1
|
Wang W, Wu J, Shen Q, Li W, Xue K, Yang Y, Qiu J. Assessment of pathological grade and variants of bladder cancer with a continuous-time random-walk diffusion model. Front Oncol 2024; 14:1431536. [PMID: 39211555 PMCID: PMC11357921 DOI: 10.3389/fonc.2024.1431536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose To evaluate the efficacy of high b-value diffusion-weighted imaging (DWI) with a continuous-time random-walk (CTRW) diffusion model in determining the pathological grade and variant histology (VH) of bladder cancer (BCa). Methods A total of 81 patients (median age, 70 years; range, 35-92 years; 18 females; 66 high grades; 30 with VH) with pathologically confirmed bladder urothelial carcinoma were retrospectively enrolled and underwent bladder MRI on a 3.0T MRI scanner. Multi-b-value DWI was performed using 11 b-values. Three CTRW model parameters were obtained: an anomalous diffusion coefficient (D) and two parameters reflecting temporal (α) and spatial (β) diffusion heterogeneity. The apparent diffusion coefficient (ADC) was calculated using b0 and b800. D, α, β, and ADC were statistically compared between high- and low-grade BCa, and between pure urothelial cancer (pUC) and VH. Comparisons were made using the Mann-Whitney U test between different pathological states. Receiver operating characteristic curve analysis was used to assess performance in differentiating the pathological states of BCa. Results ADC, D, and α were significantly lower in high-grade BCa compared to low-grade, and in VH compared to pUC (p < 0.001), while β showed no significant differences (p > 0.05). The combination of D and α yielded the best performance for determining BCa grade and VH (area under the curves = 0.913, 0.811), significantly outperforming ADC (area under the curves = 0.823, 0.761). Conclusion The CTRW model effectively discriminated pathological grades and variants in BCa, highlighting its potential as a noninvasive diagnostic tool.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jingyun Wu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Qi Shen
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China
| | - Wei Li
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Ke Xue
- MR Collaboration, United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Yuxin Yang
- MR Collaboration, United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Jianxing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Li L, Zhang J, Zhe X, Tang M, Zhang L, Lei X, Zhang X. Prediction of histopathologic grades of bladder cancer with radiomics based on MRI: Comparison with traditional MRI. Urol Oncol 2024; 42:176.e9-176.e20. [PMID: 38556403 DOI: 10.1016/j.urolonc.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE To compare biparametric magnetic resonance imaging (bp-MRI) radiomics signatures and traditional MRI model for the preoperative prediction of bladder cancer (BCa) grade. MATERIALS AND METHODS This retrospective study included 255 consecutive patients with pathologically confirmed 113 low-grade and 142 high-grade BCa. The traditional MRI nomogram model was developed using univariate and multivariate logistic regression by the mean apparent diffusion coefficient (ADC), vesical imaging reporting and data system, tumor size, and the number of tumors. Volumes of interest were manually drawn on T2-weighted imaging (T2WI) and ADC maps by 2 radiologists. Using one-way analysis of variance, correlation, and least absolute shrinkage and selection operator methods to select features. Then, a logistic regression classifier was used to develop the radiomics signatures. Receiver operating characteristic (ROC) analysis was used to compare the diagnostic abilities of the radiomics and traditional MRI models by the DeLong test. Finally, decision curve analysis was performed by estimating the clinical usefulness of the 2 models. RESULTS The area under the ROC curves (AUCs) of the traditional MRI model were 0.841 in the training cohort and 0.806 in the validation cohort. The AUCs of the 3 groups of radiomics model [ADC, T2WI, bp-MRI (ADC and T2WI)] were 0.888, 0.875, and 0.899 in the training cohort and 0.863, 0.805, and 0.867 in the validation cohort, respectively. The combined radiomics model achieved higher AUCs than the traditional MRI model. decision curve analysis indicated that the radiomics model had higher net benefits than the traditional MRI model. CONCLUSION The bp-MRI radiomics model may help distinguish high-grade and low-grade BCa and outperforming the traditional MRI model. Multicenter validation is needed to acquire high-level evidence for its clinical application.
Collapse
Affiliation(s)
- Longchao Li
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Li Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Cai L, Yu R, Liu P, Zhuang J, Li K, Wu Q, Sun X, Liu Y, Zhou M, Cao Q, Li P, Yang X, Lu Q. A Nomogram of MRI Features to Assess Muscle Invasion in VI-RADS 2 Tumors With Stalk. J Magn Reson Imaging 2024; 59:1179-1190. [PMID: 37602726 DOI: 10.1002/jmri.28924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Vesical Imaging-Reporting and Data System (VI-RADS) is widely used to assess the muscle-invasive status of bladder cancer. However, the current classification efficacy of VI-RASD 2 tumors of stalk is unsatisfactory. PURPOSE To develop a nomogram to assess muscle-invasive bladder cancer (MIBC) in VI-RADS 2 tumors with stalk. STUDY TYPE Retrospective. POPULATION A total of 186 patients (age: 67.8 ± 12.7 years) with 15.1% females, divided randomly into a training cohort (N = 130) and validation cohort (N = 56). FIELD STRENGTH/SEQUENCE 3-T, T2-weighted imaging (turbo spin-echo), diffusion-weighted imaging (breathing-free spin-echo), and dynamic contrast-enhanced imaging (gradient-echo). ASSESSMENT Twenty-one MRI features of tumors and stalks were developed from training cohort. The mean apparent diffusion coefficient (ADC) values of the tumor, stalk, and psoas muscles were calculated from the three circular regions of interest. The normalized T value = mean ADC tumor mean ADC muscle . The normalized ST value = mean ADC stalk mean ADC tumor . Three readers assessed the morphology of tumors and stalks. STATISTICAL TESTS The final features of nomogram were selected by univariable logistic and the least absolute shrinkage and selection operator (LASSO) regression. The performance of the nomogram was assessed by the receiver operating characteristic (ROC) curve, calibration, and decision curve analysis. RESULTS In VI-RADS 2 tumors with stalk, tumor size over 3 cm, increased stalk width, stalk morphology, decreased normalized T value, and increased normalized ST value were selected as the risk factors for MIBC. The AUC, accuracy, sensitivity, and specificity of the nomogram to assess MIBC were 0.969 (95% CI: 0.941-0.997), 92.3%, 94.1%, and 92.0% in training cohort and 0.940 (95% CI: 0.859-1.000), 89.3%, 75.0%, and 91.7% in validation cohort. DATA CONCLUSION This study constructed a nomogram for preoperative assessment of MIBC and modifying the current VI-RADS. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Lingkai Cai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Ruixi Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peikun Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juntao Zhuang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qikai Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueying Sun
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
He K, Meng X, Wang Y, Feng C, Liu Z, Li Z, Niu Y. Progress of Multiparameter Magnetic Resonance Imaging in Bladder Cancer: A Comprehensive Literature Review. Diagnostics (Basel) 2024; 14:442. [PMID: 38396481 PMCID: PMC10888296 DOI: 10.3390/diagnostics14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Magnetic resonance imaging (MRI) has been proven to be an indispensable imaging method in bladder cancer, and it can accurately identify muscular invasion of bladder cancer. Multiparameter MRI is a promising tool widely used for preoperative staging evaluation of bladder cancer. Vesical Imaging-Reporting and Data System (VI-RADS) scoring has proven to be a reliable tool for local staging of bladder cancer with high accuracy in preoperative staging, but VI-RADS still faces challenges and needs further improvement. Artificial intelligence (AI) holds great promise in improving the accuracy of diagnosis and predicting the prognosis of bladder cancer. Automated machine learning techniques based on radiomics features derived from MRI have been utilized in bladder cancer diagnosis and have demonstrated promising potential for practical implementation. Future work should focus on conducting more prospective, multicenter studies to validate the additional value of quantitative studies and optimize prediction models by combining other biomarkers, such as urine and serum biomarkers. This review assesses the value of multiparameter MRI in the accurate evaluation of muscular invasion of bladder cancer, as well as the current status and progress of its application in the evaluation of efficacy and prognosis.
Collapse
Affiliation(s)
- Kangwen He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Xiaoyan Meng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Yanchun Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Cui Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Yonghua Niu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Zhu HB, Zhao B, Li XT, Zhang XY, Yao Q, Sun YS. Value of multiple models of diffusion-weighted imaging to predict hepatic lymph node metastases in colorectal liver metastases patients. World J Gastroenterol 2024; 30:308-317. [PMID: 38313236 PMCID: PMC10835543 DOI: 10.3748/wjg.v30.i4.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND About 10%-31% of colorectal liver metastases (CRLM) patients would concomitantly show hepatic lymph node metastases (LNM), which was considered as sign of poor biological behavior and a relative contraindication for liver resection. Up to now, there's still lack of reliable preoperative methods to assess the status of hepatic lymph nodes in patients with CRLM, except for pathology examination of lymph node after resection. AIM To compare the ability of mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted imaging (DWI) models in distinguishing between benign and malignant hepatic lymph nodes in patients with CRLM who received neoadjuvant chemotherapy prior to surgery. METHODS In this retrospective study, 97 CRLM patients with pathologically confirmed hepatic lymph node status underwent magnetic resonance imaging, including DWI with ten b values before and after chemotherapy. Various parameters, such as the apparent diffusion coefficient from the mono-exponential model, and the true diffusion coefficient, the pseudo-diffusion coefficient, and the perfusion fraction derived from the intravoxel incoherent motion model, along with distributed diffusion coefficient (DDC) and α from the stretched-exponential model (SEM), were measured. The parameters before and after chemotherapy were compared between positive and negative hepatic lymph node groups. A nomogram was constructed to predict the hepatic lymph node status. The reliability and agreement of the measurements were assessed using the coefficient of variation and intraclass correlation coefficient. RESULTS Multivariate analysis revealed that the pre-treatment DDC value and the short diameter of the largest lymph node after treatment were independent predictors of metastatic hepatic lymph nodes. A nomogram combining these two factors demonstrated excellent performance in distinguishing between benign and malignant lymph nodes in CRLM patients, with an area under the curve of 0.873. Furthermore, parameters from SEM showed substantial repeatability. CONCLUSION The developed nomogram, incorporating the pre-treatment DDC and the short axis of the largest lymph node, can be used to predict the presence of hepatic LNM in CRLM patients undergoing chemotherapy before surgery. This nomogram was proven to be more valuable, exhibiting superior diagnostic performance compared to quantitative parameters derived from multiple b values of DWI. The nomogram can serve as a preoperative assessment tool for determining the status of hepatic lymph nodes and aiding in the decision-making process for surgical treatment in CRLM patients.
Collapse
Affiliation(s)
- Hai-Bin Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bo Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiao-Ting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiao-Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qian Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Ying-Shi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
6
|
Meng H, Guo X, Zhang D. Multimodal magnetic resonance imaging in the diagnosis of cervical cancer and its correlation with the differentiation process of cervical cancer. BMC Med Imaging 2023; 23:144. [PMID: 37773061 PMCID: PMC10543331 DOI: 10.1186/s12880-023-01104-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
PURPOSE This study seeks to evaluate the value of MRI (Magnetic resonance imaging) diffusion weighted images (DWI), diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) in the diagnosis of cervical carcinoma. METHODS Seventy-nine cases of cervical cancer (CC group) (39 cases of squamous carcinoma (SCC group) and 40 cases of adenocarcinoma (ACC group)) and 30 cases of healthy controls (HC group) were included in this study. All the subjects were informed of the purpose of this study. The study was approved by the Ethics Committee of Beihua University Hospital, Jinlin, China. In this study, images were acquired based on a 3T MR scanner (Ingenia; Philips, Best, the Netherlands) and measured the imaging parameters by DWI, IVIM and DKI techniques. The parameters were obtained by Philips post-processing workstation, DKE and IVIM. These ROIs (region of interest) were manually drawn on each parameter mapping image by MRI physicians. Finally, SPSS 23.0 statistical software was used for data analysis. RESULTS The ADC (apparent diffusion coefficient) value of M group was lower than that of N group, and the difference was statistically significant (P < 0.05). The D (true diffusion coefficient) value, D*(pseudo diffusion coefficient) value, f (perfusion fraction) value, MD (mean diffusivity) value, and ADC value in the SCC group were lower than those in the ACC group with statistically significant differences (P < 0.05). The MK (mean kurtosis) value was higher than that of the ACC group, and the difference was statistically significant (P < 0.05). Compared with the HC group, the ADC values, D values, MD values of group CC group were lower, and the D* values, f values, MK values were higher; all the parameters were statistically significant (P < 0.05). The higher the differentiation degree of cervical cancer, the higher ADC values, D values, MD values, and the smaller D* values, f values, MK values. The difference of ADC values, D values and MK values was statistically significant (P < 0.05). MK value had the best diagnostic efficiency in the differential diagnosis of cervical cancer with low and medium differentiation, high and low differentiation (P < 0.05). There was no significant difference in the f value between high and low differentiation cervical cancer (P > 0.05). There was no significant difference in the MD value between low and high differentiation cervical cancer (P > 0.05). The strongest correlation between MK values (r = 0.796) and the degree of pathological differentiation of cervical cancer is positively correlated. The D values, MD values, and ADC values are negatively correlated with the degree of pathological differentiation of cervical cancer. CONCLUSION The ADC value of DWI parameters has important diagnostic value for different menstrual states of cervical cancer. The parameter values of DWI, IVIM, and DKI can be used to differentiate cervical cancer from normal cervical tissue, and thus have important diagnostic value for differentiating pathological types of cervical cancer. This means that these parameter values may have great significance in the differential diagnosis of cervical cancer with different degrees of pathological differentiation. The pathological differentiation degree of cervical cancer is significantly positively correlated with the MK value in the parameter values of DWI, IVIM, and DKI, while negatively correlated with the D value, MD value, and ADC value.
Collapse
Affiliation(s)
- Heng Meng
- Department of Radiology, Affiliated Hospital of Beihua University, Jilin, 132011, China
| | - Xin Guo
- Department of Radiology, Affiliated Hospital of Beihua University, Jilin, 132011, China
| | - Duo Zhang
- Department of Radiology, Affiliated Hospital of Beihua University, Jilin, 132011, China.
| |
Collapse
|
7
|
Liao D, Liu YC, Liu JY, Wang D, Liu XF. Differentiating tumour progression from pseudoprogression in glioblastoma patients: a monoexponential, biexponential, and stretched-exponential model-based DWI study. BMC Med Imaging 2023; 23:119. [PMID: 37697237 PMCID: PMC10494379 DOI: 10.1186/s12880-023-01082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND To investigate the diagnostic performance of parameters derived from monoexponential, biexponential, and stretched-exponential diffusion-weighted imaging models in differentiating tumour progression from pseudoprogression in glioblastoma patients. METHODS Forty patients with pathologically confirmed glioblastoma exhibiting enhancing lesions after completion of chemoradiation therapy were enrolled in the study, which were then classified as tumour progression and pseudoprogression. All patients underwent conventional and multi-b diffusion-weighted MRI. The apparent diffusion coefficient (ADC) from a monoexponential model, the true diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched-exponential model were compared between tumour progression and pseudoprogression groups. Receiver operating characteristic curves (ROC) analysis was used to investigate the diagnostic performance of different DWI parameters. Interclass correlation coefficient (ICC) was used to evaluate the consistency of measurements. RESULTS The values of ADC, D, DDC, and α values were lower in tumour progression patients than that in pseudoprogression patients (p < 0.05). The values of D* and f were higher in tumour progression patients than that in pseudoprogression patients (p < 0.05). Diagnostic accuracy for differentiating tumour progression from pseudoprogression was highest for α(AUC = 0.94) than that for ADC (AUC = 0.91), D (AUC = 0.92), D* (AUC = 0.81), f (AUC = 0.75), and DDC (AUC = 0.88). CONCLUSIONS Multi-b DWI is a promising method for differentiating tumour progression from pseudoprogression with high diagnostic accuracy. In addition, the α derived from stretched-exponential model is the most promising DWI parameter for the prediction of tumour progression in glioblastoma patients.
Collapse
Affiliation(s)
- Dan Liao
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
| | - Yuan-Cheng Liu
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| | - Jiang-Yong Liu
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| | - Di Wang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| | - Xin-Feng Liu
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| |
Collapse
|
8
|
Meng X, Li S, He K, Hu H, Feng C, Li Z, Wang Y. Evaluation of Whole-Tumor Texture Analysis Based on MRI Diffusion Kurtosis and Biparametric VI-RADS Model for Staging and Grading Bladder Cancer. Bioengineering (Basel) 2023; 10:745. [PMID: 37508772 PMCID: PMC10376391 DOI: 10.3390/bioengineering10070745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND to evaluate the feasibility of texture analysis (TA) based on diffusion kurtosis imaging (DKI) in staging and grading bladder cancer (BC) and to compare it with apparent diffusion coefficient (ADC) and biparametric vesical imaging reporting and data system (VI-RADS). MATERIALS AND METHODS In this retrospective study, 101 patients with pathologically confirmed BC underwent MRI with multiple-b values ranging from 0 to 2000 s/mm2. ADC- and DKI-derived parameters, including mean kurtosis (MK) and mean diffusivity (MD), were obtained. First-order texture histogram parameters of MK and MD, including the mean; 5th, 25th, 50th, 75th, and 90th percentiles; inhomogeneity; skewness: kurtosis; and entropy; were extracted. The VI-RADS score was evaluated based on the T2WI and DWI. The Mann-Whitney U-test was used to compare the texture parameters and ADC values between non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), as well as between low and high grades. Receiver operating characteristic analysis was used to evaluate the diagnostic performance of each significant parameter and their combinations. RESULTS The NMIBC and low-grade group had higher MDmean, MD5th, MD25th, MD50th, MD75th, MD90th, and ADC values than those of the MIBC and the high-grade group. The NMIBC and low-grade group yielded lower MKmean, MK25th, MK50th, MK75th, and MK90th than the MIBC and high-grade group. Among all histogram parameters, MD75th and MD90th yielded the highest AUC in differentiating MIBC from NMIBC (both AUCs were 0.87), while the AUC for ADC was 0.86. The MK75th and MK90th had the highest AUC (both 0.79) in differentiating low- from high-grade BC, while ADC had an AUC of 0.68. The AUC (0.92) of the combination of DKI histogram parameters (MD75th, MD90th, and MK90th) with biparametric VI-RADS in staging BC was higher than that of the biparametric VI-RADS (0.89). CONCLUSIONS Texture-analysis-derived DKI is useful in evaluating both the staging and grading of bladder cancer; in addition, the histogram parameters of the DKI (MD75th, MD90th, and MK90th) can provide additional value to VI-RADS.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangwen He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Henglong Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cui Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanchun Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Zhang Z, Shen S, Ma J, Qi T, Gao C, Hu X, Han D, Huang Y. Sequential multi-parametric MRI in assessment of the histological subtype and features in the malignant pleural mesothelioma xenografts. Heliyon 2023; 9:e15237. [PMID: 37123972 PMCID: PMC10130770 DOI: 10.1016/j.heliyon.2023.e15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Objective It is still a challenge to find a noninvasive technique to distinguish the histological subtypes of malignant pleural mesothelioma (MPM) and characterize the development of related histological features. We investigated the potential value of multiparametric MRI in the assessment of the histological subtype and development of histologic features in the MPM xenograft model. Methods MPM xenograft models were developed by injecting tumour cells into the right axillary space of nude mice. The T1, T2, R2*, T2*, apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo diffusion coefficient (D*), and perfusion fraction (f) at 14 d, 28 d, and 42 d were measured and compared between the epithelial and biphasic MPM. Correlations between multiparametric MRI parameters and histologic features, including necrotic fraction (NF) and microvessel density (MVD), were analysed. Results This study found that T2, T2* and IVIM-DWI parameters can reflect the spatial and temporal heterogeneity of MPM. Compared to the epithelial MPM, T2 and T2* were higher and ADC, D, D*, and f were lower in the biphasic MPM (P < 0.05). MRI parameters were different in different stages of epithelial and biphasic MPM. Moderate correlations were found between ADC and tumor volume and NF in the epithelial MPM, and there was a correlation between f and tumor volume and NF and MVD in the two groups. Conclusion MRI parameters changed with tumor progression in a xenograft model of MPM. MRI parameters may provide useful biomarkers for evaluating the histological subtype and histological features development of MPM.
Collapse
Affiliation(s)
- Zhenghua Zhang
- Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Shasha Shen
- Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Jiyao Ma
- Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Tianfu Qi
- Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Chao Gao
- Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Xiong Hu
- Pathology Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Dan Han
- Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
- Corresponding author.
| | - Yilong Huang
- Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| |
Collapse
|
10
|
Utility of mono-exponential, bi-exponential, and stretched exponential signal models of intravoxel incoherent motion (IVIM) to predict prognosis and survival risk in laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) patients after chemoradiotherapy. Jpn J Radiol 2023:10.1007/s11604-023-01399-x. [PMID: 36847996 DOI: 10.1007/s11604-023-01399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE To investigate the predictive power of mono-exponential, bi-exponential, and stretched exponential signal models of intravoxel incoherent motion (IVIM) in prognosis and survival risk of laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) patients after chemoradiotherapy. MATERIALS AND METHODS Forty-five patients with laryngeal or hypopharyngeal squamous cell carcinoma were retrospectively enrolled. All patients had undergone pretreatment IVIM examination, subsequently, mean apparent diffusion coefficient (ADCmean), maximum ADC (ADCmax), minimum ADC (ADCmin) and ADCrange (ADCmax - ADCmean) by mono-exponential model, true diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f) by bi-exponential model, distributed diffusion coefficient (DDC), and diffusion heterogeneity index (α) by stretched exponential model were measured. Survival data were collected for 5 years. RESULTS Thirty-one cases were in the treatment failure group and fourteen cases were in the local control group. Significantly lower ADCmean, ADCmax, ADCmin, D, f, and higher D* values were observed in the treatment failure group than in the local control group (p < 0.05). D* had the greatest AUC of 0.802, with sensitivity and specificity of 77.4 and 85.7% when D* was 38.85 × 10-3 mm2/s. Kaplan-Meier survival analysis showed that the curves of N stage, ADCmean, ADCmax, ADCmin, D, D*, f, DDC, and α values were significant. Multivariate Cox regression analysis showed ADCmean and D* were independently correlated with progression-free survival (PFS) (hazard ratio [HR] = 0.125, p = 0.001; HR = 1.008, p = 0.002, respectively). CONCLUSION The pretreatment parameters of mono-exponential and bi-exponential models were significantly correlated with prognosis of LHSCC, ADCmean and D* values were independent factors for survival risk prediction.
Collapse
|
11
|
Yang H, Ge X, Zheng X, Li X, Li J, Liu M, Zhu J, Qin J. Predicting Grade of Esophageal Squamous Carcinoma: Can Stretched Exponential Model-Based DWI Perform Better Than Bi-Exponential and Mono-Exponential Model? Front Oncol 2022; 12:904625. [PMID: 35912203 PMCID: PMC9329622 DOI: 10.3389/fonc.2022.904625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background To evaluate and compare the potential performance of various diffusion parameters obtained from mono-exponential model (MEM)-, bi-exponential model (BEM)-, and stretched exponential model (SEM)-based diffusion-weighted imaging (DWI) in grading of esophageal squamous carcinoma (ESC). Methods Eighty-two patients with pathologically confirmed ESC without treatment underwent multi-b-value DWI scan with 13 b values (0~12,00 s/mm2). The apparent diffusion coefficient (ADC) deriving from the MEM; the pure molecular diffusion (ADCslow), pseudo-diffusion coefficient (ADCfast), perfusion, and fraction (f) deriving from the BEM; and the distributed diffusion coefficient (DDC) and water molecular diffusion heterogeneity index (α) deriving from the SEM were calculated and compared between poorly differentiated and well/moderately differentiated ESC, respectively. The prediction parameters and diagnostic efficiency were compared by drawing receiver operating characteristic (ROC) curves. Results The ADC, ADCslow, ADCfast, and DDC in poorly ESC were significantly lower than those in well/moderately differentiated ones. By using only one parameter, ADCslow, DDC had the moderate diagnostic efficiency and the areas under the curve (AUC) were 0.758 and 0.813 in differentiating ESC. The DDC had the maximum AUC with sensitivity (88.00%) and specificity (68.42%). Combining ADC with ADCfast, ADCslow, and DDC and combining ADCslow with ADCfast can provide a higher diagnostic accuracy with AUC ranging from 0.756, 0.771, 0.816, and 0.793, respectively. Conclusion Various parameters derived from different DWI models including MEM, BEM, and SEM were potentially helpful in grading ESC. DDC obtained from SEM was the most promising diffusion parameter for predicting the grade of ESC.
Collapse
Affiliation(s)
- Hui Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Xubo Ge
- Department of Radiology, The Fourth People’s Hospital of Taian, Tai’an, China
| | - Xiuzhu Zheng
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Xiaoqian Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jiang Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Min Liu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jianzhong Zhu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- *Correspondence: Jian Qin,
| |
Collapse
|
12
|
Apparent Diffusion Coefficient Value as a Biomarker for Detecting Muscle-Invasive and High-Grade Bladder Cancer: A Systematic Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Several studies have investigated the potential role of the apparent diffusion coefficient (ADC) value of diffusion-weighted magnetic resonance imaging as a biomarker of high-grade and invasive bladder cancer. Methods: PubMed and the Cochrane Library were systematically searched in September 2021 to extract studies that evaluated the associations between ADC values, pathological T stage, and histological grade bladder cancers. The diagnostic performance of ADC values in detecting muscle-invasive bladder cancer (MIBC) and high-grade disease was systematically reviewed. Results: Six studies were included in this systematic review. MIBC showed significantly lower ADC values than non-muscle-invasive bladder cancer (NMIBC) in all six studies. The median (range) sensitivity, specificity, and area under the curve (AUC) of ADC values to detect MIBC among the four eligible studies were 73.5% (68.8–90.0%), 79.9% (66.7–84.4%), and 0.762 (0.730–0.884), respectively. Similarly, high-grade disease showed significantly lower ADC values than did low-grade disease in all four eligible studies. The median (range) sensitivity, specificity, and AUC of ADC values for detecting high-grade disease among the three eligible studies were 75.0% (73.0–76.5%), 95.8% (76.2–100%), and 0.902 (0.804–0.906), respectively. Conclusions: The ADC value is a non-invasive diagnostic biomarker for discriminating muscle-invasive and high-grade bladder cancer.
Collapse
|
13
|
Cai W, Min X, Chen D, Fan C, Feng Z, Li B, Zhang P, You H, Xie J, Liu J, Wang L. Noninvasive Differentiation of Obstructive Azoospermia and Nonobstructive Azoospermia Using Multimodel Diffusion Weighted Imaging. Acad Radiol 2021; 28:1375-1382. [PMID: 32622745 DOI: 10.1016/j.acra.2020.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the diagnostic performance of parameters derived from multimodel diffusion weighted imaging (monoexponential, stretched-exponential diffusion weighted imaging and diffusion kurtosis imaging [DKI]) from noninvasive magnetic resonance imaging in distinguishing obstructive azoospermia (OA) from nonobstructive azoospermia (NOA). MATERIALS AND METHODS Forty-six patients with azoospermia were prospectively enrolled and classified into two groups (21 OA patients and 25 NOA patients). The multimodel parameters of diffusion-weighted imaging (DWI; apparent diffusion coefficient [ADC], distributed diffusion coefficient [DDC], diffusion heterogeneity [α], diffusion kurtosis diffusivity [Dapp], and diffusion kurtosis coefficient [Kapp]) were derived. The diagnostic performance of these parameters for the differentiation of OA and NOA patients were evaluated using receiver operating characteristic analysis. The area under the curve (AUC) was calculated to evaluate the diagnostic accuracy of each parameter. RESULTS All the parameters (ADC, α, DDC, Dapp, and Kapp) values were significantly different between OA and NOA (P < 0.001 for all). For the differentiation of OA from NOA, Kapp showed the highest AUC value (0.965), followed by DDC (0.946), Dapp (0.933), ADC (0.922), and α (0.887). Kapp had a significantly higher AUC than the conventional ADC (P < 0.05). CONCLUSION Parameters derived from multimodels of DWI have the potential for the noninvasive differentiation of OA and NOA. The Kapp value derived from the DKI model might serve as a useful imaging marker for the differentiation of azoospermia.
Collapse
|
14
|
Li S, Liang P, Wang Y, Feng C, Shen Y, Hu X, Hu D, Meng X, Li Z. Combining volumetric apparent diffusion coefficient histogram analysis with vesical imaging reporting and data system to predict the muscle invasion of bladder cancer. Abdom Radiol (NY) 2021; 46:4301-4310. [PMID: 33909091 DOI: 10.1007/s00261-021-03091-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The objective of this study was to explore whether volumetric apparent diffusion coefficient (ADC) histogram analysis can provide additional value to Vesical Imaging Reporting and Data System (VI-RADS) in differentiating muscle-invasive bladder cancer (MIBC) from non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS 80 patients were retrospectively reviewed with pathologically proven NMIBC (n = 53) or MIBC (n = 27). All patients underwent MRI including diffusion-weighted imaging (DWI) (b = 0, 800 s/mm2), and the VI-RADS score was evaluated based on DWI. Volumetric ADC histogram parameters were calculated from the volumetric of interest (VOI) on DWI, including the min ADC, mean ADC, median ADC, max ADC, 10th, 25th, 75th, 90th percentiles ADC, skewness, kurtosis, and entropy. The Mann-Whitney U-test was used to compare histogram parameters between NMIBC and MIBC. Receiver operating characteristic analysis was used to evaluate the diagnostic value of each significant parameter. RESULTS Among all parameters, the VI-RADS yield the highest Area Under the Curve (AUC, 0.88; sensitivity, 88.89%; specificity, 83.61%). MIBC had significantly lower min ADC, mean ADC, median ADC, 10th, 25th, 75th, and 90th percentiles ADC than NMIBC (p = 0.002, p < 0.001, p < 0.001, p = 0.003, p = 0.004, p < 0.001, p < 0.001). Skewness and kurtosis of MIBC were significantly higher than those of NMIBC (p < 0.001, p < 0.001). The combination of VI-RADS and skewness showed significantly higher AUC (AUC 0.923; 95% CI 0.847-0.969) than only with VI-RADS (AUC 0.880; 95% CI 0.793-0.940). CONCLUSION Volumetric ADC histogram analysis and VI-RADS are both useful methods in differentiating MIBC from NMIBC, and the volumetric ADC histogram analysis can provide additional value to VI-RADS.
Collapse
Affiliation(s)
- Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, Hubei, China
| | - Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, Hubei, China
| | - Yanchun Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, Hubei, China
| | - Cui Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, Hubei, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, Hubei, China
| | - Xuemei Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, Hubei, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, Hubei, China
| | - Xiaoyan Meng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, Hubei, China.
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, Hubei, China
| |
Collapse
|
15
|
Feng C, Wang Y, Dan G, Zhong Z, Karaman MM, Li Z, Hu D, Zhou XJ. Evaluation of a fractional-order calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma. Eur Radiol 2021; 32:890-900. [PMID: 34342693 DOI: 10.1007/s00330-021-08203-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To evaluate the feasibility of high b-value diffusion-weighted imaging (DWI) for distinguishing non-muscle-invasive bladder cancer (NMIBC) from muscle-invasive bladder cancer (MIBC) and low- from high-grade bladder urothelial carcinoma using a fractional-order calculus (FROC) model as well as a combination of FROC DWI and bi-parametric Vesical Imaging-Reporting and Data System (VI-RADS). METHODS Fifty-eight participants with bladder urothelial carcinoma were included in this IRB-approved prospective study. Diffusion-weighted images, acquired with 16 b-values (0-3600 s/mm2), were analyzed using the FROC model. Three FROC parameters, D, β, and μ, were used for delineating NMIBC from MIBC and for tumor grading. A receiver operating characteristic (ROC) analysis was performed based on the individual FROC parameters and their combinations, followed by comparisons with apparent diffusion coefficient (ADC) and bi-parametric VI-RADS based on T2-weighted images and DWI. RESULTS D and μ were significantly lower in the MIBC group than in the NMIBC group (p = 0.001 for each), and D, β, and μ all exhibited significantly lower values in the high- than in the low-grade tumors (p ≤ 0.011). The combination of D, β, and μ produced the highest specificity (85%), accuracy (78%), and the area under the ROC curve (AUC, 0.782) for distinguishing NMIBC and MIBC, and the best sensitivity (89%), specificity (86%), accuracy (88%), and AUC (0.892) for tumor grading, all of which outperformed the ADC. The combination of FROC parameters with bi-parametric VI-RADS improved the AUC from 0.859 to 0.931. CONCLUSIONS High b-value DWI with a FROC model is useful in distinguishing NMIBC from MIBC and grading bladder tumors. KEY POINTS • Diffusion parameters derived from a FROC diffusion model may differentiate NMIBC from MIBC and low- from high-grade bladder urothelial carcinomas. • Under the condition of a moderate sample size, higher AUCs were achieved by the FROC parameters D (0.842) and μ (0.857) than ADC (0.804) for bladder tumor grading with p ≤ 0.046. • The combination of the three diffusion parameters from the FROC model can improve the specificity over ADC (85% versus 67%, p = 0.031) for distinguishing NMIBC and MIBC and enhance the performance of bi-parametric VI-RADS.
Collapse
Affiliation(s)
- Cui Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.,Center for MR Research, University of Illinois at Chicago, MC-707, Suite 1A, 1801 West Taylor Street, Chicago, IL, 60612, USA
| | - Yanchun Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Guangyu Dan
- Center for MR Research, University of Illinois at Chicago, MC-707, Suite 1A, 1801 West Taylor Street, Chicago, IL, 60612, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Zheng Zhong
- Center for MR Research, University of Illinois at Chicago, MC-707, Suite 1A, 1801 West Taylor Street, Chicago, IL, 60612, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - M Muge Karaman
- Center for MR Research, University of Illinois at Chicago, MC-707, Suite 1A, 1801 West Taylor Street, Chicago, IL, 60612, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| | - Xiaohong Joe Zhou
- Center for MR Research, University of Illinois at Chicago, MC-707, Suite 1A, 1801 West Taylor Street, Chicago, IL, 60612, USA. .,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Xu X, Wang H, Guo Y, Zhang X, Li B, Du P, Liu Y, Lu H. Study Progress of Noninvasive Imaging and Radiomics for Decoding the Phenotypes and Recurrence Risk of Bladder Cancer. Front Oncol 2021; 11:704039. [PMID: 34336691 PMCID: PMC8321511 DOI: 10.3389/fonc.2021.704039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Urinary bladder cancer (BCa) is a highly prevalent disease among aged males. Precise diagnosis of tumor phenotypes and recurrence risk is of vital importance in the clinical management of BCa. Although imaging modalities such as CT and multiparametric MRI have played an essential role in the noninvasive diagnosis and prognosis of BCa, radiomics has also shown great potential in the precise diagnosis of BCa and preoperative prediction of the recurrence risk. Radiomics-empowered image interpretation can amplify the differences in tumor heterogeneity between different phenotypes, i.e., high-grade vs. low-grade, early-stage vs. advanced-stage, and nonmuscle-invasive vs. muscle-invasive. With a multimodal radiomics strategy, the recurrence risk of BCa can be preoperatively predicted, providing critical information for the clinical decision making. We thus reviewed the rapid progress in the field of medical imaging empowered by the radiomics for decoding the phenotype and recurrence risk of BCa during the past 20 years, summarizing the entire pipeline of the radiomics strategy for the definition of BCa phenotype and recurrence risk including region of interest definition, radiomics feature extraction, tumor phenotype prediction and recurrence risk stratification. We particularly focus on current pitfalls, challenges and opportunities to promote massive clinical applications of radiomics pipeline in the near future.
Collapse
Affiliation(s)
- Xiaopan Xu
- School of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Huanjun Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Guo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xi Zhang
- School of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Peng Du
- School of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Yang Liu
- School of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Hongbing Lu
- School of Biomedical Engineering, Air Force Medical University, Xi’an, China
| |
Collapse
|
17
|
Morozov A, Potoldykova N, Chinenov D, Enikeev M, Glukhov A, Shpikina A, Goryacheva E, Taratkin M, Malavaud B, Enikeev D. hTERT, hTR and TERT promoter mutations as markers for urological cancers detection: A systematic review. Urol Oncol 2021; 39:498.e21-498.e33. [PMID: 33676848 DOI: 10.1016/j.urolonc.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022]
Abstract
The clinical relevance of telomerase subunits (human reverse transcriptase - hTERT, and human telomerase RNA - hTR) and TERT promotor mutations as biomarkers in genitourinary cancers was reviewed through the systematic analysis of the current literature. We performed a systematic literature search using 2 databases (Medline and Scopus) over the past 20 years. Primary outcomes were sensitivity and specificity of hTR, hTERT and TERT promoter mutations. Secondary outcomes were the biomarkers predictive values for tumor characteristics. Regarding bladder cancer, hTERT in urine showed high sensitivity (mean values: 55%-96%), and specificity (69%-100%): it correlated with bladder cancer grade and/or stage. hTR sensitivity ranged from 77% to 92%. With adapted cut-off, it demonstrated 72% to 89% specificity. TERT promoter mutation rate was up to 80% both in tissue and urine, resulting in 62%-92% sensitivity for primary tumors and 42% for relapse. Specificity ranged from 73% to 96%, no correlations with stage were observed. In prostate cancer, hTERT in tissue, prostate secretion and serum showed high sensitivity (97.9%, 36%, and 79.2%-97.5%, respectively) and specificity values (70%, 66%, 60%-100%). hTR showed very high sensitivity (88% in serum and 100% in tissue) although specificity values were highly variable depending on the series and techniques (0%-96.5%). In RCC, hTERT sensitivity on tissue ranged from 90 to 97%, specificity from 25 to 58%. There was an association of hTERT expression with tumor stage and grade. hTERT showed high accuracy in genitourinary cancers, while the value of hTR was more controversial. hTERT and TERT promotor mutations may have predictive value for bladder cancer and RCC staging and grading, while no such relationship was observed in CaP. Although telomerase subunits showed clinically relevant values in genitourinary cancers, developing fast and cost-effective methods is required before contemplating routine use.
Collapse
Affiliation(s)
- Andrey Morozov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Natalya Potoldykova
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Denis Chinenov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Alexander Glukhov
- Sechenov University, Department of Biochemistry, Moscow, Russia; Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | | | | | - Mark Taratkin
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Bernard Malavaud
- Department of Urology, Institut Universitaire du Cancer, Toulouse, France
| | - Dmitry Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia.
| |
Collapse
|
18
|
Meng X, Hu H, Wang Y, Hu D, Li Z, Feng C. Application of bi-planar reduced field-of-view DWI (rFOV DWI) in the assessment of muscle-invasiveness of bladder cancer. Eur J Radiol 2020; 136:109486. [PMID: 33434861 DOI: 10.1016/j.ejrad.2020.109486] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To compare the image quality of the reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with the full field-of-view (fFOV) DWI in the assessment of bladder cancer (BC); and to explore the possible superiority of bi-planar (axial and sagittal) rFOV DWI over single planar fFOV DWI in predicting muscle-invasiveness of BC. MATERIALS AND METHODS This retrospective study analyzed 61 patients with BC who underwent DWI sequences including axial fFOV DWI, axial rFOV DWI, and sagittal rFOV DWI. Qualitative and quantitative image quality assessment were compared between axial fFOV DWI and rFOV DWI sequences. The tumor with its base could be clearly displayed on DWI was defined as the evaluable lesion, and the number of evaluable lesions detected from single axial fFOV DWI, axial rFOV DWI, sagittal rFOV DWI, and bi-planar rFOV DWI sequences was recorded and compared. The apparent diffusion coefficient (ADC) was compared between non-muscular-invasive bladder cancer (NMIBC) and muscular-invasive bladder cancer (MIBC) based on the sequences of axial fFOV DWI and rFOV DWI, respectively. Vesical Imaging-Reporting and Data System (VI-RADS) was introduced to evaluate the overall risk of muscle-invasiveness of BC and receiver operating characteristic (ROC) curve analysis was applied to assess the diagnostic performance. RESULTS The contrast-to-noise ratio (CNR) of the rFOV DWI was significantly higher than that of fFOV DWI (p < 0.01), while the signal-to-noise ratio (SNR) was significantly lower than that of fFOV DWI (p < 0.01). The subjective score of rFOV DWI was significantly higher than that of fFOV DWI (p < 0.01). The ADC value of the MIBC group was significantly lower than that of the NMIBC in both rFOV DWI and fFOV DWI (all p < 0.01). The number of evaluable lesions detected from the bi-planar rFOV DWI was significantly higher than that detected from the single axial fFOV DWI, axial rFOV DWI, and sagittal rFOV DWI (all p < 0.01). VI-RADS based on the bi-planar rFOV DWI offered high predictive power (the area under the ROC curve, 0.946) for predicting the presence of muscle-invasiveness of BC. CONCLUSION Bi-planar rFOV DWI may provide more diagnostic confidence than the single planar DWI for predicting the presence of muscle-invasiveness in BC, with improved image quality over the fFOV DWI.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Henglong Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanchun Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cui Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Differentiation of high-grade from low-grade diffuse gliomas using diffusion-weighted imaging: a comparative study of mono-, bi-, and stretched-exponential diffusion models. Neuroradiology 2020; 62:815-823. [PMID: 32424712 PMCID: PMC7311374 DOI: 10.1007/s00234-020-02456-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Purpose Diffusion-weighted imaging (DWI) plays an important role in the preoperative assessment of gliomas; however, the diagnostic performance of histogram-derived parameters from mono-, bi-, and stretched-exponential DWI models in the grading of gliomas has not been fully investigated. Therefore, we compared these models’ ability to differentiate between high-grade and low-grade gliomas. Methods This retrospective study included 22 patients with diffuse gliomas (age, 23–74 years; 12 males; 11 high-grade and 11 low-grade gliomas) who underwent preoperative 3 T-magnetic resonance imaging from October 2014 to August 2019. The apparent diffusion coefficient was calculated from the mono-exponential model. Using 13 b-values, the true-diffusion coefficient, pseudo-diffusion coefficient, and perfusion fraction were obtained from the bi-exponential model, and the distributed-diffusion coefficient and heterogeneity index were obtained from the stretched-exponential model. Region-of-interests were drawn on each imaging parameter map for subsequent histogram analyses. Results The skewness of the apparent diffusion, true-diffusion, and distributed-diffusion coefficients was significantly higher in high-grade than in low-grade gliomas (0.67 ± 0.67 vs. − 0.18 ± 0.63, 0.68 ± 0.74 vs. − 0.08 ± 0.66, 0.63 ± 0.72 vs. − 0.15 ± 0.73; P = 0.0066, 0.0192, and 0.0128, respectively). The 10th percentile of the heterogeneity index was significantly lower (0.77 ± 0.08 vs. 0.88 ± 0.04; P = 0.0004), and the 90th percentile of the perfusion fraction was significantly higher (12.64 ± 3.44 vs. 7.14 ± 1.70%: P < 0.0001), in high-grade than in low-grade gliomas. The combination of the 10th percentile of the true-diffusion coefficient and 90th percentile of the perfusion fraction showed the best area under the receiver operating characteristic curve (0.96). Conclusion The bi-exponential model exhibited the best diagnostic performance for differentiating high-grade from low-grade gliomas. Electronic supplementary material The online version of this article (10.1007/s00234-020-02456-2) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Guo R, Yang SH, Lu F, Han ZH, Yan X, Fu CX, Zhao ML, Lin J. Evaluation of intratumoral heterogeneity by using diffusion kurtosis imaging and stretched exponential diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model. Quant Imaging Med Surg 2019; 9:1566-1578. [PMID: 31667142 DOI: 10.21037/qims.2019.08.18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background To investigate the value of diffusion kurtosis imaging (DKI) and diffusion-weighted imaging (DWI) with a stretched exponential model (SEM) in the evaluation of tumor heterogeneity in an orthotopic hepatocellular carcinoma (HCC) xenograft model. Methods Thirty orthotopic HCC xenograft nude mice models were established and randomly divided into two groups, the sorafenib induction group (n=15) and control group (n=15). Every mouse in each group underwent MRI with DKI and SEM on a 1.5T MR scanner at 7, 14, and 21 days after sorafenib intervention. DKI and SEM parameters including mean kurtosis (MK), mean diffusivity (MD), α, and distributed diffusion coefficient (DDC) were measured, calculated, and compared between the two groups and among different time points. Sequential correlations between histopathological results including necrotic fraction (NF), micro-vessel density (MVD), Ki-67 index, standard deviation (SD), and kurtosis from hematoxylin-eosin staining, and DKI and SEM parameters were analyzed. Results MK, MD, and DDC of HCC in the sorafenib induction group were significantly higher than those in the control group at each time point (P<0.05), while α was significantly lower (P<0.05). Significantly positive correlations were found between MK and NF (r=0.693, P=0.010), SD (r =0.785, P=0.003), kurtosis (r=0.779, P=0.003), between MD and NF (r=0.794, P=0.003), SD (r=0.629, P=0.020), kurtosis (r=0.645, P=0.018), and between DDC and NF (r=0.800, P=0.003), SD (r=0.636, P=0.020), kurtosis (r=0.664, P=0.016), and significantly negative correlations were observed between α and NF (r=-0.704, P=0.009), SD (r=-0.754, P=0.003), and kurtosis (r=-0.792, P=0.003) in the sorafenib induction group. Conclusions DKI and SEM parameters may be potentially useful for evaluating intratumoral heterogeneity in HCC.
Collapse
Affiliation(s)
- Ran Guo
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Shuo-Hui Yang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Zhi-Hong Han
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthcare, Shanghai 201318, China
| | - Cai-Xia Fu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen 518057, China
| | - Meng-Long Zhao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jiang Lin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
21
|
Li J, Liang L, Yu H, Shen Y, Hu Y, Hu D, Tang H, Li Z. Whole-tumor histogram analysis of non-Gaussian distribution DWI parameters to differentiation of pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas. Magn Reson Imaging 2019; 55:52-59. [PMID: 30240758 DOI: 10.1016/j.mri.2018.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE To evaluate the utility of volumetric histogram analysis of monoexponential and non-Gaussian distribution DWI models for discriminating pancreatic ductal adenocarcinoma (PDAC) and neuroendocrine tumor (pNET). MATERIALS AND METHODS A total of 340 patients were retrospectively reviewed. Finally, 62 patients with histopathological confirmed PDAC (n = 42) and pNET (n = 20) were enrolled in the study. All the patients accepted magnetic resonance imaging (MRI) at 3 T (including multi-b value DWI, 0-1000 s/mm2). Isotropic apparent diffusion coefficient (ADC), true molecular diffusion (Dt), perfusion-related diffusion (Dp), perfusion fraction (f), distributed diffusion coefficient (DDC) and alpha (α) were obtained from different DWI models. Then, mean value, median value, 10th and 90th percentiles were obtained from histogram analysis of each DWI parameter. RESULTS Histogram metrics derived from ADC, Dp, f and DDC were significantly lower in PDAC than pNET group (P < 0.05). In contrast, histogram metrics derived from α were observed significantly higher in the PDAC than pNET group (P < 0.05). No significant difference was found in Dt (P ≥ 0.05) between PDAC and pNET patients. Among all parameters, f-median had the highest diagnostic performance (AUC 0.91, cutoff value 0.188, sensitivity 97.62%, specificity 80%). CONCLUSIONS f-Median derived from IVIM DWI model may be potentially more valuable parameter than ADC, Dp, DDC and α for discriminating PDAC and pNET. Histogram analysis based on the entire tumor was an emerging and valuable tool.
Collapse
Affiliation(s)
- Jiali Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Liang
- Department of Radiology, The first affiliated hospital of Nanyang Medical College, China
| | - Hao Yu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|