease. Sepsis is a life-threatening condition characterized by immune system dysregulation whose pathophysiology remains incompletely understood. There is much hope that precision medicine can lead to better outcomes in patients with sepsis. AREAS COVERED In this review from a comprehensive literature search in PubMed for English-language studies conducted in adults, we highlight recent advances in the diagnosis and treatment of sepsis of bacterial origin in adults using precision medicine approaches including rapid diagnostic tests, predictive biomarkers, genomic methods, rapid antimicrobial susceptibility testing, and monitoring cell mediated immunity. Challenges and directions for future research are also discussed. EXPERT OPINION Current diagnostic testing in sepsis relies primarily on conventional cultures (e.g. blood cultures), which are time-consuming and may delay critical therapeutic decisions. Nonculture-based techniques including nucleic acid amplification technologies (NAAT), other molecular methods (biomarkers), and genomic sequencing offer promise to overcome some of the inherent limitations seen with culture-based techniques.
Collapse
Affiliation(s)
- Richard R Watkins
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Robert A Bonomo
- Medicine Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA
| | - Jordi Rello
- Clinical Research in Pneumonia and Sepsis, Vall d'Hebron Institute of Research, Barcelona, Spain.,Clinical Research, Centre Hospitalier Universitaire Maribeau, Nimes, France
| |
Collapse
|
24
|
Advances in clinical antibiotic testing. Adv Clin Chem 2022; 110:73-116. [DOI: 10.1016/bs.acc.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|