1
|
Zhang G, Guo J, Guo J. A sustainable approach in pumpkin seed oil processing line: Recent advances in pumpkin seed oil and oil processing by-products. Food Chem X 2025; 26:102259. [PMID: 39995405 PMCID: PMC11848496 DOI: 10.1016/j.fochx.2025.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Pumpkin seed oil (PSO) has gained popularity worldwide for its nutritional profile and biological effects, significantly increasing its market demand and consumption. However, pumpkin seed oil cake (PSOC), as the secondary by-product from oil processing, contains high potential value and is scarcely utilised. With the PSO increase in production, a large amount of PSOC will be generated. The key to achieving a sustainable food system is maximising value from the food supply chain. This review aims to summarise the nutritional profile of PSO and PSOC and highlight the current advance in the biological activity of PSO and the valorisation strategies of PSOC. This review also concludes the current advance in food applications of PSO and PSOC in meat and bakery products, respectively. A better understanding of their value and current advances can help to achieve the maximisimg value from PSO processing line in an effective and sustainable approach.
Collapse
Affiliation(s)
| | - Jingbo Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| |
Collapse
|
2
|
Bai H, Ding J, Wang S, Zhang S, Jiang N, Wu X, Chen G, Dang Q, Liu M, Tang B, Wang X. Murine skeletal muscle satellite cells isolation and preliminary study on regulation in immune microenvironment during nurse cells formation of Trichinella spiralis infection. Vet Parasitol 2025; 333:110175. [PMID: 38614824 DOI: 10.1016/j.vetpar.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
As an intracellular parasitic nematode, Trichinella spiralis (T. spiralis) can induce the formation of nurse cells (NC) in host muscles and keep it to survive within the NC for an extended period. The formation of NC is similar to muscle cell injury and repair which lead to the arrest of satellite cells in the G2/M phase and build a suitable parasitic environment for the muscle larvae of T. spiralis. However, the molecular mechanisms involved in skeletal muscle repair through skeletal muscle satellite cells (SMSC) and the host immune response during T. spiralis infection have not been fully elucidated. In this study, histopathological examination revealed that the severity of damage increased as the infection progressed in the soleus muscle. SMSCs were isolated from BALB/c mice infected with T. spiralis at 4, 21 and 35 days post-infection (dpi). The immunological characteristics of these cells were analyzed by real-time PCR and flow cytometry (FCM). FCM analysis revealed a notable increase in the expression of B7 homolog 1 (B7-H1) in SMSCs following T. spiralis infection, while conversely, the expression of inducible costimulatory ligand (ICOSL) significantly decreased. Furthermore, real-time PCR results showed that toll like receptor 3 (TLR3) expression in SMSCs of the infected mice was upregulated at 21 dpi. The expression levels of three subtypes (PPARα, PPARβ and PPARγ) of peroxisome proliferator-activated receptors (PPARs) also increased in the cells. This study highlights the immunological regulation significance of SMSCs host during T. spiralis infection and suggests that SMSCs actively participant in the local immune response to T. spiralis by regulating the interaction between the parasite and the host.
Collapse
Affiliation(s)
- Huifang Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Saining Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ning Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxia Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guoliang Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianqian Dang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bin Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Collado-Cuadrado M, Alarcón-Torrecillas C, Rodríguez-Escolar I, Balmori-de la Puente A, Infante González-Mohino E, Pericacho M, Morchón R. Wolbachia Promotes an Anti-Angiogenic Response Using an In Vitro Model of Vascular Endothelial Cells in Relation to Heartworm Disease. Pathogens 2024; 13:603. [PMID: 39057829 PMCID: PMC11279419 DOI: 10.3390/pathogens13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Heartworm disease caused by Dirofilaria immitis is a vector-borne zoonotic disease responsible for the infection of mainly domestic dogs and cats, or these are those for which the most data are known. Humans are an accidental host where a benign, asymptomatic pulmonary nodule may originate. Dirofilaria immitis also harbours the endosymbiont bacteria of the genus Wolbachia, which play a role in moulting, embryogenesis, inflammatory pathology, and immune response. When Wolbachia sp. is released into the bloodstream, endothelial and pulmonary damage is exacerbated, further encouraging thrombus formation and pulmonary hypertension, facilitating congestive heart failure and death of the animal. Previous studies have shown that parasite excretory/secretory products are able to activate the pro-angiogenic pathway (formation of new vessels) to facilitate parasite survival. The aim of this study was to analyse the role of Wolbachia sp. and its relationship with the cellular processes and the angiogenic pathway in a model of human endothelial cells in vitro. The use of recombinant Wolbachia Surface Protein (rWSP) showed that its stimulation exerted an anti-angiogenic effect by detecting an increase in the production of VEGFR-1/sFlt1 and sEndoglin and did not affect the production of VEGFR-2 and mEndoglin (pro-angiogenic molecules). Furthermore, it did not stimulate cell proliferation or migration, although it did negatively stimulate the formation of pseudocapillaries, slowing down this process. These cellular processes are directly related to the angiogenic pathway so, with these results, we can conclude that Wolbachia sp. is related to the stimulation of the anti-angiogenic pathway, not facilitating the survival of D. immitis in vascular endothelium.
Collapse
Affiliation(s)
- Manuel Collado-Cuadrado
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.C.-C.); (I.R.-E.); (A.B.-d.l.P.); (E.I.G.-M.)
- Centre for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, 37007 Salamanca, Spain
| | - Claudia Alarcón-Torrecillas
- Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (C.A.-T.); (M.P.)
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Iván Rodríguez-Escolar
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.C.-C.); (I.R.-E.); (A.B.-d.l.P.); (E.I.G.-M.)
- Centre for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, 37007 Salamanca, Spain
| | - Alfonso Balmori-de la Puente
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.C.-C.); (I.R.-E.); (A.B.-d.l.P.); (E.I.G.-M.)
- Centre for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, 37007 Salamanca, Spain
| | - Elena Infante González-Mohino
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.C.-C.); (I.R.-E.); (A.B.-d.l.P.); (E.I.G.-M.)
| | - Miguel Pericacho
- Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (C.A.-T.); (M.P.)
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Rodrigo Morchón
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.C.-C.); (I.R.-E.); (A.B.-d.l.P.); (E.I.G.-M.)
- Centre for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (C.A.-T.); (M.P.)
| |
Collapse
|
4
|
Elossily NA, Abd-ELrahman SM, Khedr AA, Dyab AK, Mahmoud AE, Mohamed SM, Abd Elrahman AM, Alsharif FM, Alsaadawy RM, Sayed RKA, Khalifa MM. Light microscopical and parasitological analyses revealed the beneficial effects of silver nanoparticles and various myrrh extracts against Trichinella spiralis infection in mice. Microsc Res Tech 2024; 87:1566-1575. [PMID: 38430198 DOI: 10.1002/jemt.24542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Trichinella spiralis infection is a food-borne zoonotic disease caused by nematodes that dwell in the tissues, presenting a significant public health concern. This study aimed to evaluate the effectiveness of different treatments including silver nanoparticles (AgNPs), myrrh biosynthesized AgNPs "AgNPs synthesized using plant-based green technologies", myrrh extract, and myrrh essential oil, as alternative treatments against T. spiralis infection. Parasitological, histopathological, and cytotoxicity assessments were conducted to investigate the effects of various concentrations of these treatments in reducing the populations of adult worms and larvae during both the intestinal and muscular phases of T. spiralis-infected mice. The results showed that the highest antihelminthic efficacy against the intestinal phase of T. spiralis was achieved by myrrh extract (86.66%), followed closely by AgNPs (84.96%) and myrrh AgNPs (82.51%) at higher concentrations (800 mg/kg for myrrh extract, 40 μg/mL for AgNPs, and 40 μg/mL for myrrh AgNPs). While the group treated with myrrh essential oil showed the lowest percentage of adult reduction (78.14%). However, all treatments demonstrated comparable effects in reducing the larvae population in the muscle phase. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. Additionally, a comprehensive assessment of the cytotoxicity of AgNPs indicated low toxicity levels. This study supports that AgNPs synthesized using plant-based green technologies hold therapeutic potential for the treatment of T. spiralis infection. These findings present a promising avenue for the development of novel antiparasitic drugs that are both effective and safe. RESEARCH HIGHLIGHTS: Myrrh extract has the highest antihelminthic efficacy against the intestinal phase of T. spiralis. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. During intestinal phase of T. spiralis, varying levels of nanoparticle precipitation were detected in the liver, brain, lung, and intestine. During the muscular phase, the highest amount of AgNPs precipitation was detected in the liver, followed by the brain, and lung.
Collapse
Affiliation(s)
- Nahed A Elossily
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Salwa M Abd-ELrahman
- Department of Parasitology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abeer A Khedr
- Department of Parasitology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Ahmed K Dyab
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer E Mahmoud
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shaymaa M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Fahd M Alsharif
- Department of Pharmaceutics and Ind. Pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Reem M Alsaadawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Mervat M Khalifa
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Hassan ZR, El-Sayed S, Zekry KM, Ahmed SG, Abd-Elhamid AH, Salama DEA, Taha AK, Mahmoud NA, Mohammed SF, Amin MM, Mohamed RE, Eraque AMS, Mohamed SA, Abdelgalil RM, Atta SA, Fahmy NT, Badr MS. Impact of atorvastatin and mesenchymal stem cells combined with ivermectin on murine trichinellosis. Parasitol Res 2023; 123:57. [PMID: 38105357 PMCID: PMC10725854 DOI: 10.1007/s00436-023-08077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Trichinellosis is one of the global food-borne parasitic diseases that can cause severe tissue damage. The traditionally used drugs for the treatment of trichinellosis have limited efficacy against the encysted larvae in the muscular phase of the disease. Therefore, this study aimed to evaluate the role of atorvastatin and mesenchymal stem cells combined with ivermectin against different phases of Trichinella in experimentally infected mice. A total of 120 male Swiss albino mice were divided into two major groups (n = 60 of each), intestinal and muscular phases. Then, each group was subdivided into 10 subgroups (n = 6); non-infected control, infected non-treated control, infected ivermectin treated, infected atorvastatin treated, infected mesenchymal stem cells treated, infected combined ivermectin and atorvastatin treated, infected combined mesenchymal stem cells and ivermectin treated, infected combined mesenchymal stem cells and atorvastatin treated, infected combined mesenchymal stem cells and a full dose of (ivermectin and atorvastatin) treated, and infected combined mesenchymal stem cells and half dose of (ivermectin and atorvastatin) treated. Mice were sacrificed at days 5 and 35 post-infection for the intestinal and muscular phases, respectively. The assessment was performed through many parameters, including counting the adult intestinal worms and muscular encysted larvae, besides histopathological examination of the underlying tissues. Moreover, a biochemical assay for the inflammatory and oxidative stress marker levels was conducted. In addition, levels of immunohistochemical CD31 and VEGF gene expression as markers of angiogenesis during the muscular phase were investigated. The combined mesenchymal stem cells and atorvastatin added to ivermectin showed the highest significant reduction in adult worms and encysted larvae counts, the most noticeable improvement of the histopathological changes, the most potent anti-inflammatory (lowest level of IL-17) and anti-angiogenic (lowest expression of CD31 and VEGF) activities, and also revealed the highly effective one to relieve the oxidative stress (lowest level of SOD, GSH, and lipid peroxidase enzymes). These observed outcomes indicate that adding mesenchymal stem cells and atorvastatin to ivermectin synergistically potentiates its therapeutic efficacy and provides a promising candidate against trichinellosis.
Collapse
Affiliation(s)
- Zeinab R Hassan
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt.
| | - Samar El-Sayed
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Kareman M Zekry
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Samah Gouda Ahmed
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Asmaa Hassan Abd-Elhamid
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Doaa E A Salama
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
- Department of Pathology, School of Medicine, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| | - Azza Kamal Taha
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Nihal A Mahmoud
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shaymaa Fathy Mohammed
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Mona M Amin
- Department of Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Rasha Elsayed Mohamed
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Ayat M S Eraque
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shimaa A Mohamed
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Ranya M Abdelgalil
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shimaa Attia Atta
- Department of Immunology, Theodor Bilharz Research Institute, 36VF+MJ2, Warraq Al Arab, El Warraq, Giza Governorate, 3863130, Egypt
| | - Nermeen Talaat Fahmy
- Genomics, Egypt Center for Research and Regenerative Medicine (ECRRM), 3 Emtedad Ramses, Al Abbaseyah Al Gharbeyah, El Weili, Cairo Governorate, 4435102, Egypt
| | - Mohamed S Badr
- Molecular Biology and Genetic-Bioinformatics Nano-Robot Diagnostics, Medical Research Centre, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| |
Collapse
|
6
|
Rayia DMA, Izzularab BM, Harras S, Ghafar MTA, Azzam AR, Harras H, Younis RL, Soliman S, Saad AE. Stem cell biotherapy: A new remedy for Trichinella spiralis-induced inflammatory myopathy. Parasitol Int 2023; 96:102773. [PMID: 37330041 DOI: 10.1016/j.parint.2023.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Trichinella spiralis (T. spiralis)-induced myopathy is an inflammatory myopathy that is difficult to treat unless the parasite is combated in its early intestinal phase before it reaches the muscles. This study aimed to evaluate the effect of local mesenchymal stem cell (MSC) therapy on T. spiralis-induced inflammatory myopathy in rats. Rats were divided into four groups: Group 1 (non-infected non-treated group); Group 2 (infected non-treated group); Group 3 (infected albendazole (ABZ)-treated group); and Group 4 (infected MSC-treated group). Their muscle status was assessed physiologically with the righting reflex and electromyography (EMG), parasitologically with the total muscle larval count, histopathologically with hematoxylin and eosin and Mallory's trichrome stains, as well as immunohistochemically for myogenin as a marker of muscle regeneration. Additionally, serum muscle enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as muscle matrix metalloproteinases MMP1 and MMP9, were assayed. Finally, the immunological response was assessed by measuring the levels of the muscle inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), and interleukin-4 (IL-4). Our findings revealed that MSC therapy markedly improved muscle EMG and righting reflex, as well as the histopathological appearance of the muscles, reduced inflammatory cellular infiltrates, and increased myogenin immunostaining. It also reduced serum CK and LDH levels, as well as muscle INF-γ, TNF-α, IL-4, MMP1, and MMP9 levels. However, it had no effect on the total muscle larval count. Accordingly, due to its anti-inflammatory properties and muscle-regenerative effect, MSC therapy could be a promising new remedy for T. spiralis-induced myopathy.
Collapse
Affiliation(s)
- Dina Moustafa Abou Rayia
- Medical Parasitology Department, Faulty of Medicine, Tanta University, Egypt; Medical Parasitology Subunit, Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Jordan.
| | - Batoul M Izzularab
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Egypt
| | - Samar Harras
- Zoology Department, Faculty of Science, Tanta University, Egypt
| | | | - Asmaa Ramadan Azzam
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Egypt
| | - Heba Harras
- Histopathology Department, Faculty of Medicine, Tanta University, Egypt
| | | | - Shaimaa Soliman
- Biostatistics and Public Health Department, Faculty of Medicine, Menoufia University, Egypt
| | - Abeer Ezzat Saad
- Medical Parasitology Department, Faulty of Medicine, Tanta University, Egypt; Medical Parasitology Subunit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
7
|
Pérez Rodríguez MDP, Alarcón-Torrecillas C, Pericacho M, Rodríguez-Escolar I, Carretón E, Morchón R. Effect of somatic antigens of Dirofilaria repens adult worms on angiogenesis, cell proliferation and migration and pseudo-capillary formation in human endothelial cells. Parasit Vectors 2023; 16:105. [PMID: 36927633 PMCID: PMC10022164 DOI: 10.1186/s13071-023-05726-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Angiogenesis is defined as the formation of new vessels by sprouting of endothelial cells from pre-existing vessels in response to stimuli, such as hypoxia or inflammation. Subcutaneous dirofilariasis, caused by Dirofilaria repens, is a zoonotic disease characterized by the formation of subcutaneous nodules with the presence of at least one encapsulated worm, showing perivascular vascularization around it. The aim of this study is to analyze whether the somatic antigen of adult D. repens worms interacts with and modulates the angiogenic mechanism, cell proliferation and migration, and formation of pseudo-capillaries. METHODS The expression of VEGF-A, VEGFR-1/sFlt, VEGFR-2, mEnd and sEnd in cultures of human vascular endothelial cells stimulated with somatic antigen of adult worms of D. repens (DrSA), vascular endothelial growth factor (VEGF) and DrSA + VEGF were evaluated by using ELISA commercial kits. Cellular viability was analyzed by live cell count, cytotoxicity assays by using a commercial kit, cell proliferation by MTT-based assay, cell migration by wound-healing assay carried out by scratching wounds and capacity of formation of pseudo-capillaries analyzing cell connections and cell groups in Matrigel cell cultures. In all cases unstimulated cultures were used as controls. RESULTS DrSA + VEGF significantly increased the expression of VEGF-A, VEGFR-2 and mEndoglin compared to other groups and unstimulated cultures. Moreover, DrSA + VEGF produced cell proliferation and migration and increased the formation of pseudo-capillaries. CONCLUSIONS Somatic antigen of adult D. repens worms activated the proangiogenic mechanism, cell proliferation and cell migration as well as formation of pseudo-capillaries in this in vitro human endothelial cell model. These processes could be related to the survival of adult D. repens in subcutaneous nodules in infected hosts.
Collapse
Affiliation(s)
- María Del Pilar Pérez Rodríguez
- Zoonotic Diseases and One Health Group, IBSAL-CIETUS (Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Claudia Alarcón-Torrecillas
- Department of Physiology and Pharmacology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Miguel Pericacho
- Department of Physiology and Pharmacology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Iván Rodríguez-Escolar
- Zoonotic Diseases and One Health Group, IBSAL-CIETUS (Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Elena Carretón
- Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Arucas, 35413, Las Palmas, Spain
| | - Rodrigo Morchón
- Zoonotic Diseases and One Health Group, IBSAL-CIETUS (Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain. .,Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Arucas, 35413, Las Palmas, Spain.
| |
Collapse
|
8
|
Huang S, Qiu Y, Ma Z, Su Z, Hong W, Zuo H, Wu X, Yang Y. A secreted MIF homologue from Trichinella spiralis binds to and interacts with host monocytes. Acta Trop 2022; 234:106615. [PMID: 35901919 DOI: 10.1016/j.actatropica.2022.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
Trichinella spiralis is a very successful parasite capable of surviving in many mammal hosts and residing in muscle tissues for long periods, indicating that it must have some effective strategies to escape from or guard against the host immune attack. The functions of MIF have been studied in other parasites and demonstrated to function as a virulence factor aiding in their survival by modulating the host immune response. However, the functions of Trichinella spiralis MIF (TsMIF) have not been addressed. Here, we successfully obtained the purified recombinant TsMIF and anti-TsMIF serum. Our results showed that TsMIF was expressed in all the Trichinella spiralis developmental stages, especially highly expressed in the muscle larvae (ML) and mainly located in stichocytes, midgut, cuticle, muscle cells of ML and around intrauterine embryos of female adults. We also observed TsMIF could be secreted from ML and bind to host monocytes. Next, our data demonstrated that TsMIF not only stimulated the phosphorylation of ERK1/2 and cell proliferation by binding to the host cell surface receptor CD74, but also interacted with a host intracellular protein, Jab1, which is a coactivator of AP-1 transcription. We concluded the secreted TsMIF plays an important role in the interaction between Trichinella spiralis and its host and could be a potential drug or vaccine target molecule against Trichinella spiralis infection.
Collapse
Affiliation(s)
- Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yun Qiu
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenrong Ma
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhiming Su
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenbin Hong
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Heng Zuo
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiang Wu
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yurong Yang
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|