1
|
Pennati F, Aliboni L, Aliverti A. Modeling Realistic Geometries in Human Intrathoracic Airways. Diagnostics (Basel) 2024; 14:1979. [PMID: 39272764 PMCID: PMC11393895 DOI: 10.3390/diagnostics14171979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Geometrical models of the airways offer a comprehensive perspective on the complex interplay between lung structure and function. Originating from mathematical frameworks, these models have evolved to include detailed lung imagery, a crucial enhancement that aids in the early detection of morphological changes in the airways, which are often the first indicators of diseases. The accurate representation of airway geometry is crucial in research areas such as biomechanical modeling, acoustics, and particle deposition prediction. This review chronicles the evolution of these models, from their inception in the 1960s based on ideal mathematical constructs, to the introduction of advanced imaging techniques like computerized tomography (CT) and, to a lesser degree, magnetic resonance imaging (MRI). The advent of these techniques, coupled with the surge in data processing capabilities, has revolutionized the anatomical modeling of the bronchial tree. The limitations and challenges in both mathematical and image-based modeling are discussed, along with their applications. The foundation of image-based modeling is discussed, and recent segmentation strategies from CT and MRI scans and their clinical implications are also examined. By providing a chronological review of these models, this work offers insights into the evolution and potential future of airway geometry modeling, setting the stage for advancements in diagnosing and treating lung diseases. This review offers a novel perspective by highlighting how advancements in imaging techniques and data processing capabilities have significantly enhanced the accuracy and applicability of airway geometry models in both clinical and research settings. These advancements provide unique opportunities for developing patient-specific models.
Collapse
Affiliation(s)
- Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Lorenzo Aliboni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
LoMauro A, Lacca D, Landoni V, Aliverti A. Lung and chest wall volume during vital capacity manoeuvre in Osteogenesis Imperfecta. Orphanet J Rare Dis 2022; 17:397. [PMID: 36307878 PMCID: PMC9617397 DOI: 10.1186/s13023-022-02535-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Background Although Osteogenesis Imperfecta (OI) affects the connective tissue, pulmonary function might be compromised because of thoracic deformities. OI is known to be a restrictive lung disease, but spirometry provides global measurement without localizing the site of the restriction. Opto-electronic plethysmography (OEP), is a non-invasive method able to underline altered respiratory function as well as ventilatory thoraco-abdominal paradoxes during spontaneous breathing. We aimed to reconstruct the thoraco-abdominal surface, to perform local analyses of trunk motion and to make quantitative comparison of trunk shape and respiratory kinematics according to OI severity, particularly during maximal inspiratory and expiratory expansions. This is a cross-sectional study where we have studied the thoraco-abdominal compartmental analysis in 26 adult OI patients (14 Type III) at rest and during vital capacity manoeuvre using OEP. We have also applied a new method that created realistic and accurate 3D models to perform local analyses of trunk motion and to make quantitative comparison of trunk shape and respiratory kinematics. Results Type III patients were characterized by lower spirometric lung volume, by lower sleep quality, by a more compressed thoracic configuration aggravated by severe scoliosis, by reduced global expansion at rest and during maximal maneuvers because of the reduced expansion of the pulmonary ribcage at rest (12% vs. 65% in healthy subjects), during maximal inspiration (37% vs. 69%) and expiration (16% vs. 68%) with local paradoxical movement occurring on the side of the ribcage region. Conclusion The kinematics of the trunk changed to compensate for the severe structural deformities by shifting the expansion in the abdomen both at rest and during maximal manoeuvre because of a restricted thorax. For the first time, we have quantified and localized the site of the restriction in OI patients in the lateral part of the thorax. The 3D analysis proposed seemed a promising graphical immediate new method for pathophysiology study of chest wall restriction.
Collapse
Affiliation(s)
- Antonella LoMauro
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza Leonardo Da Vinci, 20133, Milan, Italy.
| | - Davide Lacca
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza Leonardo Da Vinci, 20133, Milan, Italy
| | - Vittorio Landoni
- Valduce Hospital - Villa Beretta Rehabilitation Centre, Lecco, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza Leonardo Da Vinci, 20133, Milan, Italy
| |
Collapse
|
3
|
Pennati F, Salito C, Borzani I, Carrafiello G, Morlacchi LC, Vaira V, Nosotti M, Palleschi A, Aliverti A. Quantitative Multivolume Proton-Magnetic Resonance Imaging in Lung Transplant Recipients: Comparison With Computed Tomography and Spirometry. Acad Radiol 2021; 28:e297-e305. [PMID: 32653430 DOI: 10.1016/j.acra.2020.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/13/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE AND OBJECTIVES Acute and chronic graft rejection remains the major problem in clinical surveillance of lung-transplanted patients and early detection of complications is of capital importance to allow the optimal therapeutic option. The aim of this study was to investigate the role of quantitative non contrast-enhanced magnetic resonance imaging (MRI) as a non-ionizing imaging modality to assess ventilation impairment in patients who have undergone lung transplantation, in comparison with quantitative computed tomography (CT) and spirometry. MATERIALS AND METHODS Ten lung-transplanted patients (39 ±12 years, forced-expiratory volume in 1 second (FEV1) = 81 ± 27%, forced vital capacity (FVC) = 87 ± 27%) were acquired in breath-hold at full-expiration and full-inspiration with 1.5T MRI and CT. Maps of expiratory-inspiratory difference in MR signal-intensity and CT-density were computed to estimate regional ventilation. Based on expiratory, inspiratory, and expiratory-inspiratory difference values, each pixel was classified as healthy (H), low ventilation (LV), air trapping (AT), and consolidation (C) and the percent extent of each class was quantified. RESULTS Overall, expiratory-inspiratory difference in MR signal-intensity correlated to CT-density (r = 0.64, p < 0.0001) and to FEV1 (ρ = 0.71, p = 0.02). The linear correlation between MRI and CT functional maps considering all the four classes is r = 0.93 (p < 0.0001). MRI percent volumes of H, AT, and C correlated to FEV1 %pred, with the highest correlation reported for AT (ρ = -0.82). CONCLUSION Results demonstrated a good agreement between MRI and CT ventilation imaging and between the corresponding percent volumes of lung damage. Quantitative MRI may represent an accurate non-ionizing imaging technique for longitudinal monitoring of lung transplant recipients.
Collapse
|
4
|
Ren H, Liu F, Xu L, Sun F, Cai J, Yu L, Guan W, Xiao H, Li H, Yu H. Predicting the histological invasiveness of pulmonary adenocarcinoma manifesting as persistent pure ground-glass nodules by ultra-high-resolution CT target scanning in the lateral or oblique body position. Quant Imaging Med Surg 2021; 11:4042-4055. [PMID: 34476188 DOI: 10.21037/qims-20-1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Background Ultra-high-resolution computed tomography (U-HRCT) has improved image quality for displaying the detailed characteristics of disease states and lung anatomy. The purpose of this study was to retrospectively examine whether U-HRCT target scanning in the lateral or oblique body position (protocol G scan) could predict histological invasiveness of pulmonary adenocarcinoma manifesting as pure ground-glass nodules (pGGNs). Methods From January 2015 to December 2016, 260 patients with 306 pathologically confirmed pGGNs who underwent preoperative protocol G scans were retrospectively reviewed and analyzed. The U-HRCT findings of preinvasive lesions [atypical adenomatous hyperplasias (AAH) and adenocarcinomas in situ (AIS)] and invasive pulmonary adenocarcinomas [minimally invasive adenocarcinomas (MIA) and invasive adenocarcinomas (IAC)] were manually compared and analyzed using orthogonal multiplanar reformation (MPR) images. The logistic regression model was established to determine variables that could predict the invasiveness of pGGNs. Receiver operating characteristic (ROC) curve analysis was performed to evaluate their diagnostic performance. Results There were 213 preinvasive lesions (59 AAHs and 154 AISs) and 93 invasive pulmonary adenocarcinomas (53 MIAs and 40 IACs). Compared with the preinvasive lesions, invasive adenocarcinomas exhibited a larger diameter (13.5 vs. 9.3 mm, P=0.000), higher mean attenuation (-571 vs. -613 HU, P=0.002), higher representative attenuation (-475 vs. -547 HU, P=0.000), lower relative attenuation (-339 vs. -292 HU, P=0.000) and greater frequencies of heterogeneity (P=0.001), air bronchogram (P=0.000), bubble lucency (P=0.000), and pleural indentation (P=0.000). Multiple logistic analysis revealed that larger diameter [odds ratio (OR), 1.328; 95% CI: 1.208-1.461; P=0.000] and higher representative attenuation (OR, 1.005; 95% CI: 1.003-1.007; P=0.000) were significant predictive factors of invasive pulmonary adenocarcinomas from preinvasive lesions. The optimal cut-off value of the maximum diameter for invasive pulmonary adenocarcinomas was larger than 10 mm (sensitivity, 66.7%; specificity, 72.8%). Conclusions The imaging features based on protocol G scanning can effectively help predict the histological invasiveness of pGGNs. The maximum diameter and representative attenuation are important parameters for predicting invasiveness.
Collapse
Affiliation(s)
- Hua Ren
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fufu Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Xu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Sun
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Cai
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingwei Yu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Li
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Yu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Pennati F, Walkup LL, Chhabra A, Towe C, Myers K, Aliverti A, Woods JC. Quantitative inspiratory-expiratory chest CT to evaluate pulmonary involvement in pediatric hematopoietic stem-cell transplantation patients. Pediatr Pulmonol 2021; 56:1026-1035. [PMID: 33314762 PMCID: PMC8721603 DOI: 10.1002/ppul.25223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/11/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022]
Abstract
Pulmonary complications following allogeneic hematopoietic stem-cell transplantation (HSCT) are a significant source of morbidity and complications may arise from a myriad of infectious and noninfectious sources. These complications may occur soon or many months post-transplantation and can have a broad range of outcomes. Surveillance for pulmonary involvement in the pediatric HSCT population can be challenging due to poor compliance with clinical pulmonary function testing, primarily spirometry, and there may be a role for clinical imaging to provide an additional means of monitoring, particularly in the era of clinical low-dose computed tomography (CT) protocols. In this single-site, retrospective study, a review of our institution's radiological and HSCT databases was conducted to assess the utility of a quantitative CT algorithm to describe ventilation abnormalities on high-resolution chest CT scans of pediatric HSCT patients. Thirteen non-contrast enhanced chest CT examinations acquired both in inspiration and expiration, from 12 deceased HSCT patients (median age at HSCT 10.4 years, median days of CT 162) were selected for the analysis. Also, seven age-matched healthy controls (median age 15.5) with non-contrast-enhanced inspiration-expiration chest CT were selected for comparison. We report that, compared to healthy age-matched controls, HSCT patients had larger percentages of poorly ventilated (median, 13.5% vs. 2.3%, p < .001) and air trapped (median 12.3% vs. 0%, p < .001) regions of lung tissue, suggesting its utility as a potential screening tool. Furthermore, there was wide variation within individual HSCT patients, supporting the use of multivolume CT and quantitative analysis to describe and phenotype post-transplantation lung involvement.
Collapse
Affiliation(s)
- Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Anuj Chhabra
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christopher Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kasiani Myers
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Tahir BA, Hughes PJ, Robinson SD, Marshall H, Stewart NJ, Norquay G, Biancardi A, Chan HF, Collier GJ, Hart KA, Swinscoe JA, Hatton MQ, Wild JM, Ireland RH. Spatial Comparison of CT-Based Surrogates of Lung Ventilation With Hyperpolarized Helium-3 and Xenon-129 Gas MRI in Patients Undergoing Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 102:1276-1286. [DOI: 10.1016/j.ijrobp.2018.04.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/26/2018] [Indexed: 11/30/2022]
|
7
|
Pennati F, Roach DJ, Clancy JP, Brody AS, Fleck RJ, Aliverti A, Woods JC. Assessment of pulmonary structure-function relationships in young children and adolescents with cystic fibrosis by multivolume proton-MRI and CT. J Magn Reson Imaging 2018; 48:531-542. [PMID: 29457316 PMCID: PMC6098984 DOI: 10.1002/jmri.25978] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/30/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Lung disease is the most frequent cause of morbidity and mortality in patients with cystic fibrosis (CF), and there is a shortage of sensitive biomarkers able to regionally monitor disease progression and to assess early responses to therapy. PURPOSE To determine the feasibility of noncontrast-enhanced multivolume MRI, which assesses intensity changes between expiratory and inspiratory breath-hold images, to detect and quantify regional ventilation abnormalities in CF lung disease, with a focus on the structure-function relationship. STUDY TYPE Retrospective. POPULATION Twenty-nine subjects, including healthy young children (n = 9, 7-37 months), healthy adolescents (n = 4, 14-22 years), young children with CF lung disease (n = 10, 7-47 months), and adolescents with CF lung disease (n = 6, 8-18 years) were studied. FIELD STRENGTH/SEQUENCE 3D spoiled gradient-recalled sequence at 1.5T. ASSESSMENT Subjects were scanned during breath-hold at functional residual capacity (FRC) and total lung capacity (TLC) through noncontrast-enhanced MRI and CT. Expiratory-inspiratory differences in MR signal-intensity (Δ1 H-MRI) and CT-density (ΔHU) were computed to estimate regional ventilation. MR and CT images were also evaluated using a CF-specific scoring system. STATISTICAL TESTS Quadratic regression, Spearman's correlation, one-way analysis of variance (ANOVA). RESULTS Δ1 H-MRI maps were sensitive to ventilation heterogeneity related to gravity dependence in healthy lung and to ventilation impairment in CF lung disease. A high correlation was found between MRI and CT ventilation maps (R2 = 0.79, P < 0.001). Globally, Δ1 H-MRI and ΔHU decrease with increasing morphological score (respectively, R2 = 0.56, P < 0.001 and R2 = 0.31, P < 0.001). Locally, Δ1 H-MRI was higher in healthy regions (median 15%) compared to regions with bronchiectasis, air trapping, consolidation, and to segments fed by airways with bronchial wall thickening (P < 0.001). DATA CONCLUSION Multivolume noncontrast-enhanced MRI, as a nonionizing imaging modality that can be used on nearly any MRI scanner without specialized equipment or gaseous tracers, may be particularly valuable in CF care, providing a new imaging biomarker to detect early alterations in regional lung structure-function. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2018;48:531-542.
Collapse
Affiliation(s)
- Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - David J Roach
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John P Clancy
- Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alan S Brody
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert J Fleck
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Shao J, Hu P. Quantification of regional deformation of the lungs by non-rigid registration of three-dimensional contrast-enhanced magnetic resonance imaging. Quant Imaging Med Surg 2017; 7:177-186. [PMID: 28516043 PMCID: PMC5418144 DOI: 10.21037/qims.2017.01.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Assessment of lung function is vital for the diagnosis of a variety of pathological conditions. Research has been proposed to study pulmonary mechanics and kinematics using two-dimensional (2D) magnetic resonance imaging (MRI). This allows estimation of regional lung tissue mechanics but is limited to 2D information. An approach based on three-dimensional (3D) contrast-enhanced MR angiogram of pulmonary blood vessels and a non-rigid image registration technique is proposed for quantification of lung regional deformations, which can potentially be used for assessment of pulmonary parenchymal mechanics and regional ventilation for disease diagnosis without ionizing radiation. METHODS On three volunteers, an end-expiration scan and end-inspiration scan was acquired successively for each volunteer using a 3D breath-hold contrast-enhanced MRI sequence several minutes after gadolinium injection. Subsequently, a rectangle box lung mask is manually selected for each end-expiration scan, applying non-rigid registration algorithms using cubic B-splines as transformations to align each pair of images. This incorporates the Normalized Correlation Coefficient similarity with the bending energy term as cost function with a multi-resolution multi-grid approach. Finally, the lung regional 3D deformations were obtained using the transformations obtained by registration. The alignment accuracy after non-rigid registration was estimated by using a set of branch points of pulmonary blood vessels as anatomical landmarks for each pair of images. RESULTS With contrast enhancement, the pulmonary blood vessel signal was enhanced, which greatly facilitated the non-rigid registration in the lung parenchyma. The average landmarks distances in three pairs of datasets are reduced from 17.9, 20.3 and 16.3 mm, to 1.0, 1.6 and 1.2 mm, respectively, by non-rigid registration. After registration, the average distances error of each pair of datasets was less than 0.6 mm in the right-to-left (RL) direction, less than 0.9 mm in the inferior-to-superior (IS) direction, and less than 1.2 mm in the anterior-to-posterior (AP) direction. CONCLUSIONS Results demonstrated that the proposed method can accurately register lungs with large deformations to evaluate lung regional deformation. It may be used for quantitative assessment of 3D lung regional ventilation avoiding ionizing radiation.
Collapse
Affiliation(s)
- Jiaxin Shao
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Interdepartmental Graduate Program, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Higano NS, Fleck RJ, Spielberg DR, Walkup LL, Hahn AD, Thomen RP, Merhar SL, Kingma PS, Tkach JA, Fain SB, Woods JC. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT. J Magn Reson Imaging 2017; 46:992-1000. [PMID: 28160357 DOI: 10.1002/jmri.25643] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/06/2017] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To demonstrate that ultrashort echo time (UTE) magnetic resonance imaging (MRI) can achieve computed tomography (CT)-like quantification of lung parenchyma in free-breathing, non-sedated neonates. Because infant CTs are used sparingly, parenchymal disease evaluation via UTE MRI has potential for translational impact. MATERIALS AND METHODS Two neonatal control cohorts without suspected pulmonary morbidities underwent either a research UTE MRI (n = 5; 1.5T) or a clinically-ordered CT (n = 9). Whole-lung means and anterior-posterior gradients of UTE-measured image intensity (arbitrary units, au, normalized to muscle) and CT-measured density (g/cm3 ) were compared (Mann-Whitney U-test). Separately, a diseased neonatal cohort (n = 5) with various pulmonary morbidities underwent both UTE MRI and CT. UTE intensity and CT density were compared with Spearman correlations within ∼33 anatomically matched regions of interest (ROIs) in each diseased subject, spanning low- to high-density tissues. Radiological classifications were evaluated in all ROIs, with mean UTE intensities and CT densities compared in each classification. RESULTS In control subjects, whole-lung UTE intensities (0.51 ± 0.04 au) were similar to CT densities (0.44 ± 0.09 g/cm3 ) (P = 0.062), as were UTE (0.021 ± 0.020 au/cm) and CT (0.034 ± 0.024 [g/cm3 ]/cm) anterior-posterior gradients (P = 0.351). In diseased subjects' ROIs, significant correlations were observed between UTE and CT (P ≤0.007 in each case). Relative differences between UTE and CT were small in all classifications (4-25%). CONCLUSION These results demonstrate a strong association between UTE image intensity and CT density, both between whole-lung tissue in control patients and regional radiological pathologies in diseased patients. This indicates the potential for UTE MRI to longitudinally evaluate neonatal pulmonary disease and to provide visualization of pathologies similar to CT, without sedation/anesthesia or ionizing radiation. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:992-1000.
Collapse
Affiliation(s)
- Nara S Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert J Fleck
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David R Spielberg
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew D Hahn
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert P Thomen
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stephanie L Merhar
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Ireland R, Tahir B, Wild J, Lee C, Hatton M. Functional Image-guided Radiotherapy Planning for Normal Lung Avoidance. Clin Oncol (R Coll Radiol) 2016; 28:695-707. [DOI: 10.1016/j.clon.2016.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/25/2022]
|
11
|
Hahn AD, Higano NS, Walkup LL, Thomen RP, Cao X, Merhar SL, Tkach JA, Woods JC, Fain SB. Pulmonary MRI of neonates in the intensive care unit using 3D ultrashort echo time and a small footprint MRI system. J Magn Reson Imaging 2016; 45:463-471. [PMID: 27458992 DOI: 10.1002/jmri.25394] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/01/2016] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To determine the feasibility of pulmonary magnetic resonance imaging (MRI) of neonatal lung structures enabled by combining two novel technologies: first, a 3D radial ultrashort echo time (UTE) pulse sequence capable of high spatial resolution full-chest imaging in nonsedated quiet-breathing neonates; and second, a unique, small-footprint 1.5T MRI scanner design adapted for neonatal imaging and installed within the neonatal intensive care unit (NICU). MATERIALS AND METHODS Ten patients underwent MRI within the NICU, in accordance with an approved Institutional Review Board protocol. Five had clinical diagnoses of bronchopulmonary dysplasia (BPD), and five had putatively normal lung function. Pulmonary imaging was performed at 1.5T using 3D radial UTE and standard 3D fast gradient recalled echo (FGRE). Diagnostic quality, presence of motion artifacts, and apparent severity of lung pathology were evaluated by two radiologists. Quantitative metrics were additionally used to evaluate lung parenchymal signal. RESULTS UTE images showed significantly higher signal in lung parenchyma (P < 0.0001) and fewer apparent motion artifacts compared to FGRE (P = 0.046). Pulmonary pathology was more severe in patients diagnosed with BPD relative to controls (P = 0.001). Infants diagnosed with BPD also had significantly higher signal in lung parenchyma, measured using UTE, relative to controls (P = 0.002). CONCLUSION These results demonstrate the technical feasibility of pulmonary MRI in free-breathing, nonsedated infants in the NICU at high, isotropic resolutions approaching that achievable with computed tomography (CT). There is potential for pulmonary MRI to play a role in improving how clinicians understand and manage care of neonatal and pediatric pulmonary diseases. J. Magn. Reson. Imaging 2016. LEVEL OF EVIDENCE 2 J. Magn. Reson. Imaging 2017;45:463-471.
Collapse
Affiliation(s)
- Andrew D Hahn
- Department of Medical Physics, University of Wisconsin, Madison, WI
| | - Nara S Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Physics, Washington University in St. Louis, St. Louis, MO
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Robert P Thomen
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Physics, Washington University in St. Louis, St. Louis, MO
| | - Xuefeng Cao
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Physics, University of Cincinnati, Cincinnati, OH
| | - Stephanie L Merhar
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jean A Tkach
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Physics, Washington University in St. Louis, St. Louis, MO
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin, Madison, WI
| |
Collapse
|
12
|
Higano NS, Hahn AD, Tkach JA, Cao X, Walkup LL, Thomen RP, Merhar SL, Kingma PS, Fain SB, Woods JC. Retrospective respiratory self-gating and removal of bulk motion in pulmonary UTE MRI of neonates and adults. Magn Reson Med 2016; 77:1284-1295. [PMID: 26972576 DOI: 10.1002/mrm.26212] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/09/2016] [Accepted: 02/20/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE To implement pulmonary three-dimensional (3D) radial ultrashort echo-time (UTE) MRI in non-sedated, free-breathing neonates and adults with retrospective motion tracking of respiratory and intermittent bulk motion, to obtain diagnostic-quality, respiratory-gated images. METHODS Pulmonary 3D radial UTE MRI was performed at 1.5 tesla (T) during free breathing in neonates and adult volunteers for validation. Motion-tracking waveforms were obtained from the time course of each free induction decay's initial point (i.e., k-space center), allowing for respiratory-gated image reconstructions that excluded data acquired during bulk motion. Tidal volumes were calculated from end-expiration and end-inspiration images. Respiratory rates were calculated from the Fourier transform of the motion-tracking waveform during quiet breathing, with comparison to physiologic prediction in neonates and validation with spirometry in adults. RESULTS High-quality respiratory-gated anatomic images were obtained at inspiration and expiration, with less respiratory blurring at the expense of signal-to-noise for narrower gating windows. Inspiration-expiration volume differences agreed with physiologic predictions (neonates; Bland-Altman bias = 6.2 mL) and spirometric values (adults; bias = 0.11 L). MRI-measured respiratory rates compared well with the observed rates (biases = -0.5 and 0.2 breaths/min for neonates and adults, respectively). CONCLUSIONS Three-dimensional radial pulmonary UTE MRI allows for retrospective respiratory self-gating and removal of intermittent bulk motion in free-breathing, non-sedated neonates and adults. Magn Reson Med 77:1284-1295, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Nara S Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrew D Hahn
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xuefeng Cao
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Physics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert P Thomen
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stephanie L Merhar
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Abstract
Imaging has played a vital role in the clinical assessment of bronchopulmonary dysplasia (BPD) since its first recognition. In this review, how chest radiograph, computerized tomography (CT), nuclear medicine, and MRI have contributed to the understanding of BPD pathology and how emerging advancements in these methods, including low-dose and quantitative CT, sophisticated proton and hyperpolarized-gas MRI, influence the future of BPD imaging are discussed.
Collapse
Affiliation(s)
- Laura L Walkup
- Division of Pulmonary Medicine, Department of Radiology, Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MC 5033, Cincinnati, OH 42229, USA
| | - Jason C Woods
- Division of Pulmonary Medicine, Department of Radiology, Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MC 5033, Cincinnati, OH 42229, USA.
| |
Collapse
|
14
|
Jácome C, Oliveira A, Marques A. Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD. CLINICAL RESPIRATORY JOURNAL 2015; 11:612-620. [PMID: 26403859 DOI: 10.1111/crj.12392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/25/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Diagnosis of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is often challenging as it relies on patients' clinical presentation. Computerized respiratory sounds (CRS), namely crackles and wheezes, may have the potential to contribute for the objective diagnosis/monitoring of an AECOPD. OBJECTIVES This study explored if CRS differ during stable and exacerbation periods in patients with COPD. METHODS 13 patients with stable COPD and 14 with AECOPD were enrolled. CRS were recorded simultaneously at trachea, anterior, lateral and posterior chest locations using seven stethoscopes. Airflow (0.4-0.6l/s) was recorded with a pneumotachograph. Breathing phases were detected using airflow signals; crackles and wheezes with validated algorithms. RESULTS At trachea, anterior and lateral chest, no significant differences were found between the two groups in the number of inspiratory/expiratory crackles or inspiratory wheeze occupation rate. At posterior chest, the number of crackles (median 2.97-3.17 vs. 0.83-1.2, P < 0.001) and wheeze occupation rate (median 3.28%-3.8% vs. 1.12%-1.77%, P = 0.014-0.016) during both inspiration and expiration were significantly higher in patients with AECOPD than in stable patients. During expiration, wheeze occupation rate was also significantly higher in patients with AECOPD at trachea (median 3.12% vs. 0.79%, P < 0.001) and anterior chest (median 3.55% vs. 1.28%, P < 0.001). CONCLUSION Crackles and wheezes are more frequent in patients with AECOPD than in stable patients, particularly at posterior chest. These findings suggest that these CRS can contribute to the objective diagnosis/monitoring of AECOPD, which is especially valuable considering that they can be obtained by integrating computerized techniques with pulmonary auscultation, a noninvasive method that is a component of patients' physical examination.
Collapse
Affiliation(s)
- Cristina Jácome
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Portugal.,Lab 3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal
| | - Ana Oliveira
- Lab 3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal
| | - Alda Marques
- Lab 3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal.,Center for Health Technology and Services Research (CINTESIS), School of Health Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Pennati F, Salito C, Aliverti A. Registration of lung CT images acquired in different respiratory ranges with 4DCT and HRCT. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:2936-2939. [PMID: 26736907 DOI: 10.1109/embc.2015.7319007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pulmonary image registration is challenging because of the unique structure of the lung, its high deformability and its non-uniform intensity change with breathing. In the present work we propose a new method for pulmonary image registration, based on the reconstruction and the combination of the main pulmonary structures to modify parenchyma intensity prior to the application of the registration algorithm. The algorithm has been applied to both four dimensional CT and multi-volume high resolution CT demonstrating an increased accuracy of the results with the application of the pulmonary structure enhancement, evaluated both on landmarks distance in 4DCT and structures' surface distance in HRCT.
Collapse
|