1
|
Siddiqui R, Khodja A, Ibrahim T, Khamis M, Anwar A, Khan NA. The increasing importance of novel deep eutectic solvents as potential effective antimicrobials and other medicinal properties. World J Microbiol Biotechnol 2023; 39:330. [PMID: 37792153 DOI: 10.1007/s11274-023-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
With the rise of antibiotic resistance globally, coupled with evolving and emerging infectious diseases, there is an urgent need for the聽development of novel antimicrobials. Deep eutectic solvents (DES) are a new generation of eutectic mixtures that depict promising attributes with several biological implications. DES exhibit unique properties such as low toxicity, biodegradability, and high thermal stability. Herein, the antimicrobial properties of DES and their mechanisms of action against a range of microorganisms, including bacteria, amoebae, fungi, viruses, and anti-cancer properties are reviewed. Overall, DES represent a promising class of novel antimicrobial agents as well as possessing other important biological attributes, however, future studies on DES are needed to investigate their underlying antimicrobial mechanism, as well as their in vivo effects, for use in the clinic and public at large.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelhamid Khodja
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mustafa Khamis
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| |
Collapse
|
2
|
Vel谩squez-Torres M, Trujillo-Ferrara JG, God铆nez-Victoria M, Jarillo-Luna RA, Tsutsumi V, S谩nchez-Monroy V, Posadas-Mondrag贸n A, Cuevas-Hern谩ndez RI, Santiago-Cruz JA, Pacheco-Y茅pez J. Riluzole, a Derivative of Benzothiazole as a Potential Anti-Amoebic Agent against Entamoeba histolytica. Pharmaceuticals (Basel) 2023; 16:896. [PMID: 37375843 DOI: 10.3390/ph16060896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amoebiasis is produced by the parasite Entamoeba histolytica; this disease affects millions of people throughout the world who may suffer from amoebic colitis or amoebic liver abscess. Metronidazole is used to treat this protozoan, but it causes important adverse effects that limit its use. Studies have shown that riluzole has demonstrated activity against some parasites. Thus, the present study aimed, for the first time, to demonstrate the in vitro and in silico anti-amoebic activity of riluzole. In vitro, the results of Entamoeba histolytica trophozoites treated with IC50 (319.5 渭M) of riluzole for 5 h showed (i) a decrease of 48.1% in amoeba viability, (ii) ultrastructural changes such as a loss of plasma membrane continuity and alterations in the nuclei followed by lysis, (iii) apoptosis-like cell death, (iv) the triggering of the production of reactive oxygen species and nitric oxide, and (v) the downregulation of amoebic antioxidant enzyme gene expression. Interestingly, docking studies have indicated that riluzole presented a higher affinity than metronidazole for the antioxidant enzymes thioredoxin, thioredoxin reductase, rubrerythrin, and peroxiredoxin of Entamoeba histolytica, which are considered as possible candidates of molecular targets. Our results suggest that riluzole could be an alternative treatment against Entamoeba histolytica. Future studies should be conducted to analyze the in vivo riluzole anti-amoebic effect on the resolution of amebic liver abscess in a susceptible model, as this will contribute to developing new therapeutic agents with anti-amoebic activity.
Collapse
Affiliation(s)
- Maritza Vel谩squez-Torres
- Secci贸n de Estudios de Posgrado e Investigaci贸n, Escuela Superior de Medicina, Instituto Polit茅cnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Jos茅 Guadalupe Trujillo-Ferrara
- Laboratorio de Investigaci贸n en Bioqu铆mica, Escuela Superior de Medicina, Instituto Polit茅cnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Marycarmen God铆nez-Victoria
- Secci贸n de Estudios de Posgrado e Investigaci贸n, Escuela Superior de Medicina, Instituto Polit茅cnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Rosa Adriana Jarillo-Luna
- Coordinaci贸n de Ciencias Morfol贸gicas, Escuela Superior de Medicina, Instituto Polit茅cnico Nacional, Ciudad de Mexico 11340, Mexico
| | - V铆ctor Tsutsumi
- Departamento de Infect贸mica y Patog茅nesis Molecular, Centro de Investigaci贸n y de Estudios Avanzados del Instituto Polit茅cnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Virginia S谩nchez-Monroy
- Secci贸n de Estudios de Posgrado e Investigaci贸n, Escuela Superior de Medicina, Instituto Polit茅cnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Araceli Posadas-Mondrag贸n
- Laboratorio de Medicina de Conservaci贸n, Secci贸n de Estudios de Posgrado e Investigaci贸n, Escuela Superior de Medicina, Instituto Polit茅cnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Roberto Issac Cuevas-Hern谩ndez
- Laboratorio de Investigaci贸n en Bioqu铆mica, Escuela Superior de Medicina, Instituto Polit茅cnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Jos茅 Angel Santiago-Cruz
- Laboratorio de Ecolog铆a Microbiana, Escuela Nacional de Ciencias Biol贸gicas, Instituto Polit茅cnico Nacional, Ciudad de Mexico 11350, Mexico
| | - Judith Pacheco-Y茅pez
- Secci贸n de Estudios de Posgrado e Investigaci贸n, Escuela Superior de Medicina, Instituto Polit茅cnico Nacional, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
3
|
Antiamoebic Properties of Ceftriaxone and Zinc-Oxide-Cyclodextrin-Conjugated Ceftriaxone. Antibiotics (Basel) 2022; 11:antibiotics11121721. [PMID: 36551378 PMCID: PMC9774710 DOI: 10.3390/antibiotics11121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Acanthamoeba castellanii is a ubiquitous free-living amoeba capable of instigating keratitis and granulomatous amoebic encephalitis in humans. Treatment remains limited and inconsistent. Accordingly, there is a pressing need for novel compounds. Nanotechnology has been gaining attention for enhancing drug delivery and reducing toxicity. Previous work has shown that various antibiotic classes displayed antiamoebic activity. Herein, we employed two antibiotics: ampicillin and ceftriaxone, conjugated with the nanocarrier zinc oxide and 尾-cyclodextrin, and tested them against A. castellanii via amoebicidal, amoebistatic, encystment, excystment, cytopathogenicity, and cytotoxicity assays at a concentration of 100 渭g/mL. Notably, zinc oxide 尾-cyclodextrin ceftriaxone significantly inhibited A. castellanii growth and cytopathogenicity. Additionally, both zinc oxide 尾-cyclodextrin ceftriaxone and ceftriaxone markedly inhibited A. castellanii encystment. Furthermore, all the tested compounds displayed negligible cytotoxicity. However, minimal anti-excystment or amoebicidal effects were observed for the compounds. Accordingly, this novel nanoconjugation should be employed in further studies in hope of discovering novel anti-Acanthamoeba compounds.
Collapse
|
4
|
Siddiqui R, Makhlouf Z, Akbar N, Khamis M, Ibrahim T, Khan AS, Khan NA. Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba. Mol Biochem Parasitol 2022; 250:111493. [PMID: 35753525 DOI: 10.1016/j.molbiopara.2022.111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Acanthamoeba castellanii is a protist pathogen that can cause sight-threatening keratitis and a fatal infection of the central nervous system, known as granulomatous amoebic encephalitis. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on A. castellanii were investigated. These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P<0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of A. castellanii, and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Mustafa Khamis
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amir Sada Khan
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University, City, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|