1
|
Salazar-Mendoza P, Miyagusuku-Cruzado G, Giusti MM, Rodriguez-Saona C. Genotypic Variation and Potential Mechanisms of Resistance against Multiple Insect Herbivores in Cranberries. J Chem Ecol 2024; 50:751-766. [PMID: 39028464 DOI: 10.1007/s10886-024-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Plant genotypes often exhibit varying resistance levels to herbivores. However, the impact of this genotypic variation on resistance against multiple herbivores remains poorly understood, especially in crops undergoing recent process of domestication. To address this gap, we studied the magnitude and mechanism of resistance in 12 cranberry (Vaccinium macrocarpon) genotypes to three leaf-chewing herbivores - Sparganothis fruitworm (Sparganothis sulfureana), spotted fireworm (Choristoneura parallela), and spongy moth (Lymantria dispar) - along a domestication gradient (native 'wild' genotypes, 'early hybrid' genotypes, and 'modern hybrid' genotypes). Like cranberries, S. sulfureana and C. parallela are native to the United Sates, while L. dispar is an invasive pest. We measured the survival and growth of larvae on each genotype, as well as variation in plant performance (height and biomass) and leaf defensive chemical traits (C/N ratio, total phenolics, total proanthocyanidins, and flavonols levels) in these genotypes to elucidate potential resistance mechanisms. We found differences in C. parallela and L. dispar larval performance across genotypes, with larvae performing better on the modern hybrid genotypes, while S. sulfureana showed no differences. Morphological and chemical traits varied among genotypes, with total phenolics being the only trait correlated with C. parallela and L. dispar larval performance. Notably, the wild genotypes 'McFarlin' and 'Potter' had higher total phenolics and were more resistant to both herbivores than the modern hybrids 'Demoranville' and 'Mullica Queen.' This research contributes to a comprehensive understanding of the impact of crop domestication on multiple insect herbivores, offering insights for future breeding efforts to enhance host-plant resistance against agricultural pests.
Collapse
Affiliation(s)
- Paolo Salazar-Mendoza
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Gonzalo Miyagusuku-Cruzado
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH, 43210-1007, USA
| | - M Monica Giusti
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH, 43210-1007, USA
| | - Cesar Rodriguez-Saona
- Department of Entomology, Rutgers University P.E Marucci Center, 125A Lake Oswego Rd., Chatsworth, NJ, 08019, USA
| |
Collapse
|
2
|
Ravetta DA, Vilela AE, Gonzalez-Paleo L, Van Tassel DL. Unpredicted, rapid and unintended structural and functional changes occurred during early domestication of Silphium integrifolium, a perennial oilseed. PLANTA 2023; 258:18. [PMID: 37314591 DOI: 10.1007/s00425-023-04179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION Selection for increased yield changed structure, physiology and overall resource-use strategy from conservative towards acquisitive leaves. Alternative criteria can be considered, to increase yield with less potentially negative traits. We compared the morphology, anatomy and physiology of wild and semi-domesticated (SD) accessions of Silphium integrifolium (Asteraceae), in multi-year experiments. We hypothesized that several cycles of selection for seed-yield would result in acquisitive leaves, including changes predicted by the leaf economic spectrum. Early-selection indirectly resulted in leaf structural and functional changes. Leaf anatomy changed, increasing mesophyll conductance and the size of xylem vessels and mesophyll cells increased. Leaves of SD plants were larger, heavier, with lower stomatal conductance, lower internal CO2 concentration, and lower resin concentration than those of wild types. Despite increased water use efficiency, SD plants transpired 25% more because their increase in leaf area. Unintended and undesired changes in functional plant traits could quickly become fixed during domestication, shortening the lifespan and increasing resource consumption of the crop as well as having consequences in the provision and regulation of ecosystem services.
Collapse
Affiliation(s)
- D A Ravetta
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina.
| | - A E Vilela
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina
| | - L Gonzalez-Paleo
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina
| | - D L Van Tassel
- The Land Institute, 2440 E Water Well Rd, Salina, KS, 67401, USA
| |
Collapse
|
3
|
Salazar-Mendoza P, Magalhães DM, Lourenção AL, Bento JMS. Differential defensive and nutritional traits among cultivated tomato and its wild relatives shape their interactions with a specialist herbivore. PLANTA 2023; 257:76. [PMID: 36894799 DOI: 10.1007/s00425-023-04108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cultivated tomato presented lower constitutive volatiles, reduced morphological and chemical defenses, and increased leaf nutritional quality that affect its resistance against the specialist herbivore Tuta absoluta compared to its wild relatives. Plant domestication process has selected desirable agronomic attributes that can both intentionally and unintentionally compromise other important traits, such as plant defense and nutritional value. However, the effect of domestication on defensive and nutritional traits of plant organs not exposed to selection and the consequent interactions with specialist herbivores are only partly known. Here, we hypothesized that the modern cultivated tomato has reduced levels of constitutive defense and increased levels of nutritional value compared with its wild relatives, and such differences affect the preference and performance of the South American tomato pinworm, Tuta absoluta-an insect pest that co-evolved with tomato. To test this hypothesis, we compared plant volatile emissions, leaf defensive (glandular and non-glandular trichome density, and total phenolic content), and nutritional traits (nitrogen content) among the cultivated tomato Solanum lycopersicum and its wild relatives S. pennellii and S. habrochaites. We also determined the attraction and ovipositional preference of female moths and larval performance on cultivated and wild tomatoes. Volatile emissions were qualitatively and quantitatively different among the cultivated and wild species. Glandular trichomes density and total phenolics were lower in S. lycopersicum. In contrast, this species had a greater non-glandular trichome density and leaf nitrogen content. Female moths were more attracted and consistently laid more eggs on the cultivated S. lycopersicum. Larvae fed on S. lycopersicum leaves had a better performance reaching shorter larval developmental times and increasing the pupal weight compared to those fed on wild tomatoes. Overall, our study documents that agronomic selection for increased yields has altered the defensive and nutritional traits in tomato plants, affecting their resistance to T. absoluta.
Collapse
Affiliation(s)
- Paolo Salazar-Mendoza
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Diego M Magalhães
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - André L Lourenção
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - José Maurício S Bento
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
4
|
State of knowledge: Histolocalisation in phytochemical study of medicinal plants. Fitoterapia 2021; 150:104862. [PMID: 33582269 DOI: 10.1016/j.fitote.2021.104862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/16/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIM The renewed interest in medicinal plants has led us to examine more closely the usefulness of metabolite histolocalisation in screening work before any in-depth phytochemical studies. Indeed, this method is a histochemical technique allowing characterizing plant tissues constituents; and in particular metabolites of therapeutic interest, without destroying or altering as much as possible the studied plant material. This work aims at allowing us carring out a wide screening to highlight bioactive metabolites in plants studied from our rich university heritage collection. MATERIAL AND METHODS The histochemical characterisation used in our work is a chemical, morphological and topographical (localisation) technique that uses precipitation reactions using dyes, among others. To do this we made thin cross-sections using razor blades on fresh plant material. The sections were then coloured using conventional chemical stains and observations were made using a MOTIC BA210 microscope equipped with a MOTICAM camera. RESULTS AND CONCLUSION In view of obtained results, this technique, therefore, proves to be a useful screening and analysis method when applied in phytochemical studies on plants such as Datura stramonium, Peperomia obtusifolia, Cecropia obtusa, Orthosiphon aristatus and Vitex agnus castus. The obtained results confirm presence of sought metabolites, and allow their precise histological localisation. This will make extraction process more profiTable, simpler or even more ecological by avoiding waste.
Collapse
|
5
|
Solís-Montero V, Martínez-Natarén DA, Parra-Tabla V, Ibarra-Cerdeña C, Munguía-Rosas MA. Herbivory and anti-herbivore defences in wild and cultivated Cnidoscolus aconitifolius: disentangling domestication and environmental effects. AOB PLANTS 2020; 12:plaa023. [PMID: 32607138 PMCID: PMC7306974 DOI: 10.1093/aobpla/plaa023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/29/2020] [Indexed: 05/20/2023]
Abstract
Phenotypic changes in plants during domestication may disrupt plant-herbivore interactions. Because wild and cultivated plants have different habitats and some anti-herbivore defences exhibit some plasticity, their defences may be also influenced by the environment. Our goal was to assess the effects of domestication and the environment on herbivory and some anti-herbivore defences in chaya (Cnidoscolus aconitifolius) in its centre of domestication. Herbivores, herbivory, and direct and indirect anti-herbivore defences were assessed in wild and cultivated plants. The same variables were measured in the field and in a common garden to assess environmental effects. Our results show that domestication increased herbivory and herbivore abundance, but reduced direct and some indirect defences (ants). The environment also affected the herbivore guild (herbivore abundance and richness) and some direct and indirect defences (trichome number and ants). There was also an interaction effect of domestication and the environment on the number of trichomes. We conclude that domestication and the environment influence herbivory and anti-herbivore defences in an additive and interactive manner in chaya.
Collapse
Affiliation(s)
- Virginia Solís-Montero
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Merida C.P., México
| | - Daniela A Martínez-Natarén
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Merida C.P., México
- Consejo Nacional de Ciencia y Tecnología (Conacyt), Insurgentes Sur, Ciudad de México C.P., México
| | - Víctor Parra-Tabla
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Merida C.P., México
| | - Carlos Ibarra-Cerdeña
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Merida C.P., México
| | - Miguel A Munguía-Rosas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Merida C.P., México
| |
Collapse
|
6
|
Simpson KJ, Wade RN, Rees M, Osborne CP, Hartley SE. Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12935] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Mark Rees
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| | - Colin P. Osborne
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| | | |
Collapse
|
7
|
Whitehead SR, Turcotte MM, Poveda K. Domestication impacts on plant-herbivore interactions: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160034. [PMID: 27920379 PMCID: PMC5182430 DOI: 10.1098/rstb.2016.0034] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 12/22/2022] Open
Abstract
For millennia, humans have imposed strong selection on domesticated crops, resulting in drastically altered crop phenotypes compared with wild ancestors. Crop yields have increased, but a long-held hypothesis is that domestication has also unintentionally decreased plant defences against herbivores. To test this hypothesis, we conducted a phylogenetically controlled meta-analysis comparing insect herbivore resistance and putative plant defence traits between crops and their wild relatives. Our database included 2098 comparisons made across 73 crops in 89 studies. We found that domestication consistently reduced plant resistance to herbivores, although the magnitude of the effects varied across plant organs and depended on how resistance was measured. However, domestication had no consistent effects on the specific plant defence traits underlying resistance, including secondary metabolites and physical feeding barriers. The values of these traits sometimes increased and sometimes decreased during domestication. Consistent negative effects of domestication were observed only when defence traits were measured in reproductive organs or in the plant organ that was harvested. These results highlight the complexity of evolution under domestication and the need for an improved theoretical understanding of the mechanisms through which agronomic selection can influence the species interactions that impact both the yield and sustainability of our food systems.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Susan R Whitehead
- Department of Entomology, Cornell University, Comstock Hall 4117, Ithaca, NY 14853, USA
| | - Martin M Turcotte
- Center for Adaptation to a Changing Environment, CHN G35.1, Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich 8092, Switzerland
| | - Katja Poveda
- Department of Entomology, Cornell University, Comstock Hall 4117, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Pujol B. Genes and quantitative genetic variation involved with senescence in cells, organs, and the whole plant. Front Genet 2015; 6:57. [PMID: 25755664 PMCID: PMC4337380 DOI: 10.3389/fgene.2015.00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022] Open
Abstract
Senescence, the deterioration of morphological, physiological, and reproductive functions with age that ends with the death of the organism, was widely studied in plants. Genes were identified that are linked to the deterioration of cells, organs and the whole plant. It is, however, unclear whether those genes are the source of age dependent deterioration or get activated to regulate such deterioration. Furthermore, it is also unclear whether such genes are active as a direct consequence of age or because they are specifically involved in some developmental stages. At the individual level, it is the relationship between quantitative genetic variation, and age that can be used to detect the genetic signature of senescence. Surprisingly, the latter approach was only scarcely applied to plants. This may be the consequence of the demanding requirements for such approaches and/or the fact that most research interest was directed toward plants that avoid senescence. Here, I review those aspects in turn and call for an integrative genetic theory of senescence in plants. Such conceptual development would have implications for the management of plant genetic resources and generate progress on fundamental questions raised by aging research.
Collapse
Affiliation(s)
- Benoit Pujol
- CNRS, Université Paul Sabatier, ENFA, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique) Toulouse, France ; Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB Toulouse, France
| |
Collapse
|
9
|
Milla R, Morente-López J. Limited evolutionary divergence of seedlings after the domestication of plant species. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:169-176. [PMID: 24943713 DOI: 10.1111/plb.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
The most vulnerable stage in the life of plants is the seedling. The transition from wild to agricultural land that plants experienced during and after domestication implied a noticeable change in the seedlings' environment. Building on current knowledge of seedling ecology, and on previous studies of cassava, we hypothesise that cultivation should have promoted epigeal germination of seedlings, and more exposed and photosynthetic cotyledons. To test this hypothesis, we phenotyped seedling morpho-functional traits in a set of domesticated and wild progenitor accessions of 20 Eudicot herbaceous crop species. Qualitative traits like epi- versus hypogeal germination, leafy versus storage type of cotyledons, or crypto- versus phanerocotyledonar germination, remained conserved during the domestication of all 20 species. Lengths of hypocotyls and epicotyls, of cotyledon petioles, and indices of cotyledon exposure to the aboveground environment changed during evolution under cultivation. However, those changes occurred in diverse directions, depending on the crop species. No common seedling phenotypic convergence in response to domestication was thus detected among the group of species studied here. Also, none of the 20 crops evolved in accordance with our initial hypothesis. Our results reject the idea that strong selective filters exerted unconsciously by artificial selection should have resulted in generalised channelling of seedling morphology towards more productive and more herbivore risky phenotypes. This result opens up unexplored opportunities for directional breeding of seedling traits.
Collapse
Affiliation(s)
- R Milla
- Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| | | |
Collapse
|
10
|
Milla R, de Diego-Vico N, Martín-Robles N. Shifts in stomatal traits following the domestication of plant species. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3137-3146. [PMID: 23918960 DOI: 10.1093/jxb/ert147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Stomata are the major gates regulating substrate availability for photosynthesis and water loss. Although both processes are critical to yield and to resource-use efficiency, we lack a comprehensive picture on how domestication and further breeding have impacted on leaf stomata. To fill this gap, stomatal sizes and densities were screened in cultivated and wild ancestor representatives of a uniquely large group of 24 herbaceous crops. Anatomical data and gas-exchange models were combined to compute maximum potential conductance to water, separately for upper and lower leaf sides. The evolution of maximum conductance under domestication was diverse. Several crops increased, others decreased (noticeably high-conductance species), and others kept a similar potential conductance following domestication. It was found that the contribution of upper leaf sides to maximum conductance was statistically higher in cultivated than in wild ancestors. For crops showing this response, reduced stomatal density in the lower side of domesticated leaves was responsible for the observed 'adaxialization' of conductance. Increases in the size of stomata at the upper epidermis played a comparatively minor role. Nevertheless, this overall response was varied in magnitude and direction, signalling crop-wise specificities. Observed patterns reflect only potential conductances based on anatomical traits and should be used with care until actual physiological outcomes are measured. Together with advancements in the developmental genetics of stomata, our findings might hint at new breeding avenues, focused on stomata distribution. Provided urgent needs for increasing yields, the opportunities of enhancing traits of the physiological relevance of stomata should not be ignored.
Collapse
Affiliation(s)
- Rubén Milla
- Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles 28933, Spain.
| | | | | |
Collapse
|
11
|
García-Palacios P, Milla R, Delgado-Baquerizo M, Martín-Robles N, Álvaro-Sánchez M, Wall DH. Side-effects of plant domestication: ecosystem impacts of changes in litter quality. THE NEW PHYTOLOGIST 2013; 198:504-513. [PMID: 23356416 DOI: 10.1111/nph.12127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/02/2012] [Indexed: 05/03/2023]
Abstract
Domestication took plants from natural environments to agro-ecosystems, where resources are generally plentiful and plant life is better buffered against environmental risks such as drought or pathogens. We hypothesized that predictions derived from the comparison of low vs high resource ecosystems (faster-growing plants promoting faster nutrient cycling in the latter) extrapolate to the process of domestication. We conducted the first comprehensive assessment of the consequences of domestication on litter quality and key biogeochemical processes by comparing 24 domesticated crops against their closest wild ancestors. Twelve litter chemistry traits, litter decomposability and indicators of soil carbon (C) and nitrogen (N) cycling were assessed in each domesticated vs wild ancestor pair. These assessments were done in microbial-poor and microbial-rich soils to exemplify intensively and extensively managed agricultural soils, respectively. Plant domestication has increased litter quality, encouraging litter decomposability (36% and 44% increase in the microbial-rich and microbial-poor soils, respectively), higher soil NO3 - availability and lower soil C : N ratios. These effects held true for the majority of the crops surveyed and for soils with different microbial communities. Our results support ecological theory predictions derived from the comparison of low- and high-resource ecosystems, suggesting a parallelism between ecosystem-level impacts of natural and artificial selection.
Collapse
Affiliation(s)
- Pablo García-Palacios
- Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles, 28933, Spain
| | - Rubén Milla
- Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles, 28933, Spain
| | - Manuel Delgado-Baquerizo
- Departamento Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km. 1, Sevilla, 41013, Spain
| | - Nieves Martín-Robles
- Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles, 28933, Spain
| | - Mónica Álvaro-Sánchez
- Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles, 28933, Spain
| | - Diana H Wall
- Department of Biology and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
12
|
Cavatte PC, Rodríguez-López NF, Martins SCV, Mattos MS, Sanglard LMVP, DaMatta FM. Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3071-82. [PMID: 22378951 PMCID: PMC3350923 DOI: 10.1093/jxb/ers027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/08/2011] [Accepted: 01/17/2012] [Indexed: 05/26/2023]
Abstract
In this study, the combined effects of light and water availability on the functional relationships of the relative growth rate (RGR), leaf chemical composition, construction and maintenance costs, and benefits in terms of payback time for Coffea arabica are presented. Coffee plants were grown for 8 months in 100% or 15% full sunlight and then a four-month water shortage was implemented. Plants grown under full sunlight were also transferred to shade and vice versa. Overall, most of the traits assessed were much more responsive to the availability of light than to the water supply. Larger construction costs (12%), primarily associated with elevated phenol and alkaloid pools, were found under full sunlight. There was a positive correlation between these compounds and the RGR, the mass-based net carbon assimilation rate and the carbon isotope composition ratio, which, in turn, correlated negatively with the specific leaf area. The payback time was remarkably lower in the sun than in shade leaves and increased greatly in water-deprived plants. The differences in maintenance costs among the treatments were narrow, with no significant impact on the RGR, and there was no apparent trade-off in resource allocation between growth and defence. The current irradiance during leaf bud formation affected both the specific leaf area and leaf physiology upon transferring the plants from low to high light and vice versa. In summary, sun-grown plants fixed more carbon for growth and secondary metabolism, with the net effect of an increased RGR.
Collapse
Affiliation(s)
| | | | | | | | | | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brasil
| |
Collapse
|
13
|
McKey D, Elias M, Pujol B, Duputié A. The evolutionary ecology of clonally propagated domesticated plants. THE NEW PHYTOLOGIST 2010; 186:318-32. [PMID: 20202131 DOI: 10.1111/j.1469-8137.2010.03210.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While seed-propagated crops have contributed many evolutionary insights, evolutionary biologists have often neglected clonally propagated crops. We argue that widespread notions about their evolution under domestication are oversimplified, and that they offer rich material for evolutionary studies. The diversity of their wild ancestors, the diverse ecologies of the crop populations themselves, and the intricate mix of selection pressures, acting not only on the parts harvested but also on the parts used by humans to make clonal propagules, result in complex and diverse evolutionary trajectories under domestication. We examine why farmers propagate some plants clonally, and discuss the evolutionary dynamics of sexual reproduction in clonal crops. We explore how their mixed clonal/sexual reproductive systems function, based on the sole example studied in detail, cassava (Manihot esculenta). Biotechnology is now expanding the number of clonal crops, continuing the 10 000-yr-old trend to increase crop yields by propagating elite genotypes. In an era of rapid global change, it is more important than ever to understand how the adaptive potential of clonal crops can be maintained. A key component of strategies for preserving this adaptive potential is the maintenance of mixed clonal/sexual systems, which can be achieved by encouraging and valuing farmer knowledge about the sexual reproductive biology of their clonal crops.
Collapse
Affiliation(s)
- Doyle McKey
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, 1919 route de Mende, 34293 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
14
|
Rival L, McKey D. Domestication and Diversity in Manioc (Manihot esculentaCrantz ssp.esculenta, Euphorbiaceae). CURRENT ANTHROPOLOGY 2008. [DOI: 10.1086/593119] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|