1
|
Liao H, Huang C, Liu C, Zhang J, Tao F, Liu H, Liang H, Hu X, Li Y, Chen S, Li Y. Deep learning-based MVIT-MLKA model for accurate classification of pancreatic lesions: a multicenter retrospective cohort study. LA RADIOLOGIA MEDICA 2025; 130:508-523. [PMID: 39832039 DOI: 10.1007/s11547-025-01949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images to predict the classification of pancreatic lesions. METHODS This retrospective study included 864 patients (422 men, 442 women) with confirmed histopathological results across three medical centers, forming a training cohort, internal testing cohort, and external validation cohort. A novel hybrid model, Multi-Scale Large Kernel Attention with Mobile Vision Transformer (MVIT-MLKA), was developed, integrating CNN and Transformer architectures to classify pancreatic lesions. The model's performance was compared with traditional machine learning methods and advanced deep learning models. We also evaluated the diagnostic accuracy of radiologists with and without the assistance of the optimal model. Model performance was assessed through discrimination, calibration, and clinical applicability. RESULTS The MVIT-MLKA model demonstrated superior performance in classifying pancreatic lesions, achieving an AUC of 0.974 (95% CI 0.967-0.980) in the training set, 0.935 (95% CI 0.915-0.954) in the internal testing set, and 0.924 (95% CI 0.902-0.945) in the external validation set, outperforming traditional models and other deep learning models (P < 0.05). Radiologists aided by the MVIT-MLKA model showed significant improvements in diagnostic accuracy and sensitivity compared to those without model assistance (P < 0.05). Grad-CAM visualization enhanced model interpretability by effectively highlighting key lesion areas. CONCLUSION The MVIT-MLKA model efficiently differentiates between benign and malignant pancreatic lesions, surpassing traditional methods and significantly improving radiologists' diagnostic performance. The integration of this advanced deep learning model into clinical practice has the potential to reduce diagnostic errors and optimize treatment strategies.
Collapse
Affiliation(s)
- Hongfan Liao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Huang
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| | - Chunhua Liu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiao Zhang
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengming Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoli Hu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Li
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Shanxiong Chen
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Rai HM, Yoo J, Agarwal S. The Improved Network Intrusion Detection Techniques Using the Feature Engineering Approach with Boosting Classifiers. MATHEMATICS 2024; 12:3909. [DOI: 10.3390/math12243909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In the domain of cybersecurity, cyber threats targeting network devices are very crucial. Because of the exponential growth of wireless devices, such as smartphones and portable devices, cyber risks are becoming increasingly frequent and common with the emergence of new types of threats. This makes the automatic and accurate detection of network-based intrusion very essential. In this work, we propose a network-based intrusion detection system utilizing the comprehensive feature engineering approach combined with boosting machine-learning (ML) models. A TCP/IP-based dataset with 25,192 data samples from different protocols has been utilized in our work. To improve the dataset, we used preprocessing methods such as label encoding, correlation analysis, custom label encoding, and iterative label encoding. To improve the model’s accuracy for prediction, we then used a unique feature engineering methodology that included novel feature scaling and random forest-based feature selection techniques. We used three conventional models (NB, LR, and SVC) and four boosting classifiers (CatBoostGBM, LightGBM, HistGradientBoosting, and XGBoost) for classification. The 10-fold cross-validation methods were employed to train each model. After an assessment using numerous metrics, the best-performing model emerged as XGBoost. With mean metric values of 99.54 ± 0.0007 for accuracy, 99.53 ± 0.0013 for precision, 99.54 ± 0.001 for recall, and an F1-score of 99.53 ± 0.0014, the XGBoost model produced the best performance overall. Additionally, we showed the ROC curve for evaluating the model, which demonstrated that all boosting classifiers obtained a perfect AUC value of one. Our suggested methodologies show effectiveness and accuracy in detecting network intrusions, setting the stage for the model to be used in real time. Our method provides a strong defensive measure against malicious intrusions into network infrastructures while cyber threats keep varying.
Collapse
Affiliation(s)
- Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Joon Yoo
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Saurabh Agarwal
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Ferrari R, Trinci M, Casinelli A, Treballi F, Leone E, Caruso D, Polici M, Faggioni L, Neri E, Galluzzo M. Radiomics in radiology: What the radiologist needs to know about technical aspects and clinical impact. LA RADIOLOGIA MEDICA 2024; 129:1751-1765. [PMID: 39472389 DOI: 10.1007/s11547-024-01904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024]
Abstract
Radiomics represents the science of extracting and analyzing a multitude of quantitative features from medical imaging, revealing the quantitative potential of radiologic images. This scientific review aims to provide radiologists with a comprehensive understanding of radiomics, emphasizing its principles, applications, challenges, limits, and prospects. The limitations of standardization in current scientific production are analyzed, along with possible solutions proposed by some of the referenced papers. As the continuous evolution of medical imaging is ongoing, radiologists must be aware of new perspectives to play a central role in patient management.
Collapse
Affiliation(s)
- Riccardo Ferrari
- Emergency Radiology Department, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Margherita Trinci
- Dipartimento Di Radiologia, P.O. Colline Dell'Albegna, Orbetello, Grosseto, Italy
| | - Alice Casinelli
- Diagnostic Imaging Department, Sandro Pertini Hospital, Rome, Italy
| | | | - Edoardo Leone
- Emergency Radiology Department, San Camillo-Forlanini Hospital, Rome, Italy
| | - Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant'Andrea University Hospital, Rome, Italy
| | - Michela Polici
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant'Andrea University Hospital, Rome, Italy
| | - Lorenzo Faggioni
- Department of Translational Research on New Technologies in Medicine e Surgery, Pisa University, Pisa, Italy
| | - Emanuele Neri
- Department of Translational Research on New Technologies in Medicine e Surgery, Pisa University, Pisa, Italy
| | - Michele Galluzzo
- Emergency Radiology Department, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
4
|
Rai HM, Yoo J, Razaque A. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. EXPERT SYSTEMS WITH APPLICATIONS 2024; 255:124838. [DOI: 10.1016/j.eswa.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
5
|
Jiang J, Sheng K, Li M, Zhao H, Guan B, Dai L, Li Y. A dual-energy computed tomography-based radiomics nomogram for predicting time since stroke onset: a multicenter study. Eur Radiol 2024; 34:7373-7385. [PMID: 38834786 DOI: 10.1007/s00330-024-10802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVES We aimed to develop and validate a radiomics nomogram based on dual-energy computed tomography (DECT) images and clinical features to classify the time since stroke (TSS), which could facilitate stroke decision-making. MATERIALS AND METHODS This retrospective three-center study consecutively included 488 stroke patients who underwent DECT between August 2016 and August 2022. The eligible patients were divided into training, test, and validation cohorts according to the center. The patients were classified into two groups based on an estimated TSS threshold of ≤ 4.5 h. Virtual images optimized the visibility of early ischemic lesions with more CT attenuation. A total of 535 radiomics features were extracted from polyenergetic, iodine concentration, virtual monoenergetic, and non-contrast images reconstructed using DECT. Demographic factors were assessed to build a clinical model. A radiomics nomogram was a tool that the Rad score and clinical factors to classify the TSS using multivariate logistic regression analysis. Predictive performance was evaluated using receiver operating characteristic (ROC) analysis, and decision curve analysis (DCA) was used to compare the clinical utility and benefits of different models. RESULTS Twelve features were used to build the radiomics model. The nomogram incorporating both clinical and radiomics features showed favorable predictive value for TSS. In the validation cohort, the nomogram showed a higher AUC than the radiomics-only and clinical-only models (AUC: 0.936 vs 0.905 vs 0.824). DCA demonstrated the clinical utility of the radiomics nomogram model. CONCLUSIONS The DECT-based radiomics nomogram provides a promising approach to predicting the TSS of patients. CLINICAL RELEVANCE STATEMENT The findings support the potential clinical use of DECT-based radiomics nomograms for predicting the TSS. KEY POINTS Accurately determining the TSS onset is crucial in deciding a treatment approach. The radiomics-clinical nomogram showed the best performance for predicting the TSS. Using the developed model to identify patients at different times since stroke can facilitate individualized management.
Collapse
Affiliation(s)
- Jingxuan Jiang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kai Sheng
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minda Li
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Huilin Zhao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Guan
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Dai
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
García-Figueiras R, Oleaga L, Broncano J, Tardáguila G, Fernández-Pérez G, Vañó E, Santos-Armentia E, Méndez R, Luna A, Baleato-González S. What to Expect (and What Not) from Dual-Energy CT Imaging Now and in the Future? J Imaging 2024; 10:154. [PMID: 39057725 PMCID: PMC11278514 DOI: 10.3390/jimaging10070154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Dual-energy CT (DECT) imaging has broadened the potential of CT imaging by offering multiple postprocessing datasets with a single acquisition at more than one energy level. DECT shows profound capabilities to improve diagnosis based on its superior material differentiation and its quantitative value. However, the potential of dual-energy imaging remains relatively untapped, possibly due to its intricate workflow and the intrinsic technical limitations of DECT. Knowing the clinical advantages of dual-energy imaging and recognizing its limitations and pitfalls is necessary for an appropriate clinical use. The aims of this paper are to review the physical and technical bases of DECT acquisition and analysis, to discuss the advantages and limitations of DECT in different clinical scenarios, to review the technical constraints in material labeling and quantification, and to evaluate the cutting-edge applications of DECT imaging, including artificial intelligence, qualitative and quantitative imaging biomarkers, and DECT-derived radiomics and radiogenomics.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| | - Laura Oleaga
- Department of Radiology, Hospital Clinic, C. de Villarroel, 170, 08036 Barcelona, Spain
| | | | - Gonzalo Tardáguila
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | | | - Eliseo Vañó
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
| | - Eloísa Santos-Armentia
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | - Ramiro Méndez
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
- Department of Radiology, Hospital Universitario Clínico San Carlos, Calle del Prof Martín Lagos, 28040 Madrid, Spain
| | | | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Rai HM, Yoo J, Atif Moqurrab S, Dashkevych S. Advancements in traditional machine learning techniques for detection and diagnosis of fatal cancer types: Comprehensive review of biomedical imaging datasets. MEASUREMENT 2024; 225:114059. [DOI: 10.1016/j.measurement.2023.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
8
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
9
|
Hong Y, Zhong L, Lv X, Liu Q, Fu L, Zhou D, Yu N. Application of spectral CT in diagnosis, classification and prognostic monitoring of gastrointestinal cancers: progress, limitations and prospects. Front Mol Biosci 2023; 10:1284549. [PMID: 37954980 PMCID: PMC10634296 DOI: 10.3389/fmolb.2023.1284549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Gastrointestinal (GI) cancer is the leading cause of cancer-related deaths worldwide. Computed tomography (CT) is an important auxiliary tool for the diagnosis, evaluation, and prognosis prediction of gastrointestinal tumors. Spectral CT is another major CT revolution after spiral CT and multidetector CT. Compared to traditional CT which only provides single-parameter anatomical diagnostic mode imaging, spectral CT can achieve multi-parameter imaging and provide a wealth of image information to optimize disease diagnosis. In recent years, with the rapid development and application of spectral CT, more and more studies on the application of spectral CT in the characterization of GI tumors have been published. For this review, we obtained a substantial volume of literature, focusing on spectral CT imaging of gastrointestinal cancers, including esophageal, stomach, colorectal, liver, and pancreatic cancers. We found that spectral CT can not only accurately stage gastrointestinal tumors before operation but also distinguish benign and malignant GI tumors with improved image quality, and effectively evaluate the therapeutic response and prognosis of the lesions. In addition, this paper also discusses the limitations and prospects of using spectral CT in GI cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yuqin Hong
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Lijuan Zhong
- Department of Radiology, The People’s Hospital of Leshan, Leshan, China
| | - Xue Lv
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Qiao Liu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Langzhou Fu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Daiquan Zhou
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Na Yu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| |
Collapse
|
10
|
Ramaekers M, Viviers CGA, Janssen BV, Hellström TAE, Ewals L, van der Wulp K, Nederend J, Jacobs I, Pluyter JR, Mavroeidis D, van der Sommen F, Besselink MG, Luyer MDP. Computer-Aided Detection for Pancreatic Cancer Diagnosis: Radiological Challenges and Future Directions. J Clin Med 2023; 12:4209. [PMID: 37445243 PMCID: PMC10342462 DOI: 10.3390/jcm12134209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Radiological imaging plays a crucial role in the detection and treatment of pancreatic ductal adenocarcinoma (PDAC). However, there are several challenges associated with the use of these techniques in daily clinical practice. Determination of the presence or absence of cancer using radiological imaging is difficult and requires specific expertise, especially after neoadjuvant therapy. Early detection and characterization of tumors would potentially increase the number of patients who are eligible for curative treatment. Over the last decades, artificial intelligence (AI)-based computer-aided detection (CAD) has rapidly evolved as a means for improving the radiological detection of cancer and the assessment of the extent of disease. Although the results of AI applications seem promising, widespread adoption in clinical practice has not taken place. This narrative review provides an overview of current radiological CAD systems in pancreatic cancer, highlights challenges that are pertinent to clinical practice, and discusses potential solutions for these challenges.
Collapse
Affiliation(s)
- Mark Ramaekers
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands;
| | - Christiaan G. A. Viviers
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (C.G.A.V.); (T.A.E.H.); (F.v.d.S.)
| | - Boris V. Janssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.V.J.); (M.G.B.)
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Terese A. E. Hellström
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (C.G.A.V.); (T.A.E.H.); (F.v.d.S.)
| | - Lotte Ewals
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands; (L.E.); (K.v.d.W.); (J.N.)
| | - Kasper van der Wulp
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands; (L.E.); (K.v.d.W.); (J.N.)
| | - Joost Nederend
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands; (L.E.); (K.v.d.W.); (J.N.)
| | - Igor Jacobs
- Department of Hospital Services and Informatics, Philips Research, 5656 AE Eindhoven, The Netherlands;
| | - Jon R. Pluyter
- Department of Experience Design, Philips Design, 5656 AE Eindhoven, The Netherlands;
| | - Dimitrios Mavroeidis
- Department of Data Science, Philips Research, 5656 AE Eindhoven, The Netherlands;
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (C.G.A.V.); (T.A.E.H.); (F.v.d.S.)
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.V.J.); (M.G.B.)
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Misha D. P. Luyer
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands;
| |
Collapse
|
11
|
Borges AP, Antunes C, Caseiro-Alves F. Spectral CT: Current Liver Applications. Diagnostics (Basel) 2023; 13:diagnostics13101673. [PMID: 37238163 DOI: 10.3390/diagnostics13101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Using two different energy levels, dual-energy computed tomography (DECT) allows for material differentiation, improves image quality and iodine conspicuity, and allows researchers the opportunity to determine iodine contrast and radiation dose reduction. Several commercialized platforms with different acquisition techniques are constantly being improved. Furthermore, DECT clinical applications and advantages are continually being reported in a wide range of diseases. We aimed to review the current applications of and challenges in using DECT in the treatment of liver diseases. The greater contrast provided by low-energy reconstructed images and the capability of iodine quantification have been mostly valuable for lesion detection and characterization, accurate staging, treatment response assessment, and thrombi characterization. Material decomposition techniques allow for the non-invasive quantification of fat/iron deposition and fibrosis. Reduced image quality with larger body sizes, cross-vendor and scanner variability, and long reconstruction time are among the limitations of DECT. Promising techniques for improving image quality with lower radiation dose include the deep learning imaging reconstruction method and novel spectral photon-counting computed tomography.
Collapse
Affiliation(s)
- Ana P Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Filipe Caseiro-Alves
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
12
|
Virarkar MK, Vulasala SSR, Gupta AV, Gopireddy D, Kumar S, Hernandez M, Lall C, Bhosale P. Virtual Non-contrast Imaging in The Abdomen and The Pelvis: An Overview. Semin Ultrasound CT MR 2022; 43:293-310. [PMID: 35738815 DOI: 10.1053/j.sult.2022.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtual non-contrast (VNC) imaging is a post-processing technique generated from contrast-enhanced scans using dual-energy computed tomography (DECT). It is generated by removing iodine from imaging acquired at multiple energies. Myriad clinical studies have shown its ability to diagnose the various abdominal and pelvic pathologies discussed in the article. VNC is also a problem-solving tool for characterizing incidentally detected lesions ("incidentalomas"), often decreasing the need for additional follow-up imaging. It also obviates the multiphase image acquisitions to evaluate hematuria, hepatic steatosis, aortic endoleaks, and gastrointestinal bleeding by generating image datasets from different tissue attenuation values. The scope of this article is to provide an overview of various applications of VNC imaging obtained by DECT in the abdomen and pelvis.
Collapse
Affiliation(s)
- Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | | | | | | | - Sindhu Kumar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | - Mauricio Hernandez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | - Chandana Lall
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | - Priya Bhosale
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
13
|
Schuurmans M, Alves N, Vendittelli P, Huisman H, Hermans J. Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging. Cancers (Basel) 2022; 14:cancers14143498. [PMID: 35884559 PMCID: PMC9316850 DOI: 10.3390/cancers14143498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, associated with a 98% loss of life expectancy and a 30% increase in disability-adjusted life years. Image-based artificial intelligence (AI) can help improve outcomes for PDAC given that current clinical guidelines are non-uniform and lack evidence-based consensus. However, research on image-based AI for PDAC is too scattered and lacking in sufficient quality to be incorporated into clinical workflows. In this review, an international, multi-disciplinary team of the world’s leading experts in pancreatic cancer breaks down the patient pathway and pinpoints the current clinical touchpoints in each stage. The available PDAC imaging AI literature addressing each pathway stage is then rigorously analyzed, and current performance and pitfalls are identified in a comprehensive overview. Finally, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed. Abstract Pancreatic ductal adenocarcinoma (PDAC), estimated to become the second leading cause of cancer deaths in western societies by 2030, was flagged as a neglected cancer by the European Commission and the United States Congress. Due to lack of investment in research and development, combined with a complex and aggressive tumour biology, PDAC overall survival has not significantly improved the past decades. Cross-sectional imaging and histopathology play a crucial role throughout the patient pathway. However, current clinical guidelines for diagnostic workup, patient stratification, treatment response assessment, and follow-up are non-uniform and lack evidence-based consensus. Artificial Intelligence (AI) can leverage multimodal data to improve patient outcomes, but PDAC AI research is too scattered and lacking in quality to be incorporated into clinical workflows. This review describes the patient pathway and derives touchpoints for image-based AI research in collaboration with a multi-disciplinary, multi-institutional expert panel. The literature exploring AI to address these touchpoints is thoroughly retrieved and analysed to identify the existing trends and knowledge gaps. The results show absence of multi-institutional, well-curated datasets, an essential building block for robust AI applications. Furthermore, most research is unimodal, does not use state-of-the-art AI techniques, and lacks reliable ground truth. Based on this, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed.
Collapse
Affiliation(s)
- Megan Schuurmans
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Natália Alves
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Pierpaolo Vendittelli
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - Henkjan Huisman
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - John Hermans
- Department of Medical Imaging, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|