1
|
Ai S, Peng W, Hou R, Zhang H, Grimm R, Yuan Z, Liu Y. Effects of simultaneous multislice acceleration on the stability of radiomics features in parametric maps of IVIM and DKI in uterine cervical cancer. J Appl Clin Med Phys 2025; 26:e70063. [PMID: 40025645 PMCID: PMC12059270 DOI: 10.1002/acm2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 03/04/2025] Open
Abstract
PURPOSE The aim of this study was to investigate the influence of the simultaneous multislice acceleration (SMS) technique as well as two-dimensional (2D) and three-dimensional (3D) tumor segmentations on radiomics features (RFs) within the parametric maps of cervical cancer, which were computed by intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI). Additionally, the study sought to identify those RFs that could characterize the clinical stages (low-stage vs. high-stage) of cervical cancer. MATERIALS AND METHODS Multi-b-value diffusion-weighted imaging (DWI) of 40 patients with cervical cancer were collected using the SMS technique with acceleration factors (AF) of 1-3. RFs were extracted from parametric maps representing pure diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), mean diffusivity (MD), and mean kurtosis (MK). A total of 93 2D and 93 3D RFs were extracted from per parametric map. The concordance correlation coefficient (CCC) and coefficients of variation (COV) were used to jointly assess the stability of features. Finally, the intra-class correlation coefficient (ICC) was used for intra-group consistency assessment. Receiver operating characteristic (ROC) curve was used to evaluate diagnostic performance of stable features in distinguishing lower and higher stages. RESULTS Feature stability decreased with higher AF. Among these features, 9.1% of 2D and 12.7% of 3D RFs were stable (CCC > 0.9 and COV ≤ 0.1). ADC maps had the highest stability, whileas D* and f maps had the lowest stability and 3D features were more stable than 2D features. A total of 5 2D and 25 3D stable features were identified that could distinguish lower and higher stages (AUC = 0.66-0.83). CONCLUSION SMS demonstrated impact on the stability of RFs in IVIM and DKI parametric maps, particularly for D* and f maps. Multi-b-value DWI with SMS (AF = 2) was recommended for clinical radiomics research.
Collapse
Affiliation(s)
- Shuangquan Ai
- Department of RadiologyHubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanHubeiChina
| | - Wei Peng
- Department of RadiologyHubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Rong Hou
- Department of PatholoogySuizhou Hospital Affiliated to Hubei Medical CollegeShiyanHubeiChina
| | - Huiting Zhang
- MR Scientific Marketing, Siemens HealthineersWuhanChina
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbHErlangenGermany
| | - Zilong Yuan
- Department of RadiologyHubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yulin Liu
- Department of RadiologyHubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Ma X, Zhang L, Lu J, Xu P, Liu L, Zeng M, Zhou J, Cai S, Shen M. Development and validation of ADC-based nomogram model for predicting the prognostic factors in preoperative clinical early-stage cervical cancer patients. Abdom Radiol (NY) 2025:10.1007/s00261-025-04944-6. [PMID: 40232415 DOI: 10.1007/s00261-025-04944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/18/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE To investigate the feasibility of ADC-based nomogram models for predicting cervical cancer (CC) subtype, lymphovascular space invasion (LVSI) and lymph node metastases (LNM) status in preoperative clinical early-stage CC patients. MATERIALS AND METHODS A total of 535 CC patients from three independent centers [center A (n = 251) for model training, and centers B (n = 193) and C (n = 91) for external validation] were included. Volumetric ADC histogram metrics (volume, minADC, meanADC, maxADC, skewness, kurtosis, entropy, P10_ADC, P25_ADC, P50_ADC, P75_ADC, and P90_ADC) derived the whole-tumor were calculated. Univariate and multivariate analyses were used to screen the independent predictors and develop nomogram models, with the area under the receiver operating characteristic curve (AUC) for predicting performance estimation. RESULTS In differentiating adenosquamous carcinoma (ASC)/adenocarcinoma (AC) from squamous cell carcinoma (SCC), the independent predictors of P25_ADC, SCC antigen (SCC-Ag), and CA199 constructed the nomogram_1 model, with AUCs of 0.900 and 0.873 in training and validation sets, respectively. In differentiating AC from ASC, the independent predictors of P50_ADC and SCC-Ag constructed the nomogram_2 model, with AUCs of 0.837 and 0.829 in training and validation sets, respectively. Tumor volume is the only independent predictor of LVSI(+) and LNM(+), with AUCs of 0.608 and 0.694 in the training set, and 0.553 and 0.656 in the validation set, respectively. CONCLUSION The ADC-based nomogram models can effectively predict the CC subtypes, but might be insufficient in predicting the LVSI and LNM status in preoperative clinical early-stage patients.
Collapse
Affiliation(s)
- Xiaoliang Ma
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Zhang
- Department of Radiology, People's Hospital of Jiaozuo City, Jiaozuo, China
| | - Jingjing Lu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengju Xu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liheng Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, China
| | - Songqi Cai
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Minhua Shen
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Wu C, Xie X, Yang X, Du M, Lin H, Huang J. Applications of gene pair methods in clinical research: advancing precision medicine. MOLECULAR BIOMEDICINE 2025; 6:22. [PMID: 40202606 PMCID: PMC11982013 DOI: 10.1186/s43556-025-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
The rapid evolution of high-throughput sequencing technologies has revolutionized biomedical research, producing vast amounts of gene expression data that hold immense potential for biological discovery and clinical applications. Effectively mining these large-scale, high-dimensional data is crucial for facilitating disease detection, subtype differentiation, and understanding the molecular mechanisms underlying disease progression. However, the conventional paradigm of single-gene profiling, measuring absolute expression levels of individual genes, faces critical limitations in clinical implementation. These include vulnerability to batch effects and platform-dependent normalization requirements. In contrast, emerging approaches analyzing relative expression relationships between gene pairs demonstrate unique advantages. By focusing on binary comparisons of two genes' expression magnitudes, these methods inherently normalize experimental variations while capturing biologically stable interaction patterns. In this review, we systematically evaluate gene pair-based analytical frameworks. We classify eleven computational approaches into two fundamental categories: expression value-based methods quantifying differential expression patterns, and rank-based methods exploiting transcriptional ordering relationships. To bridge methodological development with practical implementation, we establish a reproducible analytical pipeline incorporating feature selection, classifier construction, and model evaluation modules using real-world benchmark datasets from pulmonary tuberculosis studies. These findings position gene pair analysis as a transformative paradigm for mining high-dimensional omics data, with direct implications for precision biomarker discovery and mechanistic studies of disease progression.
Collapse
Affiliation(s)
- Changchun Wu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xueqin Xie
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xin Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mengze Du
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, 611844, China
| | - Hao Lin
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jian Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
4
|
Jiang X, Zhai W, Song J, Shao W, Zhang A, Duan S, Qu F, Cheng W, Luo C, Wu F, Liu X, Chen T. Associations between MRI radiomic phenotypes and clinical outcomes in endometrial cancer: Implications for preoperative risk stratification. Magn Reson Imaging 2025; 117:110298. [PMID: 39645007 DOI: 10.1016/j.mri.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/20/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVES This study aimed to investigate the correlation between imaging phenotypes of endometrial cancer (EC) and clinical, pathologic, and molecular characteristics, as well as disease-free survival (DFS). METHODS The clinical, pathologic, and molecular characteristics, along with MRI radiomics features, of 356 patients with EC were collected retrospectively. The patients were divided into 2 groups based on radiomics features using unsupervised machine learning. The obtained characteristics and DFS of patients were compared between the various imaging phenotypes. RESULTS The lesions with deep myometrial invasion (DMI), lymphovascular space invasion (LVSI), cervical stromal invasion (CSI), lymph node metastasis, aggressive histologic type, advanced postoperative International Federation of Gynecology and Obstetrics (FIGO) stage, overexpression of p53, and absent expression of estrogen receptor or progesterone receptor were associated with poor DFS. Two clusters were identified and defined as imaging phenotype 1 and 2, respectively. Compared with phenotype 2, phenotype 1 exhibited a higher correlation with DMI (33.7 % vs 13.0 %), LVSI (23.8 % vs 9.2 %), CSI (16.3 % vs 3.8 %), aggressive histologic type (36.0 % vs 17.4 %), and advanced FIGO stage (IB or higher, 43.6 % vs 22.3 %) (p < 0.001). The incidence of p53 overexpression was higher in phenotype 1 than in phenotype 2 (20.2 % vs 8.5 %, p = 0.022). Survival analysis exhibited a higher risk of poor DFS in phenotype 1 than in phenotype 2 (log-rank p = 0.002). CONCLUSION EC imaging phenotypes identified through MRI radiomics features were associated with pathologic, molecular characteristics, and DFS, suggesting potential for preoperative risk stratification.
Collapse
Affiliation(s)
- Xiaoting Jiang
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Weiling Zhai
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jiacheng Song
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wenhui Shao
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Aining Zhang
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Shaofeng Duan
- Central Research Institute, UIH Group, Shanghai, China
| | - Feifei Qu
- MR Research Collaboration, Siemens Healthineers, Shanghai, China
| | - Wenjun Cheng
- Department of Gynecology and Obstetrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Chengyan Luo
- Department of Gynecology and Obstetrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Feiyun Wu
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xisheng Liu
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Ting Chen
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
5
|
Yang L, Hu H, Yang X, Yan Z, Shi G, Yang L, Wang Y, Han R, Yan X, Wang M, Ban X, Duan X. Whole-tumor histogram analysis of multiple non-Gaussian diffusion models at high b values for assessing cervical cancer. Abdom Radiol (NY) 2024; 49:2513-2524. [PMID: 38995401 DOI: 10.1007/s00261-024-04486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE To assess the diagnostic potential of whole-tumor histogram analysis of multiple non-Gaussian diffusion models for differentiating cervical cancer (CC) aggressive status regarding of pathological types, differentiation degree, stage, and p16 expression. METHODS Patients were enrolled in this prospective single-center study from March 2022 to July 2023. Diffusion-weighted images (DWI) were obtained including 15 b-values (0 ~ 4000 s/mm2). Diffusion parameters derived from four non-Gaussian diffusion models including continuous-time random-walk (CTRW), diffusion-kurtosis imaging (DKI), fractional order calculus (FROC), and intravoxel incoherent motion (IVIM) were calculated, and their histogram features were analyzed. To select the most significant features and establish predictive models, univariate analysis and multivariate logistic regression were performed. Finally, we evaluated the diagnostic performance of our models by using receiver operating characteristic (ROC) analyses. RESULTS 89 women (mean age, 55 ± 11 years) with CC were enrolled in our study. The combined model, which incorporated the CTRW, DKI, FROC, and IVIM diffusion models, offered a significantly higher AUC than that from any individual models (0.836 vs. 0.664, 0.642, 0.651, 0.649, respectively; p < 0.05) in distinguishing cervical squamous cell cancer from cervical adenocarcinoma. To distinguish tumor differentiation degree, except the combined model showed a better predictive performance compared to the DKI model (AUC, 0.839 vs. 0.697, respectively; p < 0.05), no significant differences in AUCs were found among other individual models and combined model. To predict the International Federation of Gynecology and Obstetrics (FIGO) stage, only DKI and FROC model were established and there was no significant difference in predictive performance among different models. In terms of predicting p16 expression, the predictive ability of DKI model is significantly lower than that of FROC and combined model (AUC, 0.693 vs. 0.850, 0.859, respectively; p < 0.05). CONCLUSION Multiple non-Gaussian diffusion models with whole-tumor histogram analysis show great promise to assess the aggressive status of CC.
Collapse
Affiliation(s)
- Lu Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xiaojun Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Zhuoheng Yan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Guangzi Shi
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Lingjie Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Yu Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Riyu Han
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xu Yan
- MR Research Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Mengzhu Wang
- MR Research Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Xiaohua Ban
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China.
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
6
|
Yu Z, Zhihui Q, Linrui L, Long L, Qibing W. Machine Learning-Based Models for Assessing Postoperative Risk Factors in Patients with Cervical Cancer. Acad Radiol 2024; 31:1410-1418. [PMID: 37891091 DOI: 10.1016/j.acra.2023.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the value of machine learning-based radiomics, intravoxel incoherent motion (IVIM) diffusion-weighted imaging and its combined model in predicting the postoperative risk factors of parametrial infiltration (PI), lymph node metastasis (LNM), deep muscle invasion (DMI), lymph-vascular space invasion (LVSI), pathological type (PT), differentiation degree (DD), and Ki-67 expression level in patients with cervical cancer. MATERIALS AND METHODS The data of 180 patients with cervical cancer were retrospectively analyzed and randomized 2:1 into a training and validation group. The IVIM-DWI and radiomics parameters of primary lesions were measured in all patients. Seven machine learning methods were used to calculate the optimal radiomics score (Rad-score), which was combined with IVIM-DWI and clinical parameters to construct nomograms for predicting the risk factors of cervical cancer, with internal and external validation. RESULTS The diagnostic efficacy of the nomograms based on clinical and imaging parameters was significantly better than MRI assessment alone. The area under the curve (AUC) of nomograms and MRI for the assessment of PI, LNM, and DMI were 0.981 vs 0.868, 0.848 vs 0.639, and 0.896 vs 0.780, respectively. Nomograms also performed well in the assessment of LVSI, PT, DD, and Ki-67 expression levels, with AUC of 0.796, 0.854, 0.806, 0.839 and 0.840, 0.856, 0.810, 0.832 in the training and validation groups. CONCLUSION Machine learning-based nomograms can serve as a useful tool for assessing postoperative risk factors in patients with cervical cancer.
Collapse
Affiliation(s)
- Zhang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230000, China (Z.Y., Q.Z., L.L., W.Q.); Department of Radiology, West Branch of the First Affiliated Hospital of the University of Science and Technology of China, Hefei, Anhui 230001, China (Z.Y., L.L.)
| | - Qin Zhihui
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230000, China (Z.Y., Q.Z., L.L., W.Q.)
| | - Li Linrui
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230000, China (Z.Y., Q.Z., L.L., W.Q.); Department of Radiology, West Branch of the First Affiliated Hospital of the University of Science and Technology of China, Hefei, Anhui 230001, China (Z.Y., L.L.)
| | - Liu Long
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Zhejiang University, Binjiang District, Zhejiang 310000, China (L.L.)
| | - Wu Qibing
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230000, China (Z.Y., Q.Z., L.L., W.Q.).
| |
Collapse
|
7
|
Fu H, Shen Z, Lai R, Zhou T, Huang Y, Zhao S, Mo R, Cai M, Jiang S, Wang J, Du B, Qian C, Chen Y, Yan F, Xiang X, Li R, Xie Q. Clinic-radiomics model using liver magnetic resonance imaging helps predict chronicity of drug-induced liver injury. Hepatol Int 2023; 17:1626-1636. [PMID: 37188998 DOI: 10.1007/s12072-023-10539-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS Some drug-induced liver injury (DILI) cases may become chronic, even after drug withdrawal. Radiomics can predict liver disease progression. We established and validated a predictive model incorporating the clinical characteristics and radiomics features for predicting chronic DILI. METHODS One hundred sixty-eight DILI patients who underwent liver gadolinium-diethylenetriamine pentaacetate-enhanced magnetic resonance imaging were recruited. The patients were clinically diagnosed using the Roussel Uclaf causality assessment method. Patients who progressed to chronicity or recovery were randomly divided into the training (70%) and validation (30%) cohorts, respectively. Hepatic T1-weighted images were segmented to extract 1672 radiomics features. Least absolute shrinkage and selection operator regression was used for feature selection, and Rad-score was constructed using support vector machines. Multivariable logistic regression analysis was performed to build a clinic-radiomics model incorporating clinical characteristics and Rad-scores. The clinic-radiomics model was evaluated for its discrimination, calibration, and clinical usefulness in the independent validation set. RESULTS Of 1672 radiomics features, 28 were selected to develop the Rad-score. Cholestatic/mixed patterns and Rad-score were independent risk factors of chronic DILI. The clinic-radiomics model, including the Rad-score and injury patterns, distinguished chronic from recovered DILI patients in the training (area under the receiver operating characteristic curve [AUROC]: 0.89, 95% confidence interval [95% CI]: 0.87-0.92) and validation (AUROC: 0.88, 95% CI: 0.83-0.91) cohorts with good calibration and great clinical utility. CONCLUSION The clinic-radiomics model yielded sufficient accuracy for predicting chronic DILI, providing a practical and non-invasive tool for managing DILI patients.
Collapse
Affiliation(s)
- Haoshuang Fu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhehan Shen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianhui Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Huang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuang Zhao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Minghao Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shaowen Jiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiexiao Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bingying Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cong Qian
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaoxing Chen
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Zhang Y, Liu L, Zhang K, Su R, Jia H, Qian L, Dong J. Nomograms Combining Clinical and Imaging Parameters to Predict Recurrence and Disease-free Survival After Concurrent Chemoradiotherapy in Patients With Locally Advanced Cervical Cancer. Acad Radiol 2023; 30:499-508. [PMID: 36050264 DOI: 10.1016/j.acra.2022.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 01/27/2023]
Abstract
PURPOSES To investigate the value of nomograms based on clinical prognostic factors (CPF), intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) and MRI-derived radiomics in predicting recurrence and disease-free survival (DFS) after concurrent chemoradiotherapy (CCRT) for locally advanced cervical cancer (LACC). METHODS Retrospective analysis of data from 115 patients with ⅠB-ⅣA cervical cancer who underwent CCRT and had been followed up consistently. All patients were randomized 2:1 into training and validation groups. Pre-treatment IVIM-DWI parameters (ADC-value, D-value, D*-value and f-value) and pre- and post-treatment three-dimensional radiomics parameters (from axial T2WI) of primary lesions were measured. The LASSO algorithm and Logistic regression analysis were used to filter texture features and calculate radiomics score (Rad-score). Multivariate Logistic and Cox regression analysis was used to construct nomograms to predict recurrence and DFS for patients with LACC after CCRT respectively, with internal and external validation. RESULTS External beam radiotherapy dose, f-value, pre-treatment and post-treatment Rad-score were independent prognostic factors for recurrence and DFS in patients with cervical cancer, forming Model1 and Model2, with OR values of 0.480, 1.318, 3.071, 3.200 and HR values of 0.322, 3.372, 5.138, 7.204. The area under the curve (AUC) of Model1 for predicting recurrence of cervical cancer was 0.977, with internal and external validation C-indexes of 0.977 and 0.962. The AUC for Model2 predicting disease-free survival (DFS) at 1, 3, and 5 years was 0.895, 0.888 and 0.916 respectively, with internal and external C-indexes of 0.860 and 0.892. The decision curves analysis and clinical impact curves further indicate the high predictive efficiency and stability of nomograms. CONCLUSION The nomograms based on clinical, IVIM-DWI and radiomics parameters have high clinical value in predicting recurrence and DFS of patients with LACC after CCRT and can provide a reference for prognostic assessment and individualized treatment of cervical cancer patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Long Liu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang University, Taizhou, Zhejiang, China
| | - Kaiyue Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Rixin Su
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Haodong Jia
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China; Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Jiangning Dong
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China; Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
9
|
Elkady RM. Radiomics Analysis in Evaluation of Cervical Cancer: A Further Step on the Road. Acad Radiol 2022; 29:1141-1142. [PMID: 35307261 DOI: 10.1016/j.acra.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Reem M Elkady
- Department of radiology, Faculty of medicine, Assiut University, Assiut, Egypt & Department of radiology and medical imaging, College of medicine, Taibah University, Madinah, Saudi Arabia.
| |
Collapse
|