1
|
Kewessa G, Dejene T, Martín-Pinto P. Untangling the effect that replacing Ethiopia's natural forests with exotic tree plantations has on arbuscular mycorrhizal fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173718. [PMID: 38848925 DOI: 10.1016/j.scitotenv.2024.173718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) have a broad distribution and establish symbiotic relationships with vascular plants in tropical regions. They play a crucial role in enhancing plant nutrient absorption, mitigating pathogenic infections, and boosting the resilience of host plants to abiotic stresses, including drought under specific conditions. Many natural forests in Ethiopia are being replaced by monospecific plantations. However, the impact of these actions on AMF is unknown and, despite their ecological functions, AMF communities in various forest systems have not been thoroughly investigated. In this study, we assessed soil AMF communities in natural and plantation forests by DNA metabarcoding of the ITS2 rDNA region and assessed the influence of climate and environmental variables on the AMF community. In total, 193 AMF operational taxonomic units (OTUs), comprising nine families and 15 genera, were recorded. Glomerales was the dominant order (67.9 % of AMF OTUs) and Septoglomus fuscum, Diversispora insculpta, and Funneliformis mosseae were the dominant species. AMF were more abundant in natural forests than in plantation forests and the composition of AMF communities differed significantly from those of plantation forest. In plantation forests, soil pH, organic carbon, total nitrogen, and available phosphorus significantly influenced the composition of AMF communities, whereas in natural forest, electrical conductivity, annual rainfall, and cumulative rainfall before sample collection were significantly correlated with AMF. SIMPER analysis identified the AMF responsible for composition variances among different forest types, with the Glomeraceae family being the most significant contributor, accounting for nearly 60 % of the dissimilarity. Our findings further our understanding of the ecological niche function and the role of AMF in Ethiopia's natural forest systems and highlight the importance of prioritizing the sustainable development of degraded natural forests rather than plantations to ensure the preservation of habitats conducive to maintaining various AMF communities when devising conservation and management strategies.
Collapse
Affiliation(s)
- Gonfa Kewessa
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain; Department of Forestry, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Tatek Dejene
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain; Ethiopian Forestry Development, Addis Ababa, Ethiopia
| | - Pablo Martín-Pinto
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain.
| |
Collapse
|
2
|
Masebo N, Birhane E, Takele S, Belay Z, Lucena JJ, Pérez-Sanz A, Anjulo A. Diversity of Arbuscular Mycorrhizal fungi under different agroforestry practices in the drylands of Southern Ethiopia. BMC PLANT BIOLOGY 2023; 23:634. [PMID: 38066451 PMCID: PMC10709898 DOI: 10.1186/s12870-023-04645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
The conversion of an agroforestry based agricultural system to a monocropping farming system influences the distribution and composition of arbuscular mycorrhizal fungi (AMF). The aim of this paper was to analyze AMF species diversity, spore density, and root colonization across different agroforestry practices (AFP) in southern Ethiopia. Soil and root samples were collected from homegarden, cropland, woodlot, and trees on soil and water conservation-based AFP. AMF spores were extracted from the soil and species diversity was evaluated using morphological analysis and root colonization from root samples. The AMF spore density, root colonization and composition were significantly different among the AFP (P < 0.05). In this study, 43 AMF morphotypes belonging to eleven genera were found, dominated by Acaulospora (32.56%), followed by Claroideoglomus (18.60%). Home gardens had the highest spore density (7641.5 spore100 g- 1 dry soil) and the lowest was recorded in croplands (683.6 spore100 g- 1 dry soil). Woodlot had the highest root colonization (54.75%), followed by homegarden (48.25%). The highest isolation frequency (63.63%) was recorded for Acaulospora scrobiculata. The distribution of AMF species and diversity were significantly related to soil total nitrogen and organic carbon. The homegarden and woodlot AFP were suitable for soil AMF reserve and conservation.
Collapse
Affiliation(s)
- Nebiyou Masebo
- Department of Natural Resource Management, Wolaita Sodo University, Wolaita Sodo, P.O. Box 128, Ethiopia
- Department of Biology, Arba Minch University, Arba Minch, P.O. Box 138, Arbaminch, Ethiopia
| | - Emiru Birhane
- Department of Land Resource Management and Environmental Protection, Mekelle University, P.O. Box 231, Tigray, Ethiopia.
- Institute of Climate and Society, Mekelle University, P. O. Box 231, Mekelle, Ethiopia.
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Serekebirhan Takele
- Department of Biology, Arba Minch University, Arba Minch, P.O. Box 138, Arbaminch, Ethiopia
| | - Zerihun Belay
- Department of Applied Biology, Adama Science and Technology University, P.O. Box 231, Adama, Ethiopia
| | - Juan J Lucena
- Department of Agricultural Chemistry and Food Science, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Araceli Pérez-Sanz
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Agena Anjulo
- Environment and Forest Research Institute, Addis Ababa, P.O. Box 231, Ethiopia
| |
Collapse
|
3
|
Gagou E, Chakroune K, Abbas M, Lamkami T, Hakkou A. Evaluation of the Mycorrhizal Potential of Date Palm ( Phoenix dactylifera L.) Rhizosphere Soils in the Figuig Oasis (Southeastern Morocco). J Fungi (Basel) 2023; 9:931. [PMID: 37755039 PMCID: PMC10532849 DOI: 10.3390/jof9090931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Date palm, an important crop in Morocco and many other arid regions around the world, faces significant challenges from wind, water shortages, and salinization, which contribute to vegetation loss and soil degradation in the harsh environmental conditions of oasis ecosystems with low soil fertility. Protecting and regenerating these degraded lands is crucial for sustainable agriculture and improving the dryland ecosystem. Arbuscular mycorrhizal fungi (AMF) comprise a vital element in this dynamic within the microflora of the soil rhizosphere. This study evaluated the potential in mycorrhizal soil and identified AMF in date palm rhizospheres in eight locations within the Figuig oasis (southeastern Morocco). This study found that Extension and Zenaga had more mycorrhizal propagules than other locations. Replanted maize (Zea mays L.) in these soils exhibited higher mycorrhization rates (91-93%) compared to that in other locations, with the Lamaiz site registering the lowest rate (39%). The phosphorus content was negatively correlated with the AMF spore frequency, intensity, and density, while a positive correlation was detected between the soil pH and the AMF spore frequency and density. The morphological identification of spores revealed Glomus as the predominant species, along with Acaulospora and Sclerocystis. This study represents an initial step toward the potential application of these fungi in environmental conservation and sustainable agriculture in arid regions.
Collapse
Affiliation(s)
- Elmostafa Gagou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, BV Mohammed VI BP 717, Oujda 60000, Morocco; (K.C.); (A.H.)
| | - Khadija Chakroune
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, BV Mohammed VI BP 717, Oujda 60000, Morocco; (K.C.); (A.H.)
| | - Mahmoud Abbas
- Administrative Centre, Laboratory of Water Analysis of Figuig (LAEF), Municipality of Figuig, BP 121, Figuig 61000, Morocco;
| | - Touria Lamkami
- Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium;
| | - Abdelkader Hakkou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, BV Mohammed VI BP 717, Oujda 60000, Morocco; (K.C.); (A.H.)
| |
Collapse
|
4
|
Matos PS, Figueira da Silva C, Pereira MG, Ribeiro da Silva EM, Tarré RM, Custódio Franco AL, Zonta E. Short-term modifications of mycorrhizal fungi, glomalin and soil attributes in a tropical agroforestry. ACTA OECOLOGICA 2022. [DOI: 10.1016/j.actao.2022.103815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Alrajhei K, Saleh I, Abu‐Dieyeh MH. Biodiversity of arbuscular mycorrhizal fungi in plant roots and rhizosphere soil from different arid land environment of Qatar. PLANT DIRECT 2022; 6:e369. [PMID: 35028492 PMCID: PMC8743365 DOI: 10.1002/pld3.369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Recently more attention has been observed toward the role of arbuscular mycorrhizal fungi (AMF) in plant growth. Qatar belongs to the Arabian Gulf region with hot and dry climatic conditions. The study aims to investigate the species composition and abundance of AMF in Qatar, rhizosphere soil samples, and roots of plants from 12 families and 8 different locations. The AMF were identified based on the sequencing of the polymerase chain reaction (PCR) product of the amplified conserved ITS region. The reported AMF infection rate was found to vary with location and plant species. Tamarix aphylla recorded the highest AMF infection rate (100%), followed by Blepharis ciliaris (98%) and Sporobolus ioclados (92%). AMF spore counts ranged from 29.3 spores in Blepharis ciliaris to 643 spores/100 g soil in Fagonia indica. No correlation was detected between colonization rate and spore counts. While all AMF identified at species levels were reported in other regions, new species are still expected since some were identified only at higher taxonomic levels. Claroideoglomus drummondii and Rhizophagus irregularis were the most widespread while Claroideoglomus claroideum and Diversispora aurantia were the least present. Our results fill the gap of knowledge of AMF in the region and opens new research toward its future applications for sustainable agriculture.
Collapse
Affiliation(s)
- Khazna Alrajhei
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
| | - Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
| | - Mohammed H. Abu‐Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
| |
Collapse
|
6
|
Unraveling the AM fungal community for understanding its ecosystem resilience to changed climate in agroecosystems. Symbiosis 2021. [DOI: 10.1007/s13199-021-00761-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Diversity and distribution of arbuscular mycorrhizal fungi along a land use gradient in Terceira Island (Azores). Mycol Prog 2020. [DOI: 10.1007/s11557-020-01582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Sudová R, Kohout P, Rydlová J, Čtvrtlíková M, Suda J, Voříšková J, Kolaříková Z. Diverse fungal communities associated with the roots of isoetid plants are structured by host plant identity. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Melo CD, Walker C, Freitas H, Machado AC, Borges PAV. Distribution of arbuscular mycorrhizal fungi (AMF) in Terceira and São Miguel Islands (Azores). Biodivers Data J 2020; 8:e49759. [PMID: 32280296 PMCID: PMC7142165 DOI: 10.3897/bdj.8.e49759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/08/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The data, presented here, come from samples collected during three research projects which aimed to assess the impact of land-use type on Arbuscular Mycorrhizal Fungi (AMF) diversity and community composition in pastures of Terceira Island (Azores, Macaronesia, Portugal) and also in the native forest of two Azorean Islands (Terceira and São Miguel; Azores, Macaronesia, Portugal). Both projects contributed to improving the knowledge of AMF community structure at both local and regional scales. NEW INFORMATION Little is known on the AMF communities from Azores islands and this study reports the first survey in two Azorean Islands (Terceira and São Miguel). A total of 18,733 glomeromycotan spores were classified at the species level from 244 field soil samples collected in three different habitat types - native forests (dominated by Juniperus brevifolia and Picconia azorica), semi-natural and intensively-managed pastures. Thirty-seven distinct spore morphotypes, representing ten glomeromycotan families, were detected. Species of the family Acaulosporaceae dominated the samples, with 13 species (38% of the taxa), followed by Glomeraceae (6 spp.), Diversisporaceae (4 spp.), Archaeosporaceae (3 spp.), Claroideoglomeraceae (3 spp.), Gigasporaceae (3 spp.), Ambisporaceae and Paraglomeraceae, both with the same number of AMF species (2 spp.), Sacculosporaceae (1 sp.) and Entrophospora (family insertae sedis). Members of the family Acaulosporaceae occurred almost exclusively in the native forests especially associated with the Picconia azorica rhizosphere, while members of Gigasporaceae family showed a high tendency to occupy the semi-natural pastures and the native forests of Picconia azorica. Members of Glomeraceae family were broadly distributed by all types of habitat which confirm the high ecological plasticity of this AMF family to occupy the more diverse habitats.
Collapse
Affiliation(s)
- Catarina Drumonde Melo
- cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias e do Ambiente, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroísmo, Terceira, Azores, PortugalcE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias e do Ambiente, Rua Capitão João d’Ávila, São Pedro, 9700-042Angra do Heroísmo, Terceira, AzoresPortugal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, PortugalCFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3001-401CoimbraPortugal
| | - Christopher Walker
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH3 5LR, Edinburgh, United KingdomRoyal Botanic Garden Edinburgh, 20A Inverleith Row, EH3 5LREdinburghUnited Kingdom
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth WA 6009, Crawley, AustraliaSchool of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth WA 6009CrawleyAustralia
| | - Helena Freitas
- CFE – Centre for FunctionalCFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, PortugalCFE – Centre for FunctionalCFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3001-401CoimbraPortugal
| | - Artur Câmara Machado
- CBA-UAç – Biotechnology Center of Azores, Universidade dos Açores - Departamento de Ciências e Engenharia do Ambiente, Rua Capitão D´Ávila, 9700-042, Angra do Heroísmo, PortugalCBA-UAç – Biotechnology Center of Azores, Universidade dos Açores - Departamento de Ciências e Engenharia do Ambiente, Rua Capitão D´Ávila, 9700-042Angra do HeroísmoPortugal
| | - Paulo A. V. Borges
- cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias e do Ambiente, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroísmo, Terceira, Azores, PortugalcE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias e do Ambiente, Rua Capitão João d’Ávila, São Pedro, 9700-042Angra do Heroísmo, Terceira, AzoresPortugal
| |
Collapse
|
10
|
Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconiaazorica on native forest of Azores. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01535-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Purpose
Arbuscular mycorrhizal fungi (AMF) play important key roles in the soil ecosystems as they link plants to the root-inaccessible part of soil. The aims of this study were to investigate which environmental factors influence the spatial and temporal structuring of AMF communities associated to Picconia azorica in two Azorean islands (Terceira and São Miguel islands), and investigate the seasonal variation in AMF communities between the two islands.
Methods
Communities of AMF associated with P. azorica in native forest of two Azorean islands (Terceira and São Miguel) were characterised by spore morphology or molecular analysis.
Results
Forty-five AMF spore morphotypes were detected from the four fragments of P. azorica forest representing nine families of AMF. Acaulosporaceae (14) and Glomeraceae (9) were the most abundant families. AMF density and root colonisation varied significantly between islands and sampling sites. Root colonisation and spore density exhibited temporal patterns, which peaked in spring and were higher in Terceira than in São Miguel. The relative contribution of environmental factors showed that factors such as elevation, relative air humidity, soil pH, and soil available P, K, and Mg influenced AMF spore production and root colonisation.
Conclusion
Different sporulation patterns exhibited by the members of the commonest families suggested different life strategies. Adaptation to a particular climatic and soil condition and host phenology may explain seasonal differences in sporulation patterns. Cohorts of AMF associated to P. azorica are shaped by regional processes including environmental filters such as soil properties and natural disturbance.
Collapse
|
11
|
Melo CD, Luna S, Krüger C, Walker C, Mendonça D, Fonseca HMAC, Jaizme-Vega M, Machado AC. Communities of arbuscular mycorrhizal fungi under Picconia azorica in native forests of Azores. Symbiosis 2017. [DOI: 10.1007/s13199-017-0487-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|