1
|
Fu S, Chen D, Zhang Y, Yu X, Han L, Yu J, Zheng Y, Zhao L, Xu Y, Tan Y, Yang M. A CT-based radiomics tumor quality and quantity model to predict early recurrence after radical surgery for colorectal liver metastases. Clin Transl Oncol 2025; 27:1198-1210. [PMID: 39153176 DOI: 10.1007/s12094-024-03645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE This study aimed to develop a tumor radiomics quality and quantity model (RQQM) based on preoperative enhanced CT to predict early recurrence after radical surgery for colorectal liver metastases (CRLM). METHODS A retrospective analysis was conducted on 282 cases from 3 centers. Clinical risk factors were examined using univariate and multivariate logistic regression (LR) to construct the clinical model. Radiomics features were extracted using the least absolute shrinkage and selection operator (LASSO) for dimensionality reduction. The LR learning algorithm was employed to construct the radiomics model, RQQM (radiomics-TBS), combined model (radiomics-clinical), clinical risk score (CRS) model and tumor burden score (TBS) model. Inter-model comparisons were made using area under the curve (AUC), decision curve analysis (DCA) and calibration curve. Log-rank tests assessed differences in disease-free survival (DFS) and overall survival (OS). RESULTS Clinical features screening identified CRS, KRAS/NRAS/BRAF and liver lobe distribution as risk factors. Radiomics model, RQQM, combined model demonstrated higher AUC values compared to CRS and TBS model in training, internal and external validation cohorts (Delong-test P < 0.05). RQQM outperformed the radiomics model, but was slightly inferior to the combined model. Survival curves revealed statistically significant differences in 1-year DFS and 3-year OS for the RQQM (P < 0.001). CONCLUSIONS RQQM integrates both "quality" (radiomics) and "quantity" (TBS). The radiomics model is superior to the TBS model and has a greater impact on patient prognosis. In the absence of clinical data, RQQM, relying solely on imaging data, shows an advantage in predicting early recurrence after radical surgery for CRLM.
Collapse
Affiliation(s)
- Sunya Fu
- Department of Radiology, Ningbo Medical Center LiHuiLi Hospital, 1111 Jiangnan Road, Ningbo, 315040, People's Republic of China
| | - Dawei Chen
- Department of Gastroenterology, Ningbo Medical Center LiHuiLi Hospital, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Yuqin Zhang
- Department of Radiology, Ningbo Medical Center LiHuiLi Hospital, 1111 Jiangnan Road, Ningbo, 315040, People's Republic of China.
| | - Xiao Yu
- Philips Healthcare, Shanghai, 200072, People's Republic of China
| | - Lu Han
- Philips Healthcare, Shanghai, 200072, People's Republic of China
| | - Jiazi Yu
- Department of Colon Anorectal Surgery, Ningbo Medical Center LiHuiLi Hospital, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, People's Republic of China.
| | - Yupeng Zheng
- Department of Colon Anorectal Surgery, Ningbo Medical Center LiHuiLi Hospital, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Liang Zhao
- Department of Gastroenterology, Ningbo Medical Center LiHuiLi Hospital, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Yidong Xu
- Department of Colon Anorectal Surgery, Ningbo NO.2 Hospital, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Ying Tan
- Department of Radiology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, People's Republic of China
| | - Mian Yang
- Department of Colon Anorectal Surgery, Ningbo Medical Center LiHuiLi Hospital, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Zhao B, Dercle L, Yang H, Riely GJ, Kris MG, Schwartz LH. Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters. Sci Data 2024; 11:1259. [PMID: 39567508 PMCID: PMC11579286 DOI: 10.1038/s41597-024-04085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Quantitative imaging biomarkers (QIB) are increasingly used in clinical research to advance precision medicine approaches in oncology. Computed tomography (CT) is a modality of choice for cancer diagnosis, prognosis, and response assessment due to its reliability and global accessibility. Here, we contribute to the cancer imaging community through The Cancer Imaging Archive (TCIA) by providing investigator-initiated, same-day repeat CT scan images of 32 non-small cell lung cancer (NSCLC) patients, along with radiologist-annotated lesion contours as a reference standard. Each scan was reconstructed into 6 image settings using various combinations of three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two reconstruction kernels (lung, standard; GE CT equipment), which spans a wide range of CT imaging reconstruction parameters commonly used in lung cancer clinical practice and clinical trials. This holds considerable value for advancing the development of robust Radiomics, Artificial Intelligence (AI) and machine learning (ML) methods.
Collapse
Affiliation(s)
- Binsheng Zhao
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA.
| | - Laurent Dercle
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
- Department of Radiology, Columbia University New York, New York, NY, 10032, USA
| | - Hao Yang
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Gregory J Riely
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Mark G Kris
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | | |
Collapse
|
3
|
Guha S, Ibrahim A, Wu Q, Geng P, Chou Y, Yang H, Ma J, Lu L, Wang D, Schwartz LH, Xie CM, Zhao B. Machine learning-based identification of contrast-enhancement phase of computed tomography scans. PLoS One 2024; 19:e0294581. [PMID: 38306329 PMCID: PMC10836663 DOI: 10.1371/journal.pone.0294581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/04/2023] [Indexed: 02/04/2024] Open
Abstract
Contrast-enhanced computed tomography scans (CECT) are routinely used in the evaluation of different clinical scenarios, including the detection and characterization of hepatocellular carcinoma (HCC). Quantitative medical image analysis has been an exponentially growing scientific field. A number of studies reported on the effects of variations in the contrast enhancement phase on the reproducibility of quantitative imaging features extracted from CT scans. The identification and labeling of phase enhancement is a time-consuming task, with a current need for an accurate automated labeling algorithm to identify the enhancement phase of CT scans. In this study, we investigated the ability of machine learning algorithms to label the phases in a dataset of 59 HCC patients scanned with a dynamic contrast-enhanced CT protocol. The ground truth labels were provided by expert radiologists. Regions of interest were defined within the aorta, the portal vein, and the liver. Mean density values were extracted from those regions of interest and used for machine learning modeling. Models were evaluated using accuracy, the area under the curve (AUC), and Matthew's correlation coefficient (MCC). We tested the algorithms on an external dataset (76 patients). Our results indicate that several supervised learning algorithms (logistic regression, random forest, etc.) performed similarly, and our developed algorithms can accurately classify the phase of contrast enhancement.
Collapse
Affiliation(s)
- Siddharth Guha
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Abdalla Ibrahim
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Qian Wu
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Pengfei Geng
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Yen Chou
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Hao Yang
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Jingchen Ma
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Lin Lu
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Delin Wang
- Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lawrence H. Schwartz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| | | | - Binsheng Zhao
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States of America
| |
Collapse
|
4
|
Liang F, Wang S, Zhang K, Liu TJ, Li JN. Development of artificial intelligence technology in diagnosis, treatment, and prognosis of colorectal cancer. World J Gastrointest Oncol 2022; 14:124-152. [PMID: 35116107 PMCID: PMC8790413 DOI: 10.4251/wjgo.v14.i1.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) technology has made leaps and bounds since its invention. AI technology can be subdivided into many technologies such as machine learning and deep learning. The application scope and prospect of different technologies are also totally different. Currently, AI technologies play a pivotal role in the highly complex and wide-ranging medical field, such as medical image recognition, biotechnology, auxiliary diagnosis, drug research and development, and nutrition. Colorectal cancer (CRC) is a common gastrointestinal cancer that has a high mortality, posing a serious threat to human health. Many CRCs are caused by the malignant transformation of colorectal polyps. Therefore, early diagnosis and treatment are crucial to CRC prognosis. The methods of diagnosing CRC are divided into imaging diagnosis, endoscopy, and pathology diagnosis. Treatment methods are divided into endoscopic treatment, surgical treatment, and drug treatment. AI technology is in the weak era and does not have communication capabilities. Therefore, the current AI technology is mainly used for image recognition and auxiliary analysis without in-depth communication with patients. This article reviews the application of AI in the diagnosis, treatment, and prognosis of CRC and provides the prospects for the broader application of AI in CRC.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Shu Wang
- Department of Radiotherapy, Jilin University Second Hospital, Changchun 130041, Jilin Province, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Tong-Jun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Jian-Nan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
5
|
Rompianesi G, Pegoraro F, Ceresa CDL, Montalti R, Troisi RI. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases. World J Gastroenterol 2022; 28:108-122. [PMID: 35125822 PMCID: PMC8793013 DOI: 10.3748/wjg.v28.i1.108] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/12/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide, with approximately 50% of patients developing colorectal cancer liver metastasis (CRLM) during the follow-up period. Management of CRLM is best achieved via a multidisciplinary approach and the diagnostic and therapeutic decision-making process is complex. In order to optimize patients' survival and quality of life, there are several unsolved challenges which must be overcome. These primarily include a timely diagnosis and the identification of reliable prognostic factors. Furthermore, to allow optimal treatment options, a precision-medicine, personalized approach is required. The widespread digitalization of healthcare generates a vast amount of data and together with accessible high-performance computing, artificial intelligence (AI) technologies can be applied. By increasing diagnostic accuracy, reducing timings and costs, the application of AI could help mitigate the current shortcomings in CRLM management. In this review we explore the available evidence of the possible role of AI in all phases of the CRLM natural history. Radiomics analysis and convolutional neural networks (CNN) which combine computed tomography (CT) images with clinical data have been developed to predict CRLM development in CRC patients. AI models have also proven themselves to perform similarly or better than expert radiologists in detecting CRLM on CT and magnetic resonance scans or identifying them from the noninvasive analysis of patients' exhaled air. The application of AI and machine learning (ML) in diagnosing CRLM has also been extended to histopathological examination in order to rapidly and accurately identify CRLM tissue and its different histopathological growth patterns. ML and CNN have shown good accuracy in predicting response to chemotherapy, early local tumor progression after ablation treatment, and patient survival after surgical treatment or chemotherapy. Despite the initial enthusiasm and the accumulating evidence, AI technologies' role in healthcare and CRLM management is not yet fully established. Its limitations mainly concern safety and the lack of regulation and ethical considerations. AI is unlikely to fully replace any human role but could be actively integrated to facilitate physicians in their everyday practice. Moving towards a personalized and evidence-based patient approach and management, further larger, prospective and rigorous studies evaluating AI technologies in patients at risk or affected by CRLM are needed.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples 80125, Italy
| | - Francesca Pegoraro
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples 80125, Italy
| | - Carlo DL Ceresa
- Department of Hepato-Pancreato-Biliary Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9ES, United Kingdom
| | - Roberto Montalti
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Public Health, Federico II University Hospital, Naples 80125, Italy
| | - Roberto Ivan Troisi
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples 80125, Italy
| |
Collapse
|
6
|
Zhao B. Understanding Sources of Variation to Improve the Reproducibility of Radiomics. Front Oncol 2021; 11:633176. [PMID: 33854969 PMCID: PMC8039446 DOI: 10.3389/fonc.2021.633176] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Radiomics is the method of choice for investigating the association between cancer imaging phenotype, cancer genotype and clinical outcome prediction in the era of precision medicine. The fast dispersal of this new methodology has benefited from the existing advances of the core technologies involved in radiomics workflow: image acquisition, tumor segmentation, feature extraction and machine learning. However, despite the rapidly increasing body of publications, there is no real clinical use of a developed radiomics signature so far. Reasons are multifaceted. One of the major challenges is the lack of reproducibility and generalizability of the reported radiomics signatures (features and models). Sources of variation exist in each step of the workflow; some are controllable or can be controlled to certain degrees, while others are uncontrollable or even unknown. Insufficient transparency in reporting radiomics studies further prevents translation of the developed radiomics signatures from the bench to the bedside. This review article first addresses sources of variation, which is illustrated using demonstrative examples. Then, it reviews a number of published studies and progresses made to date in the investigation and improvement of feature reproducibility and model performance. Lastly, it discusses potential strategies and practical considerations to reduce feature variability and improve the quality of radiomics study. This review focuses on CT image acquisition, tumor segmentation, quantitative feature extraction, and the disease of lung cancer.
Collapse
Affiliation(s)
- Binsheng Zhao
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Jensen CT, Khetan R, Adkins J, Javadi S, Liu X, Sun J, Hassan SA, Morani AC. Delayed bolus-tracking trigger at CT correlates with cardiac dysfunction and suboptimal portovenous contrast phase. Abdom Radiol (NY) 2021; 46:826-835. [PMID: 32700213 PMCID: PMC7855139 DOI: 10.1007/s00261-020-02655-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess whether delayed trigger during bolus-tracking for CT correlates with reduced heart function and suboptimal portovenous contrast phase. METHODS AND MATERIALS Patients who underwent portovenous abdominal CT using bolus-tracking and echocardiography within 2 weeks were included and excluded if there was a non-standard contrast injection. The bolus trigger time (BTT) at 100 Hounsfield units in the abdominal aorta, patient age, congestive heart failure (CHF) history, and ejection fraction were recorded. Two radiologists scored the liver contrast phase (1-5, 5 being an optimal portovenous phase). When applicable, the BTT and contrast score of the most recent comparison examination with equivalent technical parameters were also recorded. Simple linear regression (univariate) was used to test for associations with trigger time. RESULTS 114 patients with a mean age of 61 ± 15 years fulfilled criteria. The mean trigger time was 18 ± 6 s (range: 6-38 s) and the mean ejection fraction was 52 ± 12% (range: 19-69%). A longer bolus trigger had a significant correlation with reduced ejection fraction (P = 0.0018), lower hepatic contrast score (P < 0.0001), history of CHF (P = 0.0212), and older age (P = 0.0223). Contrast score differences between the study exam and available prior exams revealed score differences of 0 (n = 73), 1 (n = 15) and 2 (n = 5); these were associated, respectively, with a mean bolus trigger time difference between exams of 2 s (range, 0-6 s), 6 s (range, 1-15 s), and 11 s (range, 5-13). The P-value comparing bolus trigger time and contrast score differences was less than 0.0001. A lower ejection fraction also significantly correlated with suboptimal PV contrast phase (P < 0.0001). CONCLUSION Delayed time to trigger during bolus-tracking for CT can indicate cardiac dysfunction and may not adequately adjust to provide an optimal portovenous contrast phase.
Collapse
Affiliation(s)
- Corey T Jensen
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA.
| | - Rahul Khetan
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Jake Adkins
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Sanaz Javadi
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Xinming Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Jia Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Saamir A Hassan
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Ajaykumar C Morani
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| |
Collapse
|
8
|
Dercle L, Henry T, Carré A, Paragios N, Deutsch E, Robert C. Reinventing radiation therapy with machine learning and imaging bio-markers (radiomics): State-of-the-art, challenges and perspectives. Methods 2020; 188:44-60. [PMID: 32697964 DOI: 10.1016/j.ymeth.2020.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is a pivotal cancer treatment that has significantly progressed over the last decade due to numerous technological breakthroughs. Imaging is now playing a critical role on deployment of the clinical workflow, both for treatment planning and treatment delivery. Machine-learning analysis of predefined features extracted from medical images, i.e. radiomics, has emerged as a promising clinical tool for a wide range of clinical problems addressing drug development, clinical diagnosis, treatment selection and implementation as well as prognosis. Radiomics denotes a paradigm shift redefining medical images as a quantitative asset for data-driven precision medicine. The adoption of machine-learning in a clinical setting and in particular of radiomics features requires the selection of robust, representative and clinically interpretable biomarkers that are properly evaluated on a representative clinical data set. To be clinically relevant, radiomics must not only improve patients' management with great accuracy but also be reproducible and generalizable. Hence, this review explores the existing literature and exposes its potential technical caveats, such as the lack of quality control, standardization, sufficient sample size, type of data collection, and external validation. Based upon the analysis of 165 original research studies based on PET, CT-scan, and MRI, this review provides an overview of new concepts, and hypotheses generating findings that should be validated. In particular, it describes evolving research trends to enhance several clinical tasks such as prognostication, treatment planning, response assessment, prediction of recurrence/relapse, and prediction of toxicity. Perspectives regarding the implementation of an AI-based radiotherapy workflow are presented.
Collapse
Affiliation(s)
- Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, USA
| | - Theophraste Henry
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexandre Carré
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Eric Deutsch
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charlotte Robert
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
9
|
Park HJ, Park B, Lee SS. Radiomics and Deep Learning: Hepatic Applications. Korean J Radiol 2020; 21:387-401. [PMID: 32193887 PMCID: PMC7082656 DOI: 10.3348/kjr.2019.0752] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
Radiomics and deep learning have recently gained attention in the imaging assessment of various liver diseases. Recent research has demonstrated the potential utility of radiomics and deep learning in staging liver fibroses, detecting portal hypertension, characterizing focal hepatic lesions, prognosticating malignant hepatic tumors, and segmenting the liver and liver tumors. In this review, we outline the basic technical aspects of radiomics and deep learning and summarize recent investigations of the application of these techniques in liver disease.
Collapse
Affiliation(s)
- Hyo Jung Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bumwoo Park
- Health Innovation Big Data Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|