1
|
Pan FS, Yang DP, Zhao GD, Huang SQ, Wang Y, Xu M, Qiu J, Zheng YL, Xie XY, Huang G. Prediction of allograft function in pre-transplant kidneys using sound touch elastography (STE): an ex vivo study. Insights Imaging 2024; 15:245. [PMID: 39392520 PMCID: PMC11469982 DOI: 10.1186/s13244-024-01837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The purpose of the study was to evaluate renal quality and predict posttransplant graft function using ex vivo sound touch elastography (STE). METHODS In this prospective study, 106 donor kidneys underwent ex vivo STE examination and biopsy from March 2022 to August 2023. The mean stiffness of the superficial cortex (STEsc), deep cortex (STEdc), and medulla (STEme) was obtained and synthesized into one index (STE) through the factor analysis method. Additionally, 100 recipients were followed up for 6 months. A random forest algorithm was employed to explore significant predictive factors associated with the Remuzzi score and allograft function. The performance of parameters was evaluated by using the area under the receiver operating characteristic curve (AUC). RESULTS STE had AUC values of 0.803 for diagnosing low Remuzzi and 0.943 for diagnosing high Remuzzi. Meanwhile, STE had an AUC of 0.723 for diagnosing moderate to severe ATI. Random forest algorithm identified STE and Remuzzi score as significant predictors for 6-month renal function. The AUC for STE in predicting postoperative allograft function was 0.717, which was comparable with that of the Remuzzi score (AUC = 0.756). Nevertheless, the specificity of STE was significantly higher than that of Remuzzi (0.913 vs 0.652, p < 0.001). Given these promising results, donor kidneys can be transplanted directly without the need for biopsy when STE ≤ 11.741. CONCLUSIONS The assessment of kidney quality using ex vivo STE demonstrated significant predictive value for the Remuzzi score and allograft function, which could help avoid unnecessary biopsy. CRITICAL RELEVANCE STATEMENT Pre-transplant kidney quality measured with ex vivo STE can be used to assess donor kidney quality and avoid unnecessary biopsy. KEY POINTS STE has significant value for diagnosing low Remuzzi and high Remuzzi scores. STE achieved good performance in predicting posttransplant allograft function. Assessment of kidney quality using ex vivo STE could avoid unnecessary biopsies.
Collapse
Affiliation(s)
- Fu-Shun Pan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dao-Peng Yang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
| | - Guo-Dong Zhao
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shu-Qi Huang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiang Qiu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yan-Ling Zheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gang Huang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China.
| |
Collapse
|
2
|
Filipov T, Teutsch B, Szabó A, Forintos A, Ács J, Váradi A, Hegyi P, Szarvas T, Ács N, Nyirády P, Deák PÁ. Investigating the role of ultrasound-based shear wave elastography in kidney transplanted patients: correlation between non-invasive fibrosis detection, kidney dysfunction and biopsy results-a systematic review and meta-analysis. J Nephrol 2024; 37:1509-1522. [PMID: 38427308 PMCID: PMC11473454 DOI: 10.1007/s40620-023-01856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Interstitial fibrosis and tubular atrophy are leading causes of renal allograft failure. Shear wave elastography could be a promising noninvasive method for providing information on the state of the kidney, with specific regard to fibrosis but currently available data in the literature are controversial. Our study aimed to analyze the correlation between shear wave elastography and various kidney dysfunction measures. METHODS This review was registered on PROSPERO (CRD42021283152). We systematically searched three major databases (MEDLINE, Embase, and CENTRAL) for articles concerning renal transplant recipients, shear wave elastography, fibrosis, and kidney dysfunction. Meta-analytical calculations for pooled Pearson and Spearman correlation coefficients (r) were interpreted with 95% confidence intervals (CIs). Heterogeneity was tested with Cochran's Q test. I2 statistic and 95% CI were reported as a measurement of between-study heterogeneity. Study quality was assessed with the QUADAS2 tool. RESULTS In total, 16 studies were included in our meta-analysis. Results showed a moderate correlation between kidney stiffness and interstitial fibrosis and tubular atrophy, graded according to BANFF classification, on biopsy findings for pooled Pearson (r = 0.48; CI: 0.20, 0.69; I2 = 84%) and Spearman correlations (r = 0.57; CI: 0.35, 0.72; I2 = 74%). When compared to kidney dysfunction parameters, we found a moderate correlation between shear wave elastography and resistive index (r = 0.34 CI: 0.13, 0.51; I2 = 67%) and between shear wave elastography and estimated Glomerular Filtration Rate (eGFR) (r = -0.65; CI: - 0.81, - 0.40; I2 = 73%). All our outcomes had marked heterogeneity. CONCLUSION Our results showed a moderate correlation between kidney stiffness measured by shear wave elastography and biopsy results. While noninvasive assessment of kidney fibrosis after transplantation is an important clinical goal, there is insufficient evidence to support the use of elastography over the performance of a kidney biopsy.
Collapse
Affiliation(s)
- Teodóra Filipov
- Department of Interventional Radiology, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Határőr ut 18, 1122, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Anett Szabó
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Forintos
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Júlia Ács
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Alex Váradi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Nyirády
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Ákos Deák
- Department of Interventional Radiology, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Határőr ut 18, 1122, Budapest, Hungary.
| |
Collapse
|
3
|
Wolf M, Darwish O, Neji R, Eder M, Sunder-Plassmann G, Heinz G, Robinson SD, Schmid AI, Moser EV, Sinkus R, Meyerspeer M. Magnetic resonance elastography resolving all gross anatomical segments of the kidney during controlled hydration. Front Physiol 2024; 15:1327407. [PMID: 38384795 PMCID: PMC10880033 DOI: 10.3389/fphys.2024.1327407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction: Magnetic resonance elastography (MRE) is a non-invasive method to quantify biomechanical properties of human tissues. It has potential in diagnosis and monitoring of kidney disease, if established in clinical practice. The interplay of flow and volume changes in renal vessels, tubule, urinary collection system and interstitium is complex, but physiological ranges of in vivo viscoelastic properties during fasting and hydration have never been investigated in all gross anatomical segments simultaneously. Method: Ten healthy volunteers underwent two imaging sessions, one following a 12-hour fasting period and the second after a drinking challenge of >10 mL per kg body weight (60-75 min before the second examination). High-resolution renal MRE was performed using a novel driver with rotating eccentric mass placed at the posterior-lateral wall to couple waves (50 Hz) to the kidney. The biomechanical parameters, shear wave speed (cs in m/s), storage modulus (Gd in kPa), loss modulus (Gl in kPa), phase angle ( Υ = 2 π atan G l G d ) and attenuation (α in 1/mm) were derived. Accurate separation of gross anatomical segments was applied in post-processing (whole kidney, cortex, medulla, sinus, vessel). Results: High-quality shear waves coupled into all gross anatomical segments of the kidney (mean shear wave displacement: 163 ± 47 μm, mean contamination of second upper harmonics <23%, curl/divergence: 4.3 ± 0.8). Regardless of the hydration state, median Gd of the cortex and medulla (0.68 ± 0.11 kPa) was significantly higher than that of the sinus and vessels (0.48 ± 0.06 kPa), and consistently, significant differences were found in cs, Υ , and Gl (all p < 0.001). The viscoelastic parameters of cortex and medulla were not significantly different. After hydration sinus exhibited a small but significant reduction in median Gd by -0.02 ± 0.04 kPa (p = 0.01), and, consequently, the cortico-sinusoidal-difference in Gd increased by 0.04 ± 0.07 kPa (p = 0.05). Only upon hydration, the attenuation in vessels became lower (0.084 ± 0.013 1/mm) and differed significantly from the whole kidney (0.095 ± 0.007 1/mm, p = 0.01). Conclusion: High-resolution renal MRE with an innovative driver and well-defined 3D segmentation can resolve all renal segments, especially when including the sinus in the analysis. Even after a prolonged hydration period the approach is sensitive to small hydration-related changes in the sinus and in the cortico-sinusoidal-difference.
Collapse
Affiliation(s)
- Marcos Wolf
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Omar Darwish
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Michael Eder
- Department of Medicine III, Division of Nephrology and Dialysis, General Hospital and Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Department of Medicine III, Division of Nephrology and Dialysis, General Hospital and Medical University of Vienna, Vienna, Austria
| | - Gertraud Heinz
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum St. Pölten, Sankt Pölten, Austria
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Centre of Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Albrecht Ingo Schmid
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ewald V. Moser
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ralph Sinkus
- Institut National de La Santé et de La Recherche Médicale, U1148, Laboratory for Vascular Translational Science, Paris, France
| | - Martin Meyerspeer
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Bane O, Seeliger E, Cox E, Stabinska J, Bechler E, Lewis S, Hickson LJ, Francis S, Sigmund E, Niendorf T. Renal MRI: From Nephron to NMR Signal. J Magn Reson Imaging 2023; 58:1660-1679. [PMID: 37243378 PMCID: PMC11025392 DOI: 10.1002/jmri.28828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Renal diseases pose a significant socio-economic burden on healthcare systems. The development of better diagnostics and prognostics is well-recognized as a key strategy to resolve these challenges. Central to these developments are MRI biomarkers, due to their potential for monitoring of early pathophysiological changes, renal disease progression or treatment effects. The surge in renal MRI involves major cross-domain initiatives, large clinical studies, and educational programs. In parallel with these translational efforts, the need for greater (patho)physiological specificity remains, to enable engagement with clinical nephrologists and increase the associated health impact. The ISMRM 2022 Member Initiated Symposium (MIS) on renal MRI spotlighted this issue with the goal of inspiring more solutions from the ISMRM community. This work is a summary of the MIS presentations devoted to: 1) educating imaging scientists and clinicians on renal (patho)physiology and demands from clinical nephrologists, 2) elucidating the connection of MRI parameters with renal physiology, 3) presenting the current state of leading MR surrogates in assessing renal structure and functions as well as their next generation of innovation, and 4) describing the potential of these imaging markers for providing clinically meaningful renal characterization to guide or supplement clinical decision making. We hope to continue momentum of recent years and introduce new entrants to the development process, connecting (patho)physiology with (bio)physics, and conceiving new clinical applications. We envision this process to benefit from cross-disciplinary collaboration and analogous efforts in other body organs, but also to maximally leverage the unique opportunities of renal physiology. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute, New York City, New York, USA
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Sue Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Eric Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
5
|
Abstract
As a sign of chronic kidney disease (CKD) progression, renal fibrosis is an irreversible and alarming pathological change. The accurate diagnosis of renal fibrosis depends on the widely used renal biopsy, but this diagnostic modality is invasive and can easily lead to sampling error. With the development of imaging techniques, an increasing number of noninvasive imaging techniques, such as multipara meter magnetic resonance imaging (MRI) and ultrasound elastography, have gained attention in assessing kidney fibrosis. Depending on their ability to detect changes in tissue stiffness and diffusion of water molecules, ultrasound elastography and some MRI techniques can indirectly assess the degree of fibrosis. The worsening of renal tissue oxygenation and perfusion measured by blood oxygenation level-dependent MRI and arterial spin labeling MRI separately is also an indirect reflection of renal fibrosis. Objective and quantitative indices of fibrosis may be available in the future by using novel techniques, such as photoacoustic imaging and fluorescence microscopy. However, these imaging techniques are susceptible to interference or may not be convenient. Due to the lack of sufficient specificity and sensitivity, these imaging techniques are neither widely accepted nor proposed by clinicians. These obstructions must be overcome by conducting technology research and more prospective studies. In this review, we emphasize the recent advancement of these noninvasive imaging techniques and provide clinicians a continuously updated perspective on the assessment of kidney fibrosis.
Collapse
Affiliation(s)
- Buchun Jiang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,CONTACT Haidong Fu
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,Jianhua Mao The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Bingsheng Rd, Hangzhou, Zhejiang310052, China
| |
Collapse
|
6
|
Krehl K, Hahndorf J, Stolzenburg N, Taupitz M, Braun J, Sack I, Schnorr J, Guo J. Characterization of renal fibrosis in rats with chronic kidney disease by in vivo tomoelastography. NMR IN BIOMEDICINE 2023; 36:e5003. [PMID: 37455558 DOI: 10.1002/nbm.5003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Chronic kidney disease (CKD) is characterized by structural changes, such as tubular atrophy, renal fibrosis, and glomerulosclerosis, all of which affect the viscoelastic properties of biological tissues. However, detection of renal viscoelasticity changes because diagnostic markers by in vivo elastography lack histopathological validation through animal models. Therefore, we investigated in vivo multiparametric magnetic resonance imaging (mp-MRI), including multifrequency magnetic resonance elastography-based tomoelastography, in the kidneys of 10 rats with adenine-induced CKD and eight healthy controls. Kidney volume (in mm3 ), water diffusivity (apparent diffusion coefficient [ADC] in mm2 /s), shear wave speed (SWS; in m/s; related to stiffness), and wave penetration rate (PR; in m/s; related to inverse viscosity) were quantified by mp-MRI and correlated with histopathologically determined renal fibrosis (collagen area fraction [CAF]; in %). Kidney volume (40% ± 29%, p = 0.009), SWS (11% ± 12%, p = 0.016), and PR (20% ± 15%, p = 0.004) were significantly increased in CKD, which was accompanied by ADC (-24% ± 27%, p = 0.02). SWS, PR, and ADC were correlated with CAF with R = 0.63, 0.75, and -0.5 (all p < 0.05), respectively. In the CKD rats, histopathology showed tubule dilation due to adenine crystal deposition. Collectively, our results suggest that collagen accumulation during CKD progression transforms soft-compliant renal tissue into a more rigid-solid state with reduced water mobility. We hypothesized that tubule dilation-a specific feature of our model-might lead to higher intraluminal pressure, which could also contribute to elevated renal stiffness. Tomoelastography is a promising tool for noninvasively assessing disease progression, detecting biomechanical properties that are sensitive to different pathologic features of CKD.
Collapse
Affiliation(s)
- Karolina Krehl
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Julia Hahndorf
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nicola Stolzenburg
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Elsingergy MM, Viteri B, Otero HJ, Bhatti T, Morales T, Roberts TPL, Amaral S, Hartung E, Serai SD. Imaging fibrosis in pediatric kidney transplantation: A pilot study. Pediatr Transplant 2023; 27:e14540. [PMID: 37166372 PMCID: PMC10824264 DOI: 10.1111/petr.14540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/01/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Noninvasive alternatives to biopsy for assessment of interstitial fibrosis and tubular atrophy (IFTA), the major determinant of kidney transplant failure, remain profoundly limited. Elastography is a noninvasive technique that propagates shear waves across tissues to measure their stiffness. We aimed to test utility of elastography for early detection of IFTA in pediatric kidney allografts. METHODS We compared ultrasound (USE) and MR elastography (MRE) stiffness measurements, performed on pediatric transplant recipients referred for clinically indicated biopsies, and healthy controls. RESULTS Ten transplant recipients (median age 16 years) and eight controls (median age 16.5 years) were enrolled. Three transplant recipients had "stable" allografts and seven had Banff Grade 1 IFTA. Median time from transplantation to biopsy was 12 months. Mean estimated glomerular filtration rate was 61.5 mL/min/1.73m2 by creatinine-cystatin-C CKiD equation at time of biopsy. Mean stiffness, calculated through one-way ANOVA, was higher for IFTA allografts (23.4 kPa USE/5.6 kPa MRE) than stable allografts (13.7 kPa USE/4.4 kPa MRE) and controls (9.1 kPa USE/3.6 kPa MRE). Pearson's coefficient between USE and MRE stiffness values was strong (r = .97). AUC for fibrosis prediction in transplanted kidneys was high for both modalities (0.91 USE and 0.89 MRE), although statistically nonsignificant (p > .05). Stiffness cut-off values for USE and MRE were 13.8 kPa and 4.6 kPa, respectively. Both values yielded a sensitivity of 100% but USE specificity (72%) was slightly higher than MRE (67%). CONCLUSION Elastography shows potential for detection of low-grade IFTA in allografts although a larger sample is imperative for clinical validation.
Collapse
Affiliation(s)
| | - Bernarda Viteri
- Department of Pediatrics, Division of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hansel J. Otero
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tricia Bhatti
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana Morales
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy P L Roberts
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Amaral
- Department of Pediatrics, Division of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erum Hartung
- Department of Pediatrics, Division of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Suraj D. Serai
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Lin Y, Chen J, Huang Y, Lin Y, Su Z. A methodological study of 2D shear wave elastography for noninvasive quantitative assessment of renal fibrosis in patients with chronic kidney disease. Abdom Radiol (NY) 2023; 48:987-998. [PMID: 36565332 DOI: 10.1007/s00261-022-03753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To determine the optimal measurement method of 2D shear wave elastography (2D-SWE) for noninvasive quantitative assessment of renal fibrosis in chronic kidney disease (CKD) patients. METHODS A total of 190 CKD patients were enrolled for 2D-SWE of right kidney. The success rates, coefficients of variation (CV), and pathological correlation of different measurement sites, body positions, and depths were compared. RESULTS (1) Measurement sites: Success rate in the middle part (100%) was higher than that in the lower pole (97.3%, P > 0.05). CV in the middle part (10.2%) was lower than that in the lower pole (16.4%, P < 0.05). Pathological correlation of the middle part (r = - 0.452, P < 0.05) was higher than that of the lower pole (r = 0.097, P > 0.05). (2) Body positions: Success rate in left lateral decubitus position (100%) was higher than that in supine (99.4%, P > 0.05) and prone position (99.4%, P > 0.05). CV was lowest (11.9%) and pathological correlation was highest (r = -0.256, P < 0.05) in prone position. (3) Measurement depths: Success rate at depth < 4 cm (100%) was higher than that at depth ≥ 4 cm (98.8%, P > 0.05). CV at depth < 4 cm (11.1%) was lower than that at depth ≥ 4 cm (14.4%, P < 0.05). Pathological correlation at depth < 4 cm (r = - 0.303, P < 0.05) was higher than that at depth ≥ 4 cm (r = - 0.156, P > 0.05). CONCLUSION The optimal measurement method of 2D-SWE for renal fibrosis assessment was prone position, renal middle part, and measurement depth < 4 cm.
Collapse
Affiliation(s)
- Yanjun Lin
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jiaxin Chen
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yongquan Huang
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yuhong Lin
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
| | - Zhongzhen Su
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
9
|
Adam BA. Importance of Confounding Factors in the Evaluation of Surrogate Measures for Kidney Transplant Fibrosis. KIDNEY360 2022; 3:1829-1830. [PMID: 36514406 PMCID: PMC9717621 DOI: 10.34067/kid.0005852022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Chauveau B, Merville P, Soulabaille B, Taton B, Kaminski H, Visentin J, Vermorel A, Bouzgarrou M, Couzi L, Grenier N. Magnetic Resonance Elastography as Surrogate Marker of Interstitial Fibrosis in Kidney Transplantation: A Prospective Study. KIDNEY360 2022; 3:1924-1933. [PMID: 36514413 PMCID: PMC9717636 DOI: 10.34067/kid.0004282022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Background Fibrosis progression is a major prognosis factor in kidney transplantation. Its assessment requires an allograft biopsy, which remains an invasive procedure at risk of complications. Methods We assessed renal stiffness by magnetic resonance elastography (MRE) as a surrogate marker of fibrosis in a prospective cohort of kidney transplant recipients compared with the histologic gold standard. Interstitial fibrosis was evaluated by three methods: the semi-quantitative Banff ci score, a visual quantitative evaluation by a pathologist, and a computer-assisted quantitative evaluation. MRE-derived stiffness was assessed at the superior, median, and inferior poles of the allograft. Results We initially enrolled 73 patients, but only 55 had measurements of their allograft stiffness by MRE before an allograft biopsy. There was no significant correlation between MRE-derived stiffness at the biopsy site and the ci score (ρ=-0.25, P=0.06) or with the two quantitative assessments (pathologist: ρ=-0.25, P=0.07; computer assisted: ρ=-0.21, P=0.12). We observed negative correlations between the stiffness of both the biopsy site and the whole allograft, with either the glomerulosclerosis percentage (ρ=-0.32, P=0.02 and ρ=-0.31, P=0.02, respectively) and the overall nephron fibrosis percentage, defined as the mean of the percentages of glomerulosclerosis and interstitial fibrosis (ρ=-0.30, P=0.02 and ρ=-0.28, P=0.04, respectively). At patient level, mean MRE-derived stiffness was similar across the three poles of the allograft (±0.25 kPa). However, a high variability of mean stiffness was found between patients, suggesting a strong influence of confounding factors. Finally, no significant correlation was found between mean MRE-derived stiffness and the slope of eGFR (P=0.08). Conclusions MRE-derived stiffness does not directly reflect the extent of fibrosis in kidney transplantation.
Collapse
Affiliation(s)
- Bertrand Chauveau
- CHU de Bordeaux, Service de Pathologie, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France,Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Pierre Merville
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Bruno Soulabaille
- CHU de Bordeaux, Service d’Imagerie Diagnostique et Interventionnelle de l’Adulte, Hôpital Pellegrin, France
| | - Benjamin Taton
- CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Hannah Kaminski
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Jonathan Visentin
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Laboratoire d’Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Agathe Vermorel
- CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Mounir Bouzgarrou
- CHU de Bordeaux, Service d’Imagerie Diagnostique et Interventionnelle de l’Adulte, Hôpital Pellegrin, France
| | - Lionel Couzi
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Nicolas Grenier
- CHU de Bordeaux, Service d’Imagerie Diagnostique et Interventionnelle de l’Adulte, Hôpital Pellegrin, France
| |
Collapse
|
11
|
Magnetic Resonance Elastography-derived Stiffness Predicts Renal Function Loss and Is Associated With Microvascular Inflammation in Kidney Transplant Recipients. Transplant Direct 2022; 8:e1334. [PMID: 35721457 PMCID: PMC9197345 DOI: 10.1097/txd.0000000000001334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
Background. Organ stiffening can be caused by inflammation and fibrosis, processes that are common causes of transplant kidney dysfunction. Magnetic resonance elastography (MRE) is a contrast-free, noninvasive imaging modality that measures kidney stiffness. The objective of this study was to assess the ability of MRE to serve as a prognostic factor for renal outcomes. Methods. Patients were recruited from the St Michael’s Hospital Kidney Transplant Clinic. Relevant baseline demographic, clinical, and Banff histologic information, along with follow-up estimated glomerular filtration rate (eGFR) data, were recorded. Two-dimensional gradient-echo MRE imaging was performed to obtain kidney “stiffness” maps. Binary logistic regression analyses were performed to examine for relationships between stiffness and microvascular inflammation score. Linear mixed-effects modeling was used to assess the relationship between stiffness and eGFR change over time controlling for other baseline variables. A G2-likelihood ratio Chi-squared test was performed to compare between the baseline models with and without “stiffness.” Results. Sixty-eight transplant kidneys were scanned in 66 patients (mean age 56 ± 12 y, 24 females), with 38 allografts undergoing a contemporaneous biopsy. Mean transplant vintage was 7.0 ± 6.8 y. In biopsied allografts, MRE-derived allograft stiffness was associated only with microvascular inflammation (Banff g + ptc score, Spearman ρ = 0.43, P = 0.01), but no other histologic parameters. Stiffness was negatively associated with eGFR change over time (Stiffness × Time interaction β = –0.80, P < 0.0001), a finding that remained significant even when adjusted for biopsy status and baseline variables (Stiffness × Time interaction β = –0.46, P = 0.04). Conversely, the clinical models including “stiffness” showed significantly better fit (P = 0.04) compared with the baseline clinical models without “stiffness.” Conclusions. MRE-derived renal stiffness provides important prognostic information regarding renal function loss for patients with allograft dysfunction, over and above what is provided by current clinical variables.
Collapse
|
12
|
Dillman JR, Benoit SW, Gandhi DB, Trout AT, Tkach JA, VandenHeuvel K, Devarajan P. Multiparametric quantitative renal MRI in children and young adults: comparison between healthy individuals and patients with chronic kidney disease. Abdom Radiol (NY) 2022; 47:1840-1852. [PMID: 35237897 DOI: 10.1007/s00261-022-03456-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Multiparametric quantitative renal MRI may provide noninvasive radiologic biomarkers of chronic kidney disease (CKD) based on investigations in animal models and adults. We aimed to (1) obtain normative multiparametric quantitative MRI data from the kidneys of healthy children and young adults, (2) compare MRI measurements between healthy control participants and patients with CKD, and (3) determine if MRI measurements correlate with clinical and laboratory data as well as histology. METHODS This was a prospective, case-control study of 20 healthy controls and 12 CKD patients who underwent percutaneous renal biopsy ranging from 12 to 23 years of age between October 2018 and March 2020. Kidney function was documented and pathology assessed for fibrosis/inflammation. Utilizing a field strength of 1.5T, we examined renal T1, T2, and T2* relaxation mapping, MR elastography (MRE), and diffusion-weighted imaging (DWI). A single analyst made all manual measurements for quantitative MRI pulse sequences. Independent measurements from cortex, medulla, and whole kidney were obtained by drawing regions of interest on single slices from the upper, mid, and lower kidney. A weighted average was calculated for each kidney; if two kidneys, the right and left were averaged. Continuous variables were compared with Mann-Whitney U test; bivariate relationships were assessed using Spearman rank-order correlation. RESULTS Median estimated glomerular filtration rate (eGFR) was 112.3 ml/min/1.73 m2 in controls (n = 20, 10 females) and 55.0 ml/min/m2 in CKD patients (n = 12, 2 females) (p < 0.0001). Whole kidney (1333 vs. 1291 ms; p = 0.018) and cortical (1212 vs 1137 ms; p < 0.0001) T1 values were higher in CKD patients. Cortical T1 values correlated with eGFR (rho = - 0.62; p = 0.0003) and cystatin C (rho = 0.58; p = 0.0007). Whole kidney (1.87 vs. 2.02 10-3 mm2/s; p = 0.007), cortical (1.89 vs. 2.04 10-3 mm2/s; p = 0.008), and medullary (1.87 vs. 1.98 10-3 mm2/s; p = 0.0095) DWI apparent diffusion coefficients (ADC) were lower in CKD patients. Whole kidney ADC correlated with eGFR (rho = 0.45; p = 0.012) and cystatin C (rho = - 0.46; p = 0.009). Cortical histologic inflammation correlated with DWI ADC (rho = - 0.71; p = 0.011). CONCLUSION Renal T1 relaxation and DWI ADC measurements differ between pediatric healthy controls and CKD patients, correlate with laboratory markers of CKD, and may have histologic correlates.
Collapse
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Stefanie W Benoit
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Deep B Gandhi
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine VandenHeuvel
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Copur S, Yavuz F, Sag AA, Tuttle KR, Kanbay M. Future of kidney imaging: Functional magnetic resonance imaging and kidney disease progression. Eur J Clin Invest 2022; 52:e13765. [PMID: 35267195 DOI: 10.1111/eci.13765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Chronic kidney disease (CKD) which is a common cause of death has an increasing trend, but there is no established approach for predicting CKD progression yet. Functional magnetic resonance imaging (fMRI) studies such as blood oxygenation level-dependent MRI (BOLD-MRI), diffusion-weighted MRI (DWI-MRI), diffusion-tensor MRI (DTI-MRI) and arterial spin labelling MRI (ASL-MRI) are rising methods for the assessment of kidney functions in native and transplanted kidneys as well as the estimation of CKD progression. METHODS Systematic literature review was performed through the Embase (Elsevier), Cochrane Central Register of Controlled Trials (Wiley), PubMed/Medline and Web of Science databases, and studies investigating the role of fMRI methods assessing kidney functions in native and transplanted kidneys, as well as the value of fMRI methods to predict CKD progression, were included. Working mechanisms, advantages and limitations of the fMRI modalities were reviewed, and three studies investigating the role of fMRI studies in kidney functions were analysed. RESULTS AND CONCLUSION BOLD-MRI signal was found to be inversely correlated with annual eGFR change, and DWI/ADC (apparent diffusion coefficient map) values were shown to be correlated with annual eGFR decline. fMRI methods which are currently used for other systems can be utilized to provide more detailed information about kidney functions, and doctors should be ready to interpret kidney MRIs.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kathherine R Tuttle
- Division of Nephrology, University of Washington, Seattle, Washington, USA.,Providence Medical Research Center, Providence Health Care, Washington, District of Columbia, USA
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
14
|
Triolo E, Khegai O, Ozkaya E, Rossi N, Alipour A, Fleysher L, Balchandani P, Kurt M. Design, Construction, and Implementation of a Magnetic Resonance Elastography Actuator for Research Purposes. Curr Protoc 2022; 2:e379. [PMID: 35286023 PMCID: PMC9517172 DOI: 10.1002/cpz1.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic resonance elastography (MRE) is a technique for determining the mechanical response of soft materials using applied harmonic deformation of the material and a motion-sensitive magnetic resonance imaging sequence. This technique can elucidate significant information about the health and development of human tissue such as liver and brain, and has been used on phantom models (e.g., agar, silicone) to determine their suitability for use as a mechanical surrogate for human tissues in experimental models. The applied harmonic deformation used in MRE is generated by an actuator, transmitted in bursts of a specified duration, and synchronized with the magnetic resonance signal excitation. These actuators are most often a pneumatic design (common for human tissues or phantoms) or a piezoelectric design (common for small animal tissues or phantoms). Here, we describe how to design and assemble both a pneumatic and a piezoelectric MRE actuator for research purposes. For each of these actuator types, we discuss displacement requirements, end-effector options and challenges, electronics and electronic-driving requirements and considerations, and full MRE implementation. We also discuss how to choose the actuator type, size, and power based on the intended material and use. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Design, construction, and implementation of a convertible pneumatic MRE actuator for use with tissues and phantom models Basic Protocol 2: Design, construction, and implementation of a piezoelectric MRE actuator for localized excitation in phantom models.
Collapse
Affiliation(s)
- E.R. Triolo
- University of Washington, Dept. of Mechanical Engineering (3900 E Stevens Way NE Seattle, WA 98195)
| | - O. Khegai
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - E. Ozkaya
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - N. Rossi
- Stevens Institute of Technology, Dept. of Mechanical Engineering (1 Castle Point Terrace, Hoboken, NJ 07030)
| | - A. Alipour
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - L. Fleysher
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - P. Balchandani
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - M. Kurt
- University of Washington, Dept. of Mechanical Engineering (3900 E Stevens Way NE Seattle, WA 98195)
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| |
Collapse
|
15
|
Emergent players in renovascular disease. Clin Sci (Lond) 2022; 136:239-256. [PMID: 35129198 DOI: 10.1042/cs20210509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Collapse
|
16
|
Güven AT, Idilman IS, Cebrayilov C, Önal C, Kibar MÜ, Sağlam A, Yıldırım T, Yılmaz R, Altun B, Erdem Y, Karçaaltıncaba M, Arıcı M. Evaluation of renal fibrosis in various causes of glomerulonephritis by MR elastography: a clinicopathologic comparative analysis. Abdom Radiol (NY) 2022; 47:288-296. [PMID: 34633496 DOI: 10.1007/s00261-021-03296-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Renal parenchymal fibrosis is the most important determinant of kidney disease progression and it is determined via biopsy. The aim of this study is to evaluate the renal stiffness noninvasively by magnetic resonance elastography (MRE) and to compare it with clinicopathologic parameters in glomerulonephritis and AA amyloidosis patients. METHODS Thirty-four patients with glomerular filtration rate (GFR) over 20 ml/min/1.73m2 had non-contrast MRE prospectively. Kidney stiffness values were obtained from whole kidney, cortex, and medulla. Values were correlated with GFR, albuminuria, proteinuria, and degree of fibrosis that are assessed via renal biopsy. Patients were grouped clinicopathologically to assess the relation between stiffness and chronicity. RESULTS Mean whole kidney, cortex, and medulla stiffnesses were 3.78 (± 1.26), 3.63 (± 1.25), and 4.77 (± 2.03) kPa, respectively. Mean global glomerulosclerosis was 22% (± 18%) and median segmental glomerulosclerosis was 4% (min-max: 0%-100%). Extent of tubulointerstitial fibrosis was less than 25% in 26 of the patients (76.5%), 25%-50% in 6 of the patients (17.6%), and higher than 50% in 2 of the patients (5.9%). Fourteen patients were defined to have chronic renal parenchymal injury. MRE-derived stiffness values correlated negatively with parameters of fibrosis. Lower stiffness values were observed in patients with chronic renal injury compared to those without (P < 0.05 for whole kidney and medulla MRE-derived stiffness). CONCLUSION MRE-derived stiffness values were lower in patients with chronic injury. Stiffness decreases as glomerulosclerosis and tubulointerstitial fibrosis progresses in patients with primary glomerulonephritis and AA amyloidosis. With future studies, there may be a role for MRE to assess renal function in concert with conventional markers.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Fibrosis is an important biomarker of chronic kidney injury, and a powerful predictor of renal outcome. Currently, the only method for measuring fibrotic burden is histologic analysis, which requires a kidney biopsy in humans, or kidney removal in animal models. These requirements have not only hindered our ability to manage patients effectively, but have also prevented a full understanding of renal fibrosis pathogenesis, and slowed the translation of new antifibrotic agents. The development of noninvasive fibrosis imaging tools could thus transform both clinical care and renal fibrosis research. RECENT FINDINGS Conventional imaging modalities have historically failed to image fibrosis successfully. However, recent exciting technological advances have greatly enhanced their capabilities. New techniques, for example, may allow imaging of the physical consequences of scarring, as surrogate measures of renal fibrosis. Similarly, other groups have developed ways to directly image extracellular matrix, either with the use of contrast-enhanced probes, or using matrix components as endogenous contrast agents. SUMMARY New developments in imaging technology have the potential to transform our ability to visualize renal fibrosis and to monitor its progression. In doing so, these advances could have major implications for kidney disease care, the development of new antiscarring agents, and our understanding of renal fibrosis in general.
Collapse
|
18
|
Zampini MA, Guidetti M, Royston TJ, Klatt D. Measuring viscoelastic parameters in Magnetic Resonance Elastography: a comparison at high and low magnetic field intensity. J Mech Behav Biomed Mater 2021; 120:104587. [PMID: 34034077 DOI: 10.1016/j.jmbbm.2021.104587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique which involves motion-encoding MRI for the estimation of the shear viscoelastic properties of soft tissues through the study of shear wave propagation. The technique has been found informative for disease diagnosis, as well as for monitoring of the effects of therapies. The development of MRE and its validation have been supported by the use of tissue-mimicking phantoms. In this paper we present our new MRE protocol using a low magnetic field tabletop MRI device at 0.5 T and sinusoidal uniaxial excitation in a geometrical focusing condition. Results obtained for gelatin are compared to those previously obtained using high magnetic field MRE at 11.7 T. A multi-frequency investigation is also provided via a comparison of commonly used rheological models: Maxwell, Springpot, Voigt, Zener, Jeffrey, fractional Voigt and fractional Zener. Complex shear modulus values were comparable when processed from images acquired with the tabletop low field scanner and the high field scanner. This study serves as a validation of the presented tabletop MRE protocol and paves the way for MRE experiments on ex-vivo tissue samples in both normal and pathological conditions.
Collapse
Affiliation(s)
- Marco Andrea Zampini
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA; MR Solutions Ltd, Ashbourne House, Old Portsmouth Rd, Guildford, United Kingdom; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | - Martina Guidetti
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Thomas J Royston
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Dieter Klatt
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
19
|
Zhang J, Yu Y, Liu X, Tang X, Xu F, Zhang M, Xie G, Zhang L, Li X, Liu ZH. Evaluation of Renal Fibrosis by Mapping Histology and Magnetic Resonance Imaging. KIDNEY DISEASES 2021; 7:131-142. [PMID: 33824869 DOI: 10.1159/000513332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Background Renal fibrosis is a key driver of progression in chronic kidney disease (CKD). Recent advances in diagnostic imaging techniques have shown promising results for the noninvasive assessment of renal fibrosis. However, the specificity and accuracy of these techniques are controversial because they indirectly assess renal fibrosis. This limits fibrosis assessment by imaging in CKD for clinical practice. To validate magnetic resonance imaging (MRI) assessment for fibrosis, we derived representative models by mapping histology-proven renal fibrosis and imaging in CKD. Methods Ninety-seven adult Chinese CKD participants with histology were studied. The kidney cortex interstitial extracellular matrix volume was calculated by the Aperio ScanScope system using Masson's trichrome slices. The kidney cortex microcirculation was quantitatively assessed by peritubular capillary density using CD34 staining. The imaging techniques included intravoxel incoherent motion diffusion-weighted imaging and magnetic resonance elastography (MRE) imaging. Relevant analyses were performed to evaluate the correlations between MRI parameters and histology variables. Multiple linear regression models were used to describe the relationships between a response variable and other variables. The best-fit lines, which minimize the sum of squared residuals of the multiple linear regression models, were generated. Results MRE values were negatively associated with the interstitial extracellular matrix volume (Rho = -0.397, p < 0.001). The best mapping model of extracellular matrix volume with the MRE value and estimated glomerular filtration rate (eGFR) we obtained was as follows: Interstitial extracellular matrix volume = 218.504 - 14.651 × In(MRE) - 18.499 × In(eGFR). DWI-fraction values were positively associated with peritubular capillary density (Rho = 0.472, p < 0.001). The best mapping model of peritubular capillary density with DWI-fraction value and eGFR was as follows: Peritubular capillaries density = 17.914 + 9.403 × (DWI - fraction) + 0.112 × (eGFR). Conclusions The study provides histological evidence to support that MRI can effectively evaluate fibrosis in the kidney. These findings picture the graphs of the mapping model from imaging and eGFR into fibrosis, which has significant value for clinical implementation.
Collapse
Affiliation(s)
- Jiong Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Yuanmeng Yu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | | | - Xiong Tang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Guotong Xie
- Ping An Healthcare Technology, Ping An Health Cloud Company Limited, Ping An International Smart City Technology Co., Ltd., Beijing, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiang Li
- Ping An Health Technology, Beijing, China
| | - Zhi-Hong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| |
Collapse
|
20
|
Abstract
Interstitial fibrosis with tubule atrophy (IF/TA) is the response to virtually any sustained kidney injury and correlates inversely with kidney function and allograft survival. IF/TA is driven by various pathways that include hypoxia, renin-angiotensin-aldosterone system, transforming growth factor (TGF)-β signaling, cellular rejection, inflammation and others. In this review we will focus on key pathways in the progress of renal fibrosis, diagnosis and therapy of allograft fibrosis. This review discusses the role and origin of myofibroblasts as matrix producing cells and therapeutic targets in renal fibrosis with a particular focus on renal allografts. We summarize current trends to use multi-omic approaches to identify new biomarkers for IF/TA detection and to predict allograft survival. Furthermore, we review current imaging strategies that might help to identify and follow-up IF/TA complementary or as alternative to invasive biopsies. We further discuss current clinical trials and therapeutic strategies to treat kidney fibrosis.Supplemental Visual Abstract; http://links.lww.com/TP/C141.
Collapse
|
21
|
Alnazer I, Bourdon P, Urruty T, Falou O, Khalil M, Shahin A, Fernandez-Maloigne C. Recent advances in medical image processing for the evaluation of chronic kidney disease. Med Image Anal 2021; 69:101960. [PMID: 33517241 DOI: 10.1016/j.media.2021.101960] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-invasively retrieve structural, functional and molecular information that could detect changes in renal tissue properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the role of AI in renal segmentation.
Collapse
Affiliation(s)
- Israa Alnazer
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France; AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon.
| | - Pascal Bourdon
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Omar Falou
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon; American University of Culture and Education, Koura, Lebanon; Lebanese University, Faculty of Science, Tripoli, Lebanon
| | - Mohamad Khalil
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Ahmad Shahin
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Christine Fernandez-Maloigne
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|
22
|
MR Elastography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Abstract
Magnetic resonance elastography (MRE) is an emerging imaging modality that maps the elastic properties of tissue such as the shear modulus. It allows for noninvasive assessment of stiffness, which is a surrogate for fibrosis. MRE has been shown to accurately distinguish absent or low stage fibrosis from high stage fibrosis, primarily in the liver. Like other elasticity imaging modalities, it follows the general steps of elastography: (1) apply a known cyclic mechanical vibration to the tissue; (2) measure the internal tissue displacements caused by the mechanical wave using magnetic resonance phase encoding method; and (3) infer the mechanical properties from the measured mechanical response (displacement), by generating a simplified displacement map. The generated map is called an elastogram.While the key interest of MRE has traditionally been in its application to liver, where in humans it is FDA approved and commercially available for clinical use to noninvasively assess degree of fibrosis, this is an area of active research and there are novel upcoming applications in brain, kidney, pancreas, spleen, heart, lungs, and so on. A detailed review of all the efforts is beyond the scope of this chapter, but a few specific examples are provided. Recent application of MRE for noninvasive evaluation of renal fibrosis has great potential for noninvasive assessment in patients with chronic kidney diseases. Development and applications of MRE in preclinical models is necessary primarily to validate the measurement against "gold-standard" invasive methods, to better understand physiology and pathophysiology, and to evaluate novel interventions. Application of MRE acquisitions in preclinical settings involves challenges in terms of available hardware, logistics, and data acquisition. This chapter will introduce the concepts of MRE and provide some illustrative applications.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by another separate chapter describing the experimental protocol and data analysis.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Noninvasive Assessment of Fibrosis Following Ischemia/Reperfusion Injury in Rodents Utilizing Na Magnetic Resonance Imaging. Pharmaceutics 2020; 12:pharmaceutics12080775. [PMID: 32824113 PMCID: PMC7463828 DOI: 10.3390/pharmaceutics12080775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
Fibrosis is often heterogeneously distributed, and classical biopsies do not reflect this. Noninvasive methods for renal fibrosis have been developed to follow chronic kidney diseases (CKD) and to monitor anti-fibrotic therapy. In this study, we combined two approaches to assess fibrosis regression following renal ischemia-reperfusion injury (IRI): magnetic resonance imaging (MRI) and noninvasive extracellular matrix (ECM) biomarkers. MRI was used to evaluate fibrosis in bilateral IRI in rats after reperfusion at 7, 14, and 21 days. This was performed with 1HT1 and T2* mapping, dynamic contrast-enhanced (DCE)-MRI, and chemical shift imaging (CSI)-23Na. The degradation of laminin gamma-1 chain (LG1M) and type III collagen (C3M) was measured in urine and plasma. Fibrosis was analyzed in tissue using fibronectin (FN) and alpha-smooth muscle actin (α-SMA) using quantitative polymerase chain reaction qPCR and western blotting. We found increased fibrosis 7 days after reperfusion, which dropped to sham levels after 21 days. Single kidney glomerular filtration rate (skGFR), perfusion (DCE-MRI), and total 23Na kidney content correlated positively with fibrotic markers FN and α-SMA as well as noninvasive LG1M and C3M. We showed that novel MRI protocols and ECM markers could track fibrogenic development. This could give rise to a multi-parametric practice to diagnose and assess fibrosis whilst treating kidney disease without using invasive methods.
Collapse
|
25
|
Wilson MP, Katlariwala P, Low G. More Studies are Needed Evaluating the Diagnostic Accuracy of Magnetic Resonance Elastography for Allograft Renal Transplant Rejection. Korean J Radiol 2020; 21:1024-1025. [PMID: 32677387 PMCID: PMC7369209 DOI: 10.3348/kjr.2020.0242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Mitchell P Wilson
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada.
| | - Prayash Katlariwala
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| | - Gavin Low
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
Yu YM, Ni QQ, Wang ZJ, Chen ML, Zhang LJ. Multiparametric Functional Magnetic Resonance Imaging for Evaluating Renal Allograft Injury. Korean J Radiol 2020; 20:894-908. [PMID: 31132815 PMCID: PMC6536799 DOI: 10.3348/kjr.2018.0540] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage renal disease, as it extends survival and increases quality of life in these patients. However, chronic allograft injury continues to be a major problem, and leads to eventual graft loss. Early detection of allograft injury is essential for guiding appropriate intervention to delay or prevent irreversible damage. Several advanced MRI techniques can offer some important information regarding functional changes such as perfusion, diffusion, structural complexity, as well as oxygenation and fibrosis. This review highlights the potential of multiparametric MRI for noninvasive and comprehensive assessment of renal allograft injury.
Collapse
Affiliation(s)
- Yuan Meng Yu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, China
| | - Qian Qian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Meng Lin Chen
- Medical Imaging Teaching and Research Office, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Brown RS, Sun MRM, Stillman IE, Russell TL, Rosas SE, Wei JL. The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy. Nephrol Dial Transplant 2020; 35:970-978. [PMID: 31329940 PMCID: PMC7282829 DOI: 10.1093/ndt/gfz066] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Noninvasive quantitative measurement of fibrosis in chronic kidney disease (CKD) would be desirable diagnostically and therapeutically but standard radiologic imaging is too variable for clinical usage. By applying a vibratory force, tissue shear wave stiffness can be measured by magnetic resonance elastography (MRE) that may correlate with progression of kidney fibrosis. Since decreased kidney perfusion decreases tissue turgor and stiffness, we combined newly available three-dimensional MRE shear stiffness measurements with MR arterial spin labeling (ASL) kidney blood flow rates to evaluate fibrosis in diabetic nephropathy. METHODS Thirty individuals with diabetes and Stage 0-5 CKD and 13 control individuals without CKD underwent noncontrast MRE with concurrent ASL blood flow measurements. RESULTS MRE cortical shear stiffness at 90 Hz was decreased significantly below controls in all CKD stages of diabetic nephropathy. Likewise, ASL blood flow decreased progressively from 480 ± 136 mL/min/100 g of cortical tissue in controls to 302 ± 95, 229 ± 7 and 152 ± 32 mL/min/100 g in Stages 3, 4 and 5 CKD, respectively. A magnetic resonance imaging (MRI) surrogate for the measured glomerular filtration fraction [surrogate filtration fraction = estimated glomerular filtration rate (eGFR)/ASL] decreased progressively from 0.21 ± 0.07 in controls to 0.16 ± 0.04 in Stage 3 and 0.10 ± 0.02 in Stage 4-5 CKD. CONCLUSIONS In this pilot study, MRI with ASL blood flow rates can noninvasively measure decreasing kidney cortical tissue perfusion and, with eGFR, a decreasing surrogate filtration fraction in worsening diabetic nephropathy that appears to correlate with increasing fibrosis. Differing from the liver, MRE shear stiffness surprisingly decreases with worsening CKD, likely related to decreased tissue turgor from lower blood flow rates.
Collapse
Affiliation(s)
- Robert S Brown
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Teresa L Russell
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sylvia E Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, MA, USA
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jesse L Wei
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Han JH, Ahn JH, Kim JS. Magnetic resonance elastography for evaluation of renal parenchyma in chronic kidney disease: a pilot study. Radiol Med 2020; 125:1209-1215. [DOI: 10.1007/s11547-020-01210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
|
29
|
Kennedy P, Bane O, Hectors SJ, Gordic S, Berger M, Delaney V, Salem F, Lewis S, Menon M, Taouli B. Magnetic resonance elastography vs. point shear wave ultrasound elastography for the assessment of renal allograft dysfunction. Eur J Radiol 2020; 126:108949. [PMID: 32179424 PMCID: PMC7210723 DOI: 10.1016/j.ejrad.2020.108949] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the utility of magnetic resonance elastography (MRE) vs. ultrasound (US) point shear wave elastography (pSWE) for the assessment of chronic renal allograft dysfunction, prediction of outcome and determine the correlation with Banff pathology scores. METHODS In this IRB approved prospective study, 27 enrolled patients with functional (n = 15) and chronic dysfunctional (n = 12) renal allografts underwent same day 2D MRE and pSWE. Histogram parameters [including mean, median, standard deviation, kurtosis and skewness] of the magnitude of the complex shear modulus (MRE) and median Young's modulus (pSWE) were measured in the cortex (MRE and pSWE) and combined corticomedullary regions (MRE). Histopathology was available for 16 patients (4 functional, 12 dysfunctional). RESULTS MRE and pSWE stiffness were not significantly different between functional and dysfunctional groups (p range 0.139-0.347). The skewness of MRE corticomedullary stiffness was significantly lower (p = 0.04) in patients with chronic dysfunction and correlated significantly with Banff histopathologic scores (range r=-0.518-0.567, p = 0.035-0.040). MRE cortical and corticomedullary mean stiffness showed strong performance in predicting graft loss/relist (AUC 0.958, p = 0.011 for both). Reliable pSWE measurements were obtained in 13 patients (48 %). pSWE stiffness did not correlate with Banff scores and did not predict outcome. CONCLUSIONS The skewness of MRE corticomedullary stiffness is sensitive to changes in chronic allograft dysfunction, while mean/median MRE renal stiffness and median US stiffness did not differentiate patients with stable function vs those with chronic renal allograft dysfunction. MRE corticomedullary mean stiffness appears to be a predictor of graft loss/relist. pSWE was not found to be a useful method for assessing renal allografts.
Collapse
Affiliation(s)
- Paul Kennedy
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, United States
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, United States
| | - Stefanie J Hectors
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, United States; Department of Radiology, Weill Cornell Medicine, United States
| | - Sonja Gordic
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, United States; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - Mark Berger
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, United States
| | - Veronica Delaney
- Division of Renal Medicine, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, United States
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, United States
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, United States; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, United States
| | - Madhav Menon
- Division of Renal Medicine, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, United States
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, United States; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, United States.
| |
Collapse
|
30
|
Schutter R, Lantinga VA, Borra RJH, Moers C. MRI for diagnosis of post-renal transplant complications: current state-of-the-art and future perspectives. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:49-61. [PMID: 31879853 DOI: 10.1007/s10334-019-00813-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Kidney transplantation has developed into a widespread procedure to treat end stage renal failure, with transplantation results improving over the years. Postoperative complications have decreased over the past decades, but are still an important cause of morbidity and mortality. Early accurate diagnosis and treatment is the key to prevent renal allograft impairment or even graft loss. Ideally, a diagnostic tool should be able to detect post-transplant renal dysfunction, differentiate between the different causes and monitor renal function during and after therapeutic interventions. Non-invasive imaging modalities for diagnostic purposes show promising results. Magnetic resonance imaging (MRI) techniques have a number of advantages, such as the lack of ionizing radiation and the possibility to obtain relevant tissue information without contrast, reducing the risk of contrast-induced nephrotoxicity. However, most techniques still lack the specificity to distinguish different types of parenchymal diseases. Despite some promising outcomes, MRI is still barely used in the post-transplantation diagnostic process. The aim of this review is to survey the current literature on the relevance and clinical applicability of diagnostic MRI modalities for the detection of various types of complications after kidney transplantation.
Collapse
Affiliation(s)
- Rianne Schutter
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Veerle A Lantinga
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald J H Borra
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Cyril Moers
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Zhang J, Zhang LJ. Functional MRI as a Tool for Evaluating Interstitial Fibrosis and Prognosis in Kidney Disease. KIDNEY DISEASES 2019; 6:7-12. [PMID: 32021869 DOI: 10.1159/000504708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Background Kidney fibrosis is a key driver of progression of kidney diseases. Renal biopsies remain the gold-standard approach to specifically diagnose and stage renal fibrosis at present. However, there is a lack of multi-dimensional pictures showing renal function, histology, and imaging of the fibrotic kidney. Summary Magnetic resonance imaging (MRI) strategies have been rapidly evolving during the past couple of decades, especially driven by advances in technology. Recently, several pioneer and remarkable studies demonstrated that advanced functional MRI (fMRI) tools could be useful for the evaluation of kidney fibrosis and progression, which provides more opportunities to benefit from the significant value of fMRI tools for clinical implementation. Key Messages fMRI will be a novel approach to evaluate interstitial fibrosis and prognosis in kidney disease.
Collapse
Affiliation(s)
- Jiong Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Long Jiang Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
32
|
Lang ST, Guo J, Bruns A, Dürr M, Braun J, Hamm B, Sack I, Marticorena Garcia SR. Multiparametric Quantitative MRI for the Detection of IgA Nephropathy Using Tomoelastography, DWI, and BOLD Imaging. Invest Radiol 2019; 54:669-674. [DOI: 10.1097/rli.0000000000000585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Chiocchini ALC, Sportoletti C, Comai G, Brocchi S, Capelli I, Baraldi O, Bruno P, Conti F, Serra C, Meola M, Zompatori M, La Manna G. Correlation Between Renal Cortical Stiffness and Histological Determinants by Point Shear-Wave Elastography in Patients With Kidney Transplantation. Prog Transplant 2019; 27:346-353. [PMID: 29187134 DOI: 10.1177/1526924817731882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Renal allograft biopsy is the gold standard for the detection of histological lesions of chronic allograft dysfunction. The identification of a noninvasive routine test would be desirable. Elastosonography is used to assess tissue stiffness according to viscosity, and no data are available on the use of point quantification shear-wave elastography (ElastPQ) for the evaluation of renal chronic lesions. RESEARCH QUESTION To evaluate the feasibility of ElastPQ to assess cortical allograft stiffness and to determine the correlation of clinical, biological, and pathological factors with the diagnostic accuracy of kidney stiffness values in patients with histological lesions. DESIGN Forty-two patients underwent kidney transplant biopsy and 10 valid measurements of ElastPQ, blindly performed by 2 operators. The interobserver reproducibility was assessed according to intraclass correlation coefficient. The ElastPQ measurements and the clinical data were compared using the Spearman correlation analysis. RESULTS 97.6% reliable measurements were obtained using ElastPQ, with an excellent interobserver agreement. The kidney stiffness was significantly higher in the patients with a time since transplantation >12 months and was correlated with chronic lesions (interstitial fibrosis, tubular atrophy transplant glomerulopathy, and mesangial matrix), with the interstitial fibrosis/tubular atrophy, score and with the sum of the scores of the chronic lesions. Mesangial matrix increase is the only independent determinant of kidney stiffness. DISCUSSION ElastPQ is a noninvasive, reproducible, and sensitive diagnostic tool able to detect moderate/severe chronic lesions. Its routine use during follow-up can identify patients eligible for biopsy, which remains the gold standard exam for detecting chronic allograft dysfunction.
Collapse
Affiliation(s)
- A L Croci Chiocchini
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - C Sportoletti
- 2 Department of Experimental, Diagnostic and Specialty Medicine (DIMES)-Radiology Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - G Comai
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - S Brocchi
- 2 Department of Experimental, Diagnostic and Specialty Medicine (DIMES)-Radiology Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - I Capelli
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - O Baraldi
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - P Bruno
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - F Conti
- 3 Department of Surgical and Medical Sciences, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - C Serra
- 4 Department of Organ Dysfunction and Transplants-Internal Medicine, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - M Meola
- 5 Nephrology Division, Department of Internal and Experimental Medicine, University of Pisa, S. Anna School of Advanced Studies, Pisa, Italy
| | - M Zompatori
- 2 Department of Experimental, Diagnostic and Specialty Medicine (DIMES)-Radiology Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - G La Manna
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res 2019; 209:105-120. [PMID: 31082371 PMCID: PMC6553637 DOI: 10.1016/j.trsl.2019.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is a useful biomarker for diagnosis and guidance of therapeutic interventions of chronic kidney disease (CKD), a worldwide disease that affects more than 10% of the population and is one of the major causes of death. Currently, tissue biopsy is the gold standard for assessment of renal fibrosis. However, it is invasive, and prone to sampling error and observer variability, and may also result in complications. Recent advances in diagnostic imaging techniques, including magnetic resonance imaging (MRI) and ultrasonography, have shown promise for noninvasive assessment of renal fibrosis. These imaging techniques measure renal fibrosis by evaluating its impacts on the functional, mechanical, and molecular properties of the kidney, such as water mobility by diffusion MRI, tissue hypoxia by blood oxygenation level dependent MRI, renal stiffness by MR and ultrasound elastography, and macromolecule content by magnetization transfer imaging. Other MR techniques, such as T1/T2 mapping and susceptibility-weighted imaging have also been explored for measuring renal fibrosis. Promising findings have been reported in both preclinical and clinical studies using these techniques. Nevertheless, limited specificity, sensitivity, and practicality in these techniques may hinder their immediate application in clinical routine. In this review, we will introduce methodologies of these techniques, outline their applications in fibrosis imaging, and discuss their limitations and pitfalls.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
35
|
Hodneland E, Keilegavlen E, Hanson EA, Andersen E, Monssen JA, Rorvik J, Leh S, Marti HP, Lundervold A, Svarstad E, Nordbotten JM. In Vivo Detection of Chronic Kidney Disease Using Tissue Deformation Fields From Dynamic MR Imaging. IEEE Trans Biomed Eng 2019; 66:1779-1790. [DOI: 10.1109/tbme.2018.2879362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
New and Emerging Applications of Magnetic Resonance Elastography of Other Abdominal Organs. Top Magn Reson Imaging 2019; 27:335-352. [PMID: 30289829 DOI: 10.1097/rmr.0000000000000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing clinical experience and ongoing research in the field of magnetic resonance elastography (MRE) is leading to exploration of its applications in other abdominal organs. In this review, the current research progress of MRE in prostate, uterus, pancreas, spleen, and kidney will be discussed. The article will describe patient preparation, modified technical approach including development of passive drivers, modification of sequences, and inversion. The potential clinical application of MRE in the evaluation of several disease processes affecting these organs will be discussed. In an era of increasing adoption of multiparametric magnetic resonance imaging approaches for solving complex abdominal problems, abdominal MRE as a biomarker may be seamlessly incorporated into a standard magnetic resonance imaging examination to provide a rapid, reliable, and comprehensive imaging evaluation at a single patient appointment in the future.
Collapse
|
37
|
Abstract
Kidney diseases can be caused by a wide range of genetic, hemodynamic, toxic, infectious, and autoimmune factors. The diagnosis of kidney disease usually involves the biochemical analysis of serum and blood, but these tests are often insufficiently sensitive or specific to make a definitive diagnosis. Although radiologic imaging currently has a limited role in the evaluation of most kidney diseases, several new imaging methods hold great promise for improving our ability to non-invasively detect structural, functional, and molecular changes within the kidney. New methods, such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and blood oxygen level-dependent (BOLD) MRI, allow functional imaging of the kidney. The use of novel contrast agents, such as microbubbles and nanoparticles, allows the detection of specific molecules in the kidney. These methods could greatly advance our ability to diagnose disease and also to safely monitor patients over time. This could improve the care of individual patients, and it could also facilitate the evaluation of new treatment strategies.
Collapse
Affiliation(s)
- Joshua Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
Guenthner C, Kozerke S. Encoding and readout strategies in magnetic resonance elastography. NMR IN BIOMEDICINE 2018; 31:e3919. [PMID: 29806865 DOI: 10.1002/nbm.3919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 12/15/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance elastography (MRE) has evolved significantly since its inception. Advances in motion-encoding gradient design and readout strategies have led to improved encoding and signal-to-noise ratio (SNR) efficiencies, which in turn allow for higher spatial resolution, increased coverage, and/or shorter scan times. The purpose of this review is to summarize MRE wave-encoding and readout approaches in a unified mathematical framework to allow for a comparative assessment of encoding and SNR efficiency of the various methods available. Besides standard full- and fractional-wave-encoding approaches, advanced techniques including flow compensation, sample interval modulation and multi-shot encoding are considered. Signal readout using fast k-space trajectories, reduced field of view, multi-slice, and undersampling techniques are summarized and put into perspective. The review is concluded with a foray into displacement and diffusion encoding as alternative and/or complementary techniques.
Collapse
Affiliation(s)
- Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Fovargue D, Nordsletten D, Sinkus R. Stiffness reconstruction methods for MR elastography. NMR IN BIOMEDICINE 2018; 31:e3935. [PMID: 29774974 PMCID: PMC6175248 DOI: 10.1002/nbm.3935] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
Assessment of tissue stiffness is desirable for clinicians and researchers, as it is well established that pathophysiological mechanisms often alter the structural properties of tissue. Magnetic resonance elastography (MRE) provides an avenue for measuring tissue stiffness and has a long history of clinical application, including staging liver fibrosis and stratifying breast cancer malignancy. A vital component of MRE consists of the reconstruction algorithms used to derive stiffness from wave-motion images by solving inverse problems. A large range of reconstruction methods have been presented in the literature, with differing computational expense, required user input, underlying physical assumptions, and techniques for numerical evaluation. These differences, in turn, have led to varying accuracy, robustness, and ease of use. While most reconstruction techniques have been validated against in silico or in vitro phantoms, performance with real data is often more challenging, stressing the robustness and assumptions of these algorithms. This article reviews many current MRE reconstruction methods and discusses the aforementioned differences. The material assumptions underlying the methods are developed and various approaches for noise reduction, regularization, and numerical discretization are discussed. Reconstruction methods are categorized by inversion type, underlying assumptions, and their use in human and animal studies. Future directions, such as alternative material assumptions, are also discussed.
Collapse
Affiliation(s)
- Daniel Fovargue
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - David Nordsletten
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Ralph Sinkus
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Inserm U1148, LVTSUniversity Paris Diderot, University Paris 13Paris75018France
| |
Collapse
|
40
|
Marticorena Garcia SR, Guo J, Dürr M, Denecke T, Hamm B, Sack I, Fischer T. Comparison of ultrasound shear wave elastography with magnetic resonance elastography and renal microvascular flow in the assessment of chronic renal allograft dysfunction. Acta Radiol 2018; 59:1139-1145. [PMID: 29249167 DOI: 10.1177/0284185117748488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Monitoring of renal allograft function is essential for early identification of dysfunction and improvement of kidney transplant (KTX) outcome. Purpose To non-invasively assess renal stiffness in KTX recipients using ultrasound shear wave elastography (USE) in correlation with multifrequency magnetic resonance elastography (MRE), renal allograft function, and renal microvascular flow determined using a novel ultrasound microvascular imaging technique. Material and Methods This prospective study investigated 25 KTXs (functional KTX [FCT], n = 14; chronic KTX insufficiency [DYS], n = 11) in 20 KTX recipients (mean age = 43 ± 14 years). USE was performed using a high-frequency broadband linear transducer and compared with MRE. Shear wave velocity (SWV) was correlated with the estimated glomerular filtration rate (eGFR). Qualitative differences in renal microvascular flow were obtained using SMI. Results FCT had higher SWV than DYS in both cortex and pyramids (cortex, FCT: 3.75 ± 0.82 m/s vs. DYS: 2.79 ± 0.73 m/s, P = 0.0002; pyramid, FCT: 2.89 ± 0.46 m/s vs. DYS: 2.39 ± 0.34 m/s, P = 0.044). Cutoff values of 3.265 m/s for cortex, 2.535 m/s for pyramids, and 2.985 m/s for combined non-hilar parenchyma provided sensitivities of 72.7%, 77.8%, and 90.9% and specificities of 71.4%, 78.6%, and 85.7% for detecting renal allograft dysfunction with area under the receiver operating characteristic curve (AUC) values of 0.831, 0.841, 0.925 (95% confidence interval [CI] = 0.67-0.99, 0.66-1.02, 0.83-1.03). USE correlated positively with eGFR ( r = 0.741, P = 0.0004) and with MRE-derived SWV ( r = 0.562, P = 0.004). Renal microvascular flow was decreased in DYS. Conclusion USE is sensitive to renal allograft dysfunction, which is characterized by reduced SWV and renal perfusion. USE has higher image resolution than MRE, while MRE has slightly better diagnostic accuracy.
Collapse
Affiliation(s)
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Dürr
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Timm Denecke
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Fischer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
41
|
Zhang X, Zhu X, Ferguson CM, Jiang K, Burningham T, Lerman A, Lerman LO. Magnetic resonance elastography can monitor changes in medullary stiffness in response to treatment in the swine ischemic kidney. MAGMA (NEW YORK, N.Y.) 2018; 31:375-382. [PMID: 29289980 PMCID: PMC5976551 DOI: 10.1007/s10334-017-0671-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Low-energy shockwave (SW) therapy attenuates damage in the stenotic kidney (STK) caused by atherosclerotic renal artery stenosis (ARAS). We hypothesized that magnetic resonance elastography (MRE) would detect attenuation of fibrosis following SW in unilateral ARAS kidneys. MATERIALS AND METHODS Domestic pigs were randomized to control, unilateral ARAS, and ARAS treated with 6 sessions of SW over 3 consecutive weeks (n = 7 each) starting after 3 weeks of ARAS or sham. Four weeks after SW treatment, renal fibrosis was evaluated with MRE in vivo or trichrome staining ex vivo. Blood pressure, single-kidney renal-blood-flow (RBF) and glomerular-filtration-rate (GFR) were assessed. RESULTS MRE detected increased stiffness in the STK medulla (15.3 ± 2.1 vs. 10.1 ± 0.8 kPa, p < 0.05) that moderately correlated with severity of fibrosis (R2 = 0.501, p < 0.01), but did not identify mild STK cortical or contralateral kidney fibrosis. Trichrome staining showed that medullary fibrosis was increased in ARAS and alleviated by SW (10.4 ± 1.8% vs. 2.9 ± 0.2%, p < 0.01). SW slightly decreased blood pressure and normalized STK RBF and GFR in ARAS. In the contralateral kidney, SW reversed the increase in RBF and GFR. CONCLUSION MRE might be a tool for noninvasive monitoring of medullary fibrosis in response to treatment in kidney disease.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tyson Burningham
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Amir Lerman
- Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lilach Orly Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
42
|
Ji R, Li J, Yin Z, Liu Y, Cang L, Wang M, Shi Y. Pancreatic stiffness response to an oral glucose load in obese adults measured by magnetic resonance elastography. Magn Reson Imaging 2018; 51:113-119. [PMID: 29729951 DOI: 10.1016/j.mri.2018.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND To test the feasibility of magnetic resonance elastography (MRE) for assessing changes in pancreatic stiffness of obese adults administered an oral glucose load. METHODS MRE scans were performed on 21 asymptomatic obese volunteers (BMI ≥ 27 kg/m2) before and after receiving a 75-g oral glucose load, and repeated in 7 days without a glucose load. Shear waves at 40 and 60 Hz were introduced into the upper abdomen by a pneumatic drum driver (diameter of 12 cm). Two radiologists subjectively graded the overall quality of the wave images of the pancreas using a scale from 1 to 4, in which suboptimal image quality was considered to be scores of 1 and 2. RESULTS Good inter-observer agreement was found for image quality at both frequencies (kappa = 0.805 for 40 Hz and 0.762 for 60 Hz). The median overall image quality score was significantly higher in 40 Hz than that of 60 Hz (4 versus 2). At 40 Hz, pancreatic stiffness in response to oral glucose had a decrease of 6.7% (pre vs post: 1.17 ± 0.13 kPa vs 1.08 ± 0.12 kPa; P < 0.001), whereas the change in stiffness was not significant at 60 Hz (pre vs post: 2.01 ± 0.21 kPa vs 2.02 ± 0.24 kPa; P = 0.695). Excellent intersession agreement was found for MRE acquisitions at 40 Hz with an overall intraclass correlation coefficient = 0.947 (95% confidence interval: 0.913-0.967). CONCLUSION MRE at 40 Hz provides good-quality wave images and high sensitivity to changes in the mechanical properties of pancreatic tissue in obese volunteers after an oral glucose load.
Collapse
Affiliation(s)
- Ruoyun Ji
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiahui Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziying Yin
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Yanqing Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lizhuo Cang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
43
|
Wang M, Gao F, Wang X, Liu Y, Ji R, Cang L, Shi Y. Magnetic resonance elastography and T 1 mapping for early diagnosis and classification of chronic pancreatitis. J Magn Reson Imaging 2018; 48:10.1002/jmri.26008. [PMID: 29537715 PMCID: PMC6138575 DOI: 10.1002/jmri.26008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Early detection and classification of chronic pancreatitis (CP) are both important and challenging. PURPOSE To investigate the diagnostic performance of MR elastography (MRE) and T1 mapping of the pancreas for different stages of CP. STUDY TYPE Retrospective. SUBJECTS Clinical and imaging records of 81 patients (from 5/2015 to 7/2017) with suspected CP were analyzed. Patients were categorized into the normal control (n = 35), mild CP (n = 30), and moderate/severe CP groups (n = 16) according to the Cambridge Classification based on concordant endoscopic retrograde cholangiopancreatography or ultrasound endoscopy findings. FIELD STRENGTH/SEQUENCE 3T pancreatic MRI, which included MRE and T1 mapping. ASSESSMENT T1 relaxation times, pancreatic stiffness values, the main pancreatic duct (MPD) diameter, and pancreatic thickness were measured in all patients. Statistical Tests: Cutoff values of T1 relaxation times and pancreatic stiffness values for diagnosis of CP were calculated using receiver operating characteristic analysis. Associations of imaging parameters with different stages of CP were assessed using logistic regression analysis. RESULTS Both T1 relaxation times (865 ± 220 msec vs. 1075 ± 221 msec vs. 1350 ± 139 msec) and pancreatic stiffness (1.21 ± 0.13 kPa vs. 1.50 ± 0.15 kPa vs. 1.90 ± 0.16 kPa) differed significantly (P < 0.001) among the control, mild CP, and moderate/severe CP groups. Pancreatic stiffness (>1.34 kPa) achieved significantly higher area under the curve (AUC) than T1 relaxation time (>908.4 msec) for detection of mild CP (AUC: 0.928 vs. 0.751, P = 0.011). Pancreatic stiffness values (>1.61 kPa) also achieved significantly higher AUC than T1 relaxation time (>1131.6 msec) (AUC: 0.981 vs. 0.910, P = 0.033) for diagnosing moderate/severe CP from the other two groups. Multiple regression analysis showed that T1 relaxation time and stiffness were the independent factors associated with mild CP (P = 0.025 and <0.001, respectively). DATA CONCLUSION Both MRE and T1 mapping are promising quantitative imaging methods for evaluation of CP; MRE slightly outperformed T1 mapping. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Feng Gao
- Department of Pancreato-thyroidic Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | | | - Yanqing Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ruoyun Ji
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Lizhuo Cang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
44
|
Looker HC, Mauer M, Nelson RG. Role of Kidney Biopsies for Biomarker Discovery in Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:192-201. [PMID: 29580583 PMCID: PMC5875458 DOI: 10.1053/j.ackd.2017.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Although estimated glomerular filtration rate and albuminuria are well-established biomarkers of diabetic kidney disease (DKD), additional biomarkers are needed, especially for the early stages of the disease when both albuminuria and estimated glomerular filtration rate may still be in the normal range and are less helpful for identifying those at risk of progression. Traditional biomarker studies for early DKD are challenging because of a lack of good early clinical end points, and most rely on changes in existing imprecise biomarkers to assess the value of new biomarkers. There are well-characterized changes in kidney structure, however, that are highly correlated with kidney function, always precede the clinical findings of DKD and, at preclinical stages, predict DKD progression. These structural parameters may thus serve as clinically useful end points for identifying new biomarkers of early DKD. In addition, investigators are analyzing tissue transcriptomic data to identify pathways involved in early DKD which may have associated candidate biomarkers measurable in blood or urine, and differentially expressed microRNAs and epigenetic modifications in kidney tissue are beginning to yield important observations which may be useful in identifying new clinically useful biomarkers. This review examines the emerging literature on the use of kidney tissue in biomarker discovery in DKD.
Collapse
Affiliation(s)
- Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ; and the Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, MN
| | - Michael Mauer
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ; and the Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, MN
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ; and the Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, MN.
| |
Collapse
|
45
|
Guo J, Dittmann F, Braun J. Sensitivity of Tissue Shear Stiffness to Pressure and Perfusion in Health and Disease. QUANTIFICATION OF BIOPHYSICAL PARAMETERS IN MEDICAL IMAGING 2018:429-449. [DOI: 10.1007/978-3-319-65924-4_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Kirpalani A, Hashim E, Leung G, Kim JK, Krizova A, Jothy S, Deeb M, Jiang NN, Glick L, Mnatzakanian G, Yuen DA. Magnetic Resonance Elastography to Assess Fibrosis in Kidney Allografts. Clin J Am Soc Nephrol 2017; 12:1671-1679. [PMID: 28855238 PMCID: PMC5628708 DOI: 10.2215/cjn.01830217] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/26/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Fibrosis is a major cause of kidney allograft injury. Currently, the only means of assessing allograft fibrosis is by biopsy, an invasive procedure that samples <1% of the kidney. We examined whether magnetic resonance elastography, an imaging-based measure of organ stiffness, could noninvasively estimate allograft fibrosis and predict progression of allograft dysfunction. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Kidney allograft recipients >1 year post-transplant undergoing an allograft biopsy first underwent free-breathing, flow-compensated magnetic resonance elastography on a 3.0-T magnetic resonance imaging scanner. Each patient had serial eGFR measurements after the elastography scan for a follow-up period of up to 1 year. The mean stiffness value of the kidney allograft was compared with both the histopathologic Banff fibrosis score and the rate of eGFR change during the follow-up period. RESULTS Sixteen patients who underwent magnetic resonance elastography and biopsy were studied (mean age: 54±9 years old). Whole-kidney mean stiffness ranged between 3.5 and 7.3 kPa. Whole-kidney stiffness correlated with biopsy-derived Banff fibrosis score (Spearman rho =0.67; P<0.01). Stiffness was heterogeneously distributed within each kidney, providing a possible explanation for the lack of a stronger stiffness-fibrosis correlation. We also found negative correlations between whole-kidney stiffness and both baseline eGFR (Spearman rho =-0.65; P<0.01) and eGFR change over time (Spearman rho =-0.70; P<0.01). Irrespective of the baseline eGFR, increased kidney stiffness was associated with a greater eGFR decline (regression r2=0.48; P=0.03). CONCLUSIONS Given the limitations of allograft biopsy, our pilot study suggests the potential for magnetic resonance elastography as a novel noninvasive measure of whole-allograft fibrosis burden that may predict future changes in kidney function. Future studies exploring the utility and accuracy of magnetic resonance elastography are needed.
Collapse
Affiliation(s)
- Anish Kirpalani
- Departments of Medical Imaging and
- Li Ka Shing Knowledge Institute and
| | | | - General Leung
- Departments of Medical Imaging and
- Li Ka Shing Knowledge Institute and
| | | | | | | | - Maya Deeb
- Division of Nephrology, Department of Medicine, St. Michael’s Hospital and University of Toronto, Toronto, Ontario, Canada; and
| | | | - Lauren Glick
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | | | - Darren A. Yuen
- Division of Nephrology, Department of Medicine, St. Michael’s Hospital and University of Toronto, Toronto, Ontario, Canada; and
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Wang Z, Yang H, Suo C, Wei J, Tan R, Gu M. Application of Ultrasound Elastography for Chronic Allograft Dysfunction in Kidney Transplantation. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:1759-1769. [PMID: 28503746 DOI: 10.1002/jum.14221] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 05/21/2023]
Abstract
Interstitial fibrosis is the main characteristic of chronic allograft dysfunction, which remains the key factor affecting long-term allograft survival after kidney transplantation. Ultrasound elastography (UE), including real-time elastography, transient elastography, and acoustic radiation force impulse, has been applied widely in breast, thyroid, and liver diseases, especially in the assessment of liver fibrosis. Recently, numerous studies have reported the efficacy of UE methods in evaluating renal allograft fibrosis. This review aims to investigate the clinical applications, limitations, and future roles of UE in current clinical practice in light of changing management paradigms. In current clinical practice, UE methods, especially transient elastographic measurement, appear to be useful for ruling out fibrosis but do not have sufficient accuracy to distinguish between various stages of allograft fibrosis. Moreover, there remain considerable issues to be solved for the application of UE in kidney transplantation. Thus, UE methods cannot replace the crucial role of renal allograft biopsy in the diagnosis and evaluation of allograft fibrosis in kidney transplantation. Perhaps UE methods could be of more importance in the long-term observation and evaluation of allograft fibrosis during follow-up.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiwei Yang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Pharmacy, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Role of Magnetic Resonance Elastography as a Noninvasive Measurement Tool of Fibrosis in a Renal Allograft: A Case Report. Transplant Proc 2017; 49:1555-1559. [DOI: 10.1016/j.transproceed.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022]
|
49
|
Marticorena Garcia SR, Grossmann M, Lang ST, Tzschätzsch H, Dittmann F, Hamm B, Braun J, Guo J, Sack I. Tomoelastography of the native kidney: Regional variation and physiological effects on in vivo renal stiffness. Magn Reson Med 2017; 79:2126-2134. [DOI: 10.1002/mrm.26892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022]
Affiliation(s)
| | - Markus Grossmann
- Department of RadiologyCharité ‐ Universitätsmedizin BerlinBerlin Germany
| | | | - Heiko Tzschätzsch
- Department of RadiologyCharité ‐ Universitätsmedizin BerlinBerlin Germany
| | - Florian Dittmann
- Department of RadiologyCharité ‐ Universitätsmedizin BerlinBerlin Germany
| | - Bernd Hamm
- Department of RadiologyCharité ‐ Universitätsmedizin BerlinBerlin Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité ‐ Universitätsmedizin BerlinBerlin Germany
| | - Jing Guo
- Department of RadiologyCharité ‐ Universitätsmedizin BerlinBerlin Germany
| | - Ingolf Sack
- Department of RadiologyCharité ‐ Universitätsmedizin BerlinBerlin Germany
| |
Collapse
|
50
|
Morrell GR, Zhang JL, Lee VS. Magnetic Resonance Imaging of the Fibrotic Kidney. J Am Soc Nephrol 2017; 28:2564-2570. [PMID: 28784699 DOI: 10.1681/asn.2016101089] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) has been used for many years for anatomic evaluation of the kidney. Recently developed methods attempt to go beyond anatomy to give information about the health and function of the kidneys. Several methods, including diffusion-weighted MRI, renal blood oxygen level-dependent MRI, renal MR elastography, and renal susceptibility imaging, show promise for providing unique insight into kidney function and severity of fibrosis. However, substantial limitations in accuracy and practicality limit the immediate clinical application of each method. Further development and improvement are necessary to achieve the ideal of a noninvasive image-based measure of renal fibrosis. Our brief review provides a short explanation of these emerging MRI methods and outlines the promising initial results obtained with each as well as current limitations and barriers to clinical implementation.
Collapse
Affiliation(s)
- Glen R Morrell
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Jeff L Zhang
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Vivian S Lee
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|