1
|
Zaszczyńska A, Gradys A, Kołbuk D, Zabielski K, Szewczyk PK, Stachewicz U, Sajkiewicz P. Poly(L-lactide)/nano-hydroxyapatite piezoelectric scaffolds for tissue engineering. Micron 2025; 188:103743. [PMID: 39532021 DOI: 10.1016/j.micron.2024.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The development of bone tissue engineering, a field with significant potential, requires a biomaterial with high bioactivity. The aim of this manuscript was to fabricate a nanofibrous poly(L-lactide) (PLLA) scaffold containing nano-hydroxyapatite (nHA) to investigate PLLA/nHA composites, particularly the effect of fiber arrangement and the addition of nHA on the piezoelectric phases and piezoelectricity of PLLA samples. In this study, we evaluated the effect of nHA particles on a PLLA-based electrospun scaffold with random and aligned fiber orientations. The addition of nHA increased the surface free energy of PLLA/nHA (42.9 mN/m) compared to PLLA (33.1 mN/m) in the case of aligned fibers. WAXS results indicated that at room temperature, all the fibers are in an amorphous state indicated by a lack of diffraction peaks and amorphous halo. DSC analysis showed that all samples located in the amorphous/disordered alpha' phase crystallize intensively at temperatures just above the Tg and recrystallize on further heating, achieving significantly higher crystallinity for pure PLLA than for doped nHA, 70 % vs 40 %, respectively. Additionally, PLLA/nHA fibers show a lower heat capacity for PLLA in the amorphous state, indicating that nHA reduces the molecular mobility of PLLA. Moreover, piezoelectric constant d33 was found to increase with the addition of nHA and for the aligned orientation of the fibers. In vitro tests confirmed that the addition of nHA and the aligned orientation of nanofibers increased osteoblast proliferation.
Collapse
Affiliation(s)
- Angelika Zaszczyńska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Konrad Zabielski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland.
| |
Collapse
|
2
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
3
|
Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications. J Funct Biomater 2023; 14:jfb14030159. [PMID: 36976083 PMCID: PMC10051288 DOI: 10.3390/jfb14030159] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The goal of this review is to map the current state of biodegradable materials that are used in tissue engineering for a variety of applications. At the beginning, the paper briefly identifies typical clinical indications in orthopedics for the use of biodegradable implants. Subsequently, the most frequent groups of biodegradable materials are identified, classified, and analyzed. To this end, a bibliometric analysis was applied to evaluate the evolution of the scientific literature in selected topics of the subject. The special focus of this study is on polymeric biodegradable materials that have been widely used for tissue engineering and regenerative medicine. Moreover, to outline current research trends and future research directions in this area, selected smart biodegradable materials are characterized, categorized, and discussed. Finally, pertinent conclusions regarding the applicability of biodegradable materials are drawn and recommendations for future research are suggested to drive this line of research forward.
Collapse
|
4
|
Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules 2022; 27:molecules27113640. [PMID: 35684575 PMCID: PMC9182463 DOI: 10.3390/molecules27113640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle’s intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.
Collapse
|
5
|
Wang F, Yang G, Xiao Y, He C, Cai G, Song E, Li Y. Effects of Tissue-engineered Bone by Coculture of Adipose-derived Stem Cells and Vascular Endothelial Cells on Host Immune Status. Ann Plast Surg 2021; 87:689-693. [PMID: 34818288 DOI: 10.1097/sap.0000000000002824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM The study aimed to explore the effects of tissue-engineered bone constructed with partially deproteinized biologic bone (PDPBB) and coculture of adipose-derived stem cells (ADSCs) and vascular endothelial cells (VECs) on host immune status, providing a very useful clue for the future development of bone engineering. METHODS Tissue-engineered bones constructed by PDPBB and ADSCs, VECs or coculture of them were implanted into the muscle bag of bilateral femurs of Sprague-Dawley rats. Partially deproteinized biologic bone alone and blank control were also implanted. After transplantation, the proliferation of implanted seed cells in tissue-engineered bones was labeled by bromodeoxyuridine staining. Moreover, the changes of T-lymphocyte subpopulations, including CD3 + CD4+ and CD3 + CD8+ in peripheral blood were then detected using flow cytometry to analyze the immune rejection of tissue-engineered bone implantation based on peripheral blood CD4/CD8 ratios. RESULTS After transplantation, the proliferation of implanted seed cells was observed in tissue-engineered bones of different groups. At different time points after transplantation, the CD4+/CD8+ ratio in peripheral blood of PDPBB + ADSCs, PDPBB + coculture, and blank control groups did not exhibit significant change. Although the CD4+/CD8+ ratio in peripheral blood of PDPBB + VECs group was significantly higher than other group at 1 week after transplantation, that of PDPBB + VECs and PDPBB + coculture group was significantly decreased at 8 week after transplantation compared with that of blank control group. CONCLUSIONS Our results indicated that there was no significant immune rejection after transplantation of tissue-engineered bone constructed with PDPBB and coculture of ADSCs and VECs as seed cells.
Collapse
Affiliation(s)
- Fuke Wang
- From the Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Backes EH, Nóbile Pires L, Selistre‐de‐Araujo HS, Costa LC, Passador FR, Pessan LA. Development and characterization of printable
PLA
/
β‐TCP
bioactive composites for bone tissue applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.49759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eduardo Henrique Backes
- Graduate Program in Materials Science and Engineering Federal University of São Carlos São Carlos SP Brazil
| | - Laís Nóbile Pires
- Materials Engineering Department Federal University of São Carlos São Carlos SP Brazil
| | | | - Lidiane Cristina Costa
- Graduate Program in Materials Science and Engineering Federal University of São Carlos São Carlos SP Brazil
| | - Fabio Roberto Passador
- Science and Technology Institute Federal University of São Paulo São José dos Campos SP Brazil
| | - Luiz Antonio Pessan
- Graduate Program in Materials Science and Engineering Federal University of São Carlos São Carlos SP Brazil
| |
Collapse
|
7
|
Backes EH, Fernandes EM, Diogo GS, Marques CF, Silva TH, Costa LC, Passador FR, Reis RL, Pessan LA. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111928. [PMID: 33641921 DOI: 10.1016/j.msec.2021.111928] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/21/2020] [Accepted: 01/28/2021] [Indexed: 12/01/2022]
Abstract
In this study, polylactic acid (PLA) filled with hydroxyapatite (HA) or beta-tricalcium phosphate (TCP) in 5 wt% and 10 wt% of concentration were produced employing twin-screw extrusion followed by fused filament fabrication in two different architectures, varying the orientation of fibers of adjacent layers. The extruded 3D filaments presented suitable rheological and thermal properties to manufacture of 3D scaffolds envisaging bone tissue engineering. The produced scaffolds exhibited a high level of printing accuracy related to the 3D model; confirmed by micro-CT and electron microscopy analysis. The developed architectures presented mechanical properties compatible with human bone replacement. The addition of HA and TCP made the filaments bioactive, and the deposition of new calcium phosphates was observed upon 7 days of incubation in simulated body fluid, exemplifying a microenvironment suitable for cell attachment and proliferation. After 7 days of cell culture, the constructs with a higher percentage of HA and TCP demonstrated a significantly superior amount of DNA when compared to neat PLA, indicating that higher concentrations of HA and TCP could guide a good cellular response and increasing cell cytocompatibility. Differentiation tests were performed, and the biocomposites of PLA/HA and PLA/TCP exhibited earlier markers of cell differentiation as confirmed by alkaline phosphatase and alizarin red assays. The 3D printed composite scaffolds, manufactured with bioactive materials and adequate porous size, supported cell attachment, proliferation, and differentiation, which together with their scalability, promise a high potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Eduardo H Backes
- Graduate Program in Materials Science and Engineering, Federal University of São Carlos, via Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
| | - Emanuel M Fernandes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Gabriela S Diogo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina F Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Lidiane C Costa
- Graduate Program in Materials Science and Engineering, Federal University of São Carlos, via Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil.
| | - Fabio R Passador
- Science and Technology Institute, Federal University of São Paulo, Talim St. 330, 12231-280 São José dos Campos, SP, Brazil.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Luiz A Pessan
- Graduate Program in Materials Science and Engineering, Federal University of São Carlos, via Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Yadav V, Sankar M, Pandey L. Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects. JOURNAL OF MAGNESIUM AND ALLOYS 2020; 8:999-1015. [DOI: 10.1016/j.jma.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
9
|
Almeida AC, Vale AC, Reis RL, Alves NM. Bioactive and adhesive properties of multilayered coatings based on catechol-functionalized chitosan/hyaluronic acid and bioactive glass nanoparticles. Int J Biol Macromol 2020; 157:119-134. [DOI: 10.1016/j.ijbiomac.2020.04.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 02/09/2023]
|
10
|
Abd El-Fattah A, Nageeb Hassan M, Rashad A, Marei M, Kandil S. Viscoelasticity, mechanical properties, and in vivo biocompatibility of injectable polyvinyl alcohol/bioactive glass composite hydrogels as potential bone tissue scaffolds. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1790253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| | - Mohamad Nageeb Hassan
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmad Rashad
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mona Marei
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Sherif Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Bochicchio B, Barbaro K, De Bonis A, Rau JV, Pepe A. Electrospun poly(d,l-lactide)/gelatin/glass-ceramics tricomponent nanofibrous scaffold for bone tissue engineering. J Biomed Mater Res A 2020; 108:1064-1076. [PMID: 31967393 DOI: 10.1002/jbm.a.36882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Electrospun scaffolds are emerging as extracellular matrix (ECM)mimicking structures for tissue engineering thanks to their nanofibrous architecture. For the development of suitable electrospun scaffolds for bone tissue engineering, the addition of inorganic components has been implemented with the aim to confer important bioactivity like osteoinduction, osteointegration, and cell adhesion to the scaffolds. In this context, we propose a tricomponent electrospun scaffold composed of poly(d,l-lactide), gelatin and RKKP glass-ceramics. The bioactive RKKP glass-ceramic system has attracted interest, due to the presence of ions such as La3+ and Ta5+ , which turned out to be valuable as growth supporting agents for bones. In this work, RKKP glass-ceramics were embedded inside the microfibers of electrospun scaffolds and the structural and biological properties were investigated. Our results showed that the glass-ceramic microparticles were uniformly distributed in the fibrous structure of the scaffold. Furthermore, the glass-ceramics promoted biomineralization of the scaffolds and improved cell viability and osteogenic differentiation. The mineralized layer formed on RKKP-containing scaffolds after incubation in simulated body fluid medium has been shown to be hydroxyapatite by Raman spectroscopy and X-ray diffraction. The results on differentiation studies of canine adipose-derived mesenchymal stem cells grown on the electrospun scaffolds suggest that on varying the content of RKKP in the scaffold, it is possible to drive the differentiation toward chondrogenic or osteogenic commitment. The presence of ions, like La3+ and Ta5+ , in the RKKP embedded polymeric composite scaffolds could play a role in supporting cell growth and promoting differentiation.
Collapse
Affiliation(s)
- Brigida Bochicchio
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Angela De Bonis
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome, Italy
| | - Antonietta Pepe
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
12
|
Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Adv 2020; 10:33782-33835. [PMID: 35519068 PMCID: PMC9056785 DOI: 10.1039/d0ra04287k] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Sol–gel derived bioactive glasses have been extensively explored as a promising and highly porous scaffold materials for bone tissue regeneration applications owing to their exceptional osteoconductivity, osteostimulation and degradation rates.
Collapse
Affiliation(s)
- Kalim Deshmukh
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Kovářík
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Křenek
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Denitsa Docheva
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Theresia Stich
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Josef Pola
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| |
Collapse
|
13
|
Aslankoohi N, Mondal D, Rizkalla AS, Mequanint K. Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment. Polymers (Basel) 2019; 11:E1437. [PMID: 31480693 PMCID: PMC6780693 DOI: 10.3390/polym11091437] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Biomaterials and tissue engineering scaffolds play a central role to repair bone defects. Although ceramic derivatives have been historically used to repair bone, hybrid materials have emerged as viable alternatives. The rationale for hybrid bone biomaterials is to recapitulate the native bone composition to which these materials are intended to replace. In addition to the mechanical and dimensional stability, bone repair scaffolds are needed to provide suitable microenvironments for cells. Therefore, scaffolds serve more than a mere structural template suggesting a need for better and interactive biomaterials. In this review article, we aim to provide a summary of the current materials used in bone tissue engineering. Due to the ever-increasing scientific publications on this topic, this review cannot be exhaustive; however, we attempted to provide readers with the latest advance without being redundant. Furthermore, every attempt is made to ensure that seminal works and significant research findings are included, with minimal bias. After a concise review of crystalline calcium phosphates and non-crystalline bioactive glasses, the remaining sections of the manuscript are focused on organic-inorganic hybrid materials.
Collapse
Affiliation(s)
- Neda Aslankoohi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Dibakar Mondal
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Amin S Rizkalla
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Kibret Mequanint
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
14
|
Shaltooki M, Dini G, Mehdikhani M. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110138. [PMID: 31546409 DOI: 10.1016/j.msec.2019.110138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 11/25/2022]
Abstract
In the present study, porous (about 70 vol%) nanocomposite scaffolds made of polycaprolactone (PCL) and different amounts (0 to 15 wt%) of 45S bioactive glass (BG) nanoparticles (with a particle size of about 40 nm) containing 7 wt% strontium (Sr) were fabricated by solvent casting technique for bone tissue engineering. Then, a selected optimum scaffold was coated with a thin layer of chitosan containing 15 wt% Sr-substituted BG nanoparticles. Several techniques such as X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), tensile test, and water contact angle measurement were used to characterize the fabricated samples. In vitro experiments including degradation, bioactivity, and biocompatibility (i.e., cytotoxicity, alkaline phosphate activity, and cell adhesion) tests of the fabricated scaffold were performed. The biomedical behavior of the fabricated PCL-based composite scaffold was interpreted by considering the presence of the porosity, Sr-substituted BG nanoparticles, and the chitosan coating. In conclusion, the fabricated chitosan-coated porous PCL/BG nanocomposite containing 15 wt% BG nanoparticles could be utilized as a good candidate for bone tissue engineering.
Collapse
Affiliation(s)
- M Shaltooki
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| | - G Dini
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran.
| | - M Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
15
|
Quan WY, Hu Z, Liu HZ, Ouyang QQ, Zhang DY, Li SD, Li PW, Yang ZM. Mussel-Inspired Catechol-Functionalized Hydrogels and Their Medical Applications. Molecules 2019; 24:E2586. [PMID: 31315269 PMCID: PMC6680511 DOI: 10.3390/molecules24142586] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Mussel adhesive proteins (MAPs) have a unique ability to firmly adhere to different surfaces in aqueous environments via the special amino acid, 3,4-dihydroxyphenylalanine (DOPA). The catechol groups in DOPA are a key group for adhesive proteins, which is highly informative for the biomedical domain. By simulating MAPs, medical products can be developed for tissue adhesion, drug delivery, and wound healing. Hydrogel is a common formulation that is highly adaptable to numerous medical applications. Based on a discussion of the adhesion mechanism of MAPs, this paper reviews the formation and adhesion mechanism of catechol-functionalized hydrogels, types of hydrogels and main factors affecting adhesion, and medical applications of hydrogels, and future the development of catechol-functionalized hydrogels.
Collapse
Affiliation(s)
- Wei-Yan Quan
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Zhang Hu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| | - Hua-Zhong Liu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Qian-Qian Ouyang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Dong-Ying Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Si-Dong Li
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Pu-Wang Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| | - Zi-Ming Yang
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
16
|
Khatami N, Khoshfetrat AB, Khaksar M, Zamani ARN, Rahbarghazi R. Collagen‐alginate‐nano‐silica microspheres improved the osteogenic potential of human osteoblast‐like MG‐63 cells. J Cell Biochem 2019; 120:15069-15082. [DOI: 10.1002/jcb.28768] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Neda Khatami
- Chemical Engineering Faculty Sahand University of Technology Tabriz Iran
| | | | - Majid Khaksar
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
17
|
Lei B, Guo B, Rambhia KJ, Ma PX. Hybrid polymer biomaterials for bone tissue regeneration. Front Med 2019; 13:189-201. [PMID: 30377934 PMCID: PMC6445757 DOI: 10.1007/s11684-018-0664-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations over the use of natural materials derived from animals or cadavers, including the potential immunogenicity, pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore, there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.
Collapse
Affiliation(s)
- Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Kunal J Rambhia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter X Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Tamburaci S, Kimna C, Tihminlioglu F. Bioactive diatomite and POSS silica cage reinforced chitosan/Na-carboxymethyl cellulose polyelectrolyte scaffolds for hard tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:196-208. [PMID: 30948053 DOI: 10.1016/j.msec.2019.02.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
Recently, natural polymers are reinforced with silica particles for hard tissue engineering applications to induce bone regeneration. In this study, as two novel bioactive agents, effects of diatomite and polyhedral oligomeric silsesquioxanes (POSS) on chitosan (CS)/Na-carboxymethylcellulose (Na-CMC) polymer blend scaffolds are examined. In addition, the effect of silica reinforcements was compared with Si-substituted nano-hydroxyapatite (Si-Hap) particles. The morphology, physical and chemical structures of the scaffolds were characterized with SEM, liquid displacement, FT-IR, mechanical analysis, swelling and degradation studies. The particle size and the crystal structure of diatomite, POSS and Si-Hap particles were determined with DLS and XRD analyses. In vitro studies were performed to figure out the cytotoxicity, proliferation, ALP activity, osteocalcin production and biomineralization to demonstrate the promising use of natural silica particles in bone regeneration. Freeze-dried scaffolds showed 190-307 μm pore size range and 61-70% porosity. Both inorganic reinforcements increased the mechanical strength, enhanced the water uptake capacity and fastened the degradation rate. The nanocomposite scaffolds did not show any cytotoxic effect and enhanced the surface mineralization in osteogenic medium. Thus, diatomite and POSS cage structures can be potential reinforcements for nanocomposite design in hard tissue engineering applications.
Collapse
Affiliation(s)
- Sedef Tamburaci
- İzmir Institute of Technology, Graduate Program of Biotechnology and Bioengineering, Gülbahçe Campus, Urla 35430, İzmir, Turkey; İzmir Institute of Technology, Department of Chemical Engineering, Gülbahçe Campus, Urla 35430, İzmir, Turkey
| | - Ceren Kimna
- İzmir Institute of Technology, Department of Chemical Engineering, Gülbahçe Campus, Urla 35430, İzmir, Turkey
| | - Funda Tihminlioglu
- İzmir Institute of Technology, Department of Chemical Engineering, Gülbahçe Campus, Urla 35430, İzmir, Turkey.
| |
Collapse
|
19
|
Yin HM, Li X, Wang P, Ren Y, Liu W, Xu JZ, Li JH, Li ZM. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration. J Biomed Mater Res A 2018; 107:654-662. [PMID: 30474348 DOI: 10.1002/jbm.a.36584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022]
Abstract
Effects of varied bioactive fillers on the biological behavior of porous polymer/inorganic composite scaffolds are lack of comprehensive comparison and remain elusive. Moreover, composite scaffolds with high porosity suffer from inferior mechanical performance. Herein, high-pressure molding and salt leaching were employed to prepare poly(ε-caprolactone) (PCL) composite porous scaffolds loaded with hydroxyapatite (HA) and bioactive glass (BG), respectively. Structural analysis indicated all the porous scaffolds presented interconnected open-pore structure with the porosity of ~87% and pore size of ~180 μm, hinging on the amounts and size of porogen. Compared to PCL/HA scaffolds, PCL/BG scaffolds showed ~2.3-fold augment in the water absorption. Attributing to the compact framework, the PCL/HA and PCL/BG porous scaffolds exhibited outstanding compressive modulus, which was notably higher than other PCL composite porous scaffolds reported in literatures. Cells culture results demonstrated that PCL/BG scaffolds displayed higher expression of osteogenic differentiation than PCL and PCL/HA scaffolds. Furthermore, in vivo results showed that more mature bone was formed within PCL/BG scaffolds than PCL/HA scaffolds, manifesting that the introduction of BG accelerated cranial bone regeneration to obtain complete bone healing within a short time. Therefore, these data indicate that PCL/BG scaffolds are more competitive for bone tissue engineering application. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 654-662, 2019.
Collapse
Affiliation(s)
- Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue Ren
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Liu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ji-Hua Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
20
|
Ghasemi A, Hashemi B. Co-existence effect of tricalcium phosphate and bioactive glass on biological and biodegradation characteristic of Poly L-Lactic Acid (PLLA) in trinary composite scaffold form. Biomed Mater Eng 2018; 28:655-669. [PMID: 29171974 DOI: 10.3233/bme-171707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of this study is to analyze the co-existence effect of 30 wt.% TCP-BG phases on degradation and precipitation behaviors of PLLA based composite scaffold in biological media. First, phase separation method was used to synthesize of the pure PLLA and the trinary composite scaffolds, and second they were immersed in SBF solution for 45 days. Subsequently, the degradation and precipitation characteristic were investigated by analyzing of pH value and weight changes of the immersed samples, the ability of biological products formation and the change of relative molecular weight of PLLA matrix as function of the degradation time. Finally, the experimental data of relative molecular weight change were verified by Han and Pan model and comparisons were made between them. Results have represented precipitation of huge amount of carbonate apatite on surface of the composite scaffold, and also the acidity of SBF media changes moderately which is prove better bioactivity properties compare to the pure PLLA scaffold. The results of comparison with the model point to quiet good agreement between them in early stage of degradation. So, the consequences suggest that the TCP-BG/PLLA composite scaffold have great potential to be applied in bone replacements or repairs.
Collapse
Affiliation(s)
- Abbas Ghasemi
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Babak Hashemi
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
21
|
Nasri-Nasrabadi B, Kaynak A, Heidarian P, Komeily-Nia Z, Mehrasa M, Salehi H, Kouzani AZ. Sodium alginate/magnesium oxide nanocomposite scaffolds for bone tissue engineering. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Akif Kaynak
- School of Engineering; Deakin University; Geelong Victoria 3216 Australia
| | - Pejman Heidarian
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan Iran
| | - Zahra Komeily-Nia
- Institute for Frontier Materials; Deakin University; Geelong Victoria 3216 Australia
| | - Mohammad Mehrasa
- Biotechnology, Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan Iran
| | - Hossein Salehi
- Anatomical Sciences Department; Isfahan University of Medical sciences; Isfahan Iran
| | - Abbas Z. Kouzani
- School of Engineering; Deakin University; Geelong Victoria 3216 Australia
| |
Collapse
|
22
|
Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials. J Mech Behav Biomed Mater 2017; 75:180-189. [DOI: 10.1016/j.jmbbm.2017.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
|
23
|
Zheng K, Boccaccini AR. Sol-gel processing of bioactive glass nanoparticles: A review. Adv Colloid Interface Sci 2017; 249:363-373. [PMID: 28364954 DOI: 10.1016/j.cis.2017.03.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
Silicate-based bioactive glass nanoparticles (BGN) are gaining increasing attention in various biomedical applications due to their unique properties. Controlled synthesis of BGN is critical to their effective use in biomedical applications since BGN characteristics, such as morphology and composition, determining the properties of BGN, are highly related to the synthesis process. In the last decade, numerous investigations focusing on BGN synthesis have been reported. BGN can mainly be produced through the conventional melt-quench approach or by sol-gel methods. The latter approaches are drawing widespread attention, considering the convenience and versatility they offer to tune the properties of BGN. In this paper, we review the strategies of sol-gel processing of BGN, including those adopting different catalysts for initiating the hydrolysis and condensation of silicate precursors as well as those combining sol-gel chemistry with other techniques. The processes and mechanism of different synthesis approaches are introduced and discussed in detail. Considering the importance of the BGN morphology and composition to their biomedical applications, strategies put forward to control the size, shape, pore structure and composition of BGN are discussed. BGN are particularly interesting biomaterials for bone-related applications, however, they also have potential for other biomedical applications, e.g. in soft tissue regeneration/repair. Therefore, in the last part of this review, recently reported applications of BGN in soft tissue repair and wound healing are presented.
Collapse
|
24
|
In vitro degradation of a 3D porous Pennisetum purpureum/PLA biocomposite scaffold. J Mech Behav Biomed Mater 2017; 74:383-391. [DOI: 10.1016/j.jmbbm.2017.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022]
|
25
|
Rezabeigi E, Drew RAL, Wood-Adams PM. Highly Porous Polymer Structures Fabricated via Rapid Precipitation from Ternary Systems. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ehsan Rezabeigi
- Department of Mechanical, Industrial
and Aerospace Engineering, Concordia University, Montreal, Quebec Canada
| | - Robin A. L. Drew
- Department of Mechanical, Industrial
and Aerospace Engineering, Concordia University, Montreal, Quebec Canada
| | - Paula M. Wood-Adams
- Department of Mechanical, Industrial
and Aerospace Engineering, Concordia University, Montreal, Quebec Canada
| |
Collapse
|
26
|
Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation. ACTA ACUST UNITED AC 2017; 12:055011. [PMID: 28944766 DOI: 10.1088/1748-605x/aa792b] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of the present investigation was to assess the potential of magnesium oxide nanoparticle (MgO NP)-loaded electrospun polycaprolactone (PCL) polymer composites as a bone-soft tissue engineering scaffold. MgO NPs were synthesized using a hydroxide precipitation sol-gel method and characterized using field emission gun-scanning electron microscopy/energy-dispersive x-ray spectroscopy (FEG-SEM/EDS), field emission gun-transmission electron microscopy (FEG-TEM), and x-ray diffraction (XRD) analysis. PCL and MgO-PCL nanocomposite fibers were fabricated using electrospinning with trifluoroethanol as solvent at 19 kV applied voltage and 1.9 ml h-1 flow rate as optimized process parameters, and were characterized by FEG-TEM, FEG-SEM/EDS, XRD, and differential scanning calorimetry analyses. Characterization studies of as-synthesized nanoparticles revealed diffraction peaks indexed to various crystalline planes peculiar to MgO particles with hexagonal and cubical shape, and 40-60 nm size range. Significant improvement in mechanical properties (tensile strength and elastic modulus) of nanocomposites was observed as compared to neat polymer specimens (fourfold and threefold, respectively), due to uniform dispersion of nanofillers along the polymer fiber length. There was a remarkable bioactivity shown by nanocomposite scaffolds in immersion test, as indicated by formation of surface hydroxyapatite layer by the third day of incubation. MgO-loaded electrospun PCL mats showed enhanced in-vitro biological performance with osteoblast-like MG-63 cells in terms of adhesion, proliferation, and marked differentiation marker activity owing to greater surface roughness, nanotopography, and hydrophilicity facilitating higher protein adsorption. In-vivo subcutaneous implantation study in Sprague Dawley rats revealed initial moderate inflammatory tissue response near implant site at the second week timepoint that subsided later (eighth week) with no adverse effect on vital organ functionalities as seen in histopathological analysis supported by serum biochemical and hematological parameters which did not deviate significantly from normal physiological range, indicating good biocompatibility in-vivo. Thus, MgO-PCL nanocomposite electrospun fibers have potential as an efficient scaffold material for bone-soft tissue engineering applications.
Collapse
Affiliation(s)
- Ajay Suryavanshi
- NanoBios Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | | | |
Collapse
|
27
|
Rashkow JT, Lalwani G, Sitharaman B. In Vitro Bioactivity of One- and Two-Dimensional Nanoparticle-Incorporated Bone Tissue Engineering Scaffolds. Tissue Eng Part A 2017; 24:641-652. [PMID: 28762866 DOI: 10.1089/ten.tea.2017.0117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigates the effect of incorporation of one- or two-dimensional nanoparticles with distinct composition and morphology on the bioactivity of biodegradable, biocompatible polymer matrices. 0.2 wt% multiwalled carbon nanotubes, multiwalled graphene nanoribbons, graphene oxide nanoplatelets (GONPs), molybdenum disulfide nanoplatelets (MSNPs), or tungsten disulfide nanotubes (WSNTs) were uniformly dispersed in poly(lactic-co-glycolic acid) (PLGA) polymer. PLGA or nanoparticle-incorporated PLGA were then incubated with simulated body fluid (SBF) under physiological conditions for 1, 3, 7, or 14 days. Apatite collection on control and incorporated scaffolds was assessed. All groups showed apatite precipitate on the surface after 1 day of SBF incubation. After 14 days of SBF incubation, scaffolds incorporated with GONPs, MSNPs, or WSNTs showed significantly higher phosphate accumulation compared to PLGA scaffolds. Scaffolds incorporated with GONPs, MSNPs, or WSNTs should be studied in vivo to further investigate potential bioactivity, leading to enhanced integration and tissue repair at the bone-implant interface.
Collapse
Affiliation(s)
- Jason T Rashkow
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York
| |
Collapse
|
28
|
Fernandes JS, Reis RL, Pires RA. Wetspun poly-L-(lactic acid)-borosilicate bioactive glass scaffolds for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:252-259. [DOI: 10.1016/j.msec.2016.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/01/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
|
29
|
Bramhill J, Ross S, Ross G. Bioactive Nanocomposites for Tissue Repair and Regeneration: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E66. [PMID: 28085054 PMCID: PMC5295317 DOI: 10.3390/ijerph14010066] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/09/2016] [Accepted: 12/24/2016] [Indexed: 11/17/2022]
Abstract
This review presents scientific findings concerning the use of bioactive nanocomposites in the field of tissue repair and regeneration. Bioactivity is the ability of a material to incite a specific biological reaction, usually at the boundary of the material. Nanocomposites have been shown to be ideal bioactive materials due the many biological interfaces and structures operating at the nanoscale. This has resulted in many researchers investigating nanocomposites for use in bioapplications. Nanocomposites encompass a number of different structures, incorporating organic-inorganic, inorganic-inorganic and bioinorganic nanomaterials and based upon ceramic, metallic or polymeric materials. This enables a wide range of properties to be incorporated into nanocomposite materials, such as magnetic properties, MR imaging contrast or drug delivery, and even a combination of these properties. Much of the classical research was focused on bone regeneration, however, recent advances have enabled further use in soft tissue body sites too. Despite recent technological advances, more research is needed to further understand the long-term biocompatibility impact of the use of nanoparticles within the human body.
Collapse
Affiliation(s)
- Jane Bramhill
- Biopolymer Group, Biomaterials Center of Excellence, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Sukunya Ross
- Biopolymer Group, Biomaterials Center of Excellence, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Gareth Ross
- Biopolymer Group, Biomaterials Center of Excellence, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
30
|
Domingos M, Gloria A, Coelho J, Bartolo P, Ciurana J. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proc Inst Mech Eng H 2017; 231:555-564. [PMID: 28056713 DOI: 10.1177/0954411916680236] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bone tissue engineering is strongly dependent on the use of three-dimensional scaffolds that can act as templates to accommodate cells and support tissue ingrowth. Despite its wide application in tissue engineering research, polycaprolactone presents a very limited ability to induce adhesion, proliferation and osteogenic cell differentiation. To overcome some of these limitations, different calcium phosphates, such as hydroxyapatite and tricalcium phosphate, have been employed with relative success. This work investigates the influence of nano-hydroxyapatite and micro-hydroxyapatite (nHA and mHA, respectively) particles on the in vitro biomechanical performance of polycaprolactone/hydroxyapatite scaffolds. Morphological analysis performed with scanning electron microscopy allowed us to confirm the production of polycaprolactone/hydroxyapatite constructs with square interconnected pores of approximately 350 µm and to assess the distribution of hydroxyapatite particles within the polymer matrix. Compression mechanical tests showed an increase in polycaprolactone compressive modulus ( E) from 105.5 ± 11.2 to 138.8 ± 12.9 MPa (PCL_nHA) and 217.2 ± 21.8 MPa (PCL_mHA). In comparison to PCL_mHA scaffolds, the addition of nano-hydroxyapatite enhanced the adhesion and viability of human mesenchymal stem cells as confirmed by Alamar Blue assay. In addition, after 14 days of incubation, PCL_nHA scaffolds showed higher levels of alkaline phosphatase activity compared to polycaprolactone or PCL_mHA structures.
Collapse
Affiliation(s)
- Marco Domingos
- 1 School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, UK
| | - Antonio Gloria
- 2 Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Jorge Coelho
- 3 CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Paulo Bartolo
- 1 School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, UK
| | | |
Collapse
|
31
|
Leite ÁJ, Mano JF. Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. J Mater Chem B 2017; 5:4555-4568. [DOI: 10.1039/c7tb00404d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of natural polymers with nanoparticles allowed the development of functional bioinspired constructs. This review discusses the composition, design, and applications of bioinspired nanocomposite constructs based on bioactive glass nanoparticles (BGNPs).
Collapse
Affiliation(s)
- Á. J. Leite
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine
- Guimarães
| | - J. F. Mano
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine
- Guimarães
| |
Collapse
|
32
|
Tajbakhsh S, Hajiali F. A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:897-912. [DOI: 10.1016/j.msec.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
|
33
|
Novel method for fabrication of samples for cell testing of bioceramics in granular form. J Appl Biomater Funct Mater 2016; 14:e449-e454. [PMID: 27373886 DOI: 10.5301/jabfm.5000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bioceramic granules are a widely studied material for regeneration of human tissues, and their biological assessment with in vitro cell cultures plays a fundamental role in the development of bioceramics. Design of samples for cell testing represents an important aspect of the biological evaluation, as it dictates how cells will interact with the biomaterial. The aim of this study was to develop samples for cell testing of bioceramic granules with a novel design that would enable direct physical contacts between cells and bioceramic and improved handling properties for efficient laboratory work. The goal was to produce a bilayered polycaprolactone-bioceramic composite with polycaprolactone serving as a bottom layer and support for a uniform and dense layer of bioceramic granules (upper layer), which would be only partly embedded and physically stabilized in the polymer with at least one face of granules still free of any polymer residues and available for direct attachment of cells. METHODS A novel method for preparation of samples in six steps was developed. A bilayered design of samples with exposed bioceramic particles was accomplished by the application of a water-soluble alginate as a sacrificial polymer in the method protocol. Samples were analyzed with SEM/EDX and ToF-SIMS. RESULTS Bioceramic granules had a uniform and dense morphology and were partly embedded in the polycaprolactone support. Detailed ToF-SIMS study showed that granules were clean and free of any polymer residues. CONCLUSIONS The developed samples enable direct exposure of bioceramic granules to cells and surrounding physiological solution during cell testing, and possess improved handling characteristics.
Collapse
|
34
|
Moura D, Mano JF, Paiva MC, Alves NM. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:626-643. [PMID: 27877909 PMCID: PMC5102025 DOI: 10.1080/14686996.2016.1229104] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 05/17/2023]
Abstract
Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications.
Collapse
Affiliation(s)
- Duarte Moura
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, Associate PT Government Laboratory, Braga, Guimarães, Portugal
- Institute for Polymers and Composites/I3 N, Department of Polymer Engineering, University of Minho, Guimarães, Portugal
| | - João F. Mano
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, Associate PT Government Laboratory, Braga, Guimarães, Portugal
| | - Maria C. Paiva
- Institute for Polymers and Composites/I3 N, Department of Polymer Engineering, University of Minho, Guimarães, Portugal
| | - Natália M. Alves
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, Associate PT Government Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
35
|
Rezabeigi E, Wood-Adams PM, Drew RAL. Morphological examination of highly porous polylactic acid/Bioglass ® scaffolds produced via nonsolvent induced phase separation. J Biomed Mater Res B Appl Biomater 2016; 105:2433-2442. [PMID: 27640880 DOI: 10.1002/jbm.b.33784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022]
Abstract
In this study, we produce highly porous (up to ∼91%) composite scaffolds of polylactic acid (PLA) containing 2 wt % sol-gel-derived 45S5 Bioglass® particles via nonsolvent induced phase separation at -23°C with no sacrificial phases involved. Before the incorporation of the bioglass with PLA, the particles are surface modified with a silane coupling agent which effectively diminishes agglomeration between them leading to a better dispersion of bioactive particles throughout the scaffold. Interestingly, the incorporation route (via solvent dichloromethane or nonsolvent hexane) of the surface modified particles in the foaming process has the greatest impact on porosity, crystallinity, and morphology of the scaffolds. The composite scaffolds with a morphology consisting of both mesopores and large macropores, which is potentially beneficial for bone regeneration applications, are examined further. SEM images show that the surface modified bioglass particles take-up a unique configuration within the mesoporous structure of these scaffolds ensuring that the particles are well interlocked but not completely covered by PLA such that they can be in contact with physiological fluids. The results of preliminary in vitro tests confirm that this PLA/bioglass configuration promotes the interaction of the bioactive phase with physiological fluids. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2433-2442, 2017.
Collapse
Affiliation(s)
- Ehsan Rezabeigi
- Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Paula M Wood-Adams
- Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Robin A L Drew
- Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
36
|
Leite ÁJ, Sarker B, Zehnder T, Silva R, Mano JF, Boccaccini AR. Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. Biofabrication 2016; 8:035005. [DOI: 10.1088/1758-5090/8/3/035005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Sehgal RR, Carvalho E, Banerjee R. Mechanically Stiff, Zinc Cross-Linked Nanocomposite Scaffolds with Improved Osteostimulation and Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13735-13747. [PMID: 27176647 DOI: 10.1021/acsami.6b02740] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanocomposite scaffolds are studied widely due to their resemblance with the natural extracellular matrix of bone; but their use as a bone tissue engineered scaffold is clinically hampered due to low mechanical stiffness, inadequate osteoconduction, and graft associated infections. The purpose of the current study was the development of a mechanically stiff nanocomposite scaffold using biodegradable gellan and xanthan polymers reinforced with bioglass nanoparticles (nB) (Size: 20-120 nm). These nanocomposite scaffolds were cross-linked with zinc sulfate ions to improve their osteoconduction and antibacterial properties for the regeneration of a functional bone. The compressive strength and modulus of the optimized nanocomposite scaffold (1% w/v polymer reinforced with 4%w/v nB nanoparticles, cross-linked with 1.5 mM zinc sulfate) was 1.91 ± 0.31 MPa and 20.36 ± 1.08 MPa, respectively, which was comparable to the trabecular bone and very high compared to nanocomposite scaffolds reported in earlier studies. Further, in vitro simulated body fluid (SBF) study suggested deposition of biomimetic apatite on the surface of zinc cross-linked nanocomposite scaffolds confirming their bioactivity. MG 63 osteoblast-like cells cultured with the nanocomposite scaffolds responded to matrix stiffness with better adhesion, spreading and cellular interconnections compared to the polymeric gellan and xanthan scaffolds. Incorporation of bioglass nanoparticles and zinc cross-linker in nanocomposite scaffolds demonstrated 62% increment in expression of alkaline phosphatase activity (ALP) and 150% increment in calcium deposition of MG 63 osteoblast-like cells compared to just gellan and xanthan polymeric scaffolds. Furthermore, zinc cross-linked nanocomposite scaffolds significantly inhibited the growth of Gram-positive Bacillus subtilis (70% reduction) and Gram-negative Escherichia coli (81% reduction) bacteria. This study demonstrated a facile approach to tune the mechanical stiffness, bioactivity, osteoconduction potential and bacteriostatic properties of scaffolds, which marked it as a potential bone tissue engineered scaffold.
Collapse
Affiliation(s)
- Rekha R Sehgal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Edmund Carvalho
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai 400076, India
| |
Collapse
|
38
|
The Possible Roles of Biological Bone Constructed with Peripheral Blood Derived EPCs and BMSCs in Osteogenesis and Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8168943. [PMID: 27195296 PMCID: PMC4852345 DOI: 10.1155/2016/8168943] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
Abstract
This study aimed to determine the possible potential of partially deproteinized biologic bone (PDPBB) seeded with bone marrow stromal cells (BMSCs) and endothelial progenitor cells (EPCs) in osteogenesis and angiogenesis. BMSCs and EPCs were isolated, identified, and cocultured in vitro, followed by seeding on the PDPBB. Expression of osteogenesis and vascularization markers was quantified by immunofluorescence (IF) staining, immunohistochemistry (IHC), and quantitive real-time polymerase chain reaction (qRT-PCR). Scanning electron microscope (SEM) was also employed to further evaluate the morphologic alterations of cocultured cells in the biologic bone. Results demonstrated that the coculture system combined with BMSCs and EPCs had significant advantages of (i) upregulating the mRNA expression of VEGF, Osteonectin, Osteopontin, and Collagen Type I and (ii) increasing ALP and OC staining compared to the BMSCs or EPCs only group. Moreover, IHC staining for CD105, CD34, and ZO-1 increased significantly in the implanted PDPBB seeded with coculture system, compared to that of BMSCs or EPCs only, respectively. Summarily, the present data provided evidence that PDPBB seeded with cocultured system possessed favorable cytocompatibility, provided suitable circumstances for different cell growth, and had the potential to provide reconstruction for cases with bone defection by promoting osteogenesis and angiogenesis.
Collapse
|
39
|
Vichery C, Nedelec JM. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E288. [PMID: 28773412 PMCID: PMC5502981 DOI: 10.3390/ma9040288] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented.
Collapse
Affiliation(s)
- Charlotte Vichery
- SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, BP 10448, Clermont-Ferrand F-63000, France.
- CNRS, UMR 6296, ICCF, Aubiere F-63178, France.
| | - Jean-Marie Nedelec
- SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, BP 10448, Clermont-Ferrand F-63000, France.
- CNRS, UMR 6296, ICCF, Aubiere F-63178, France.
| |
Collapse
|
40
|
Rego SJ, Vale AC, Luz GM, Mano JF, Alves NM. Adhesive Bioactive Coatings Inspired by Sea Life. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:560-568. [PMID: 26653103 DOI: 10.1021/acs.langmuir.5b03508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.
Collapse
Affiliation(s)
- Sónia J Rego
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, 4805-017 Barco GMR, Portugal
- ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana C Vale
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, 4805-017 Barco GMR, Portugal
- ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gisela M Luz
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, 4805-017 Barco GMR, Portugal
- ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, 4805-017 Barco GMR, Portugal
- ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, 4805-017 Barco GMR, Portugal
- ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
41
|
Pourhaghgouy M, Zamanian A, Shahrezaee M, Masouleh MP. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:180-6. [DOI: 10.1016/j.msec.2015.07.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
42
|
Gantar A, Drnovšek N, Casuso P, Pérez-San Vicente A, Rodriguez J, Dupin D, Novak S, Loinaz I. Injectable and self-healing dynamic hydrogel containing bioactive glass nanoparticles as a potential biomaterial for bone regeneration. RSC Adv 2016. [DOI: 10.1039/c6ra17327f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Combination of Au-based dynamic hydrogel with 100 nm bioactive glass nanoparticles resulted in the formation of an injectable, self-healing and biocompatible hydrogel nanocomposites with osteoinductive properties and potential for bone regeneration.
Collapse
Affiliation(s)
- Ana Gantar
- Jožef Stefan Institute
- Department for Nanostructured Materials
- Ljubljana
- Slovenia
- Jožef Stefan International Postgraduate School
| | - Nataša Drnovšek
- Jožef Stefan Institute
- Department for Nanostructured Materials
- Ljubljana
- Slovenia
| | - Pablo Casuso
- IK4-CIDETEC Research Centre
- Materials Division
- Donostia-San Sebastián 20009
- Spain
| | | | - Javier Rodriguez
- IK4-CIDETEC Research Centre
- Materials Division
- Donostia-San Sebastián 20009
- Spain
| | - Damien Dupin
- IK4-CIDETEC Research Centre
- Materials Division
- Donostia-San Sebastián 20009
- Spain
| | - Saša Novak
- Jožef Stefan Institute
- Department for Nanostructured Materials
- Ljubljana
- Slovenia
- Jožef Stefan International Postgraduate School
| | - Iraida Loinaz
- IK4-CIDETEC Research Centre
- Materials Division
- Donostia-San Sebastián 20009
- Spain
| |
Collapse
|
43
|
Shuai C, Huang W, Feng P, Gao C, Shuai X, Xiao T, Deng Y, Peng S, Wu P. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 27:97-109. [DOI: 10.1080/09205063.2015.1114286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Correia CO, Leite ÁJ, Mano JF. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydr Polym 2015; 123:39-45. [DOI: 10.1016/j.carbpol.2014.12.076] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 10/27/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022]
|
45
|
In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:1-9. [DOI: 10.1016/j.msec.2014.09.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/14/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022]
|
46
|
Heinemann S. Polymer-Based Matrix Composites. HANDBOOK OF NANOCERAMIC AND NANOCOMPOSITE COATINGS AND MATERIALS 2015:3-27. [DOI: 10.1016/b978-0-12-799947-0.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Rezabeigi E, Wood-Adams PM, Drew RA. Production of porous polylactic acid monoliths via nonsolvent induced phase separation. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.10.063] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Han Z, Gao C, Feng P, Shen Y, Shuai C, Peng S. Silicon carbide whiskers reinforced akermanite scaffolds for tissue engineering. RSC Adv 2014. [DOI: 10.1039/c4ra07474b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Silva CSR, Luz GM, Gamboa-martÍnez TC, Mano JF, GÓmez ribelles JL, GÓmez-tejedor JA. Poly(ɛ-caprolactone) Electrospun Scaffolds Filled with Nanoparticles. Production and Optimization According to Taguchi's Methodology. J MACROMOL SCI B 2014. [DOI: 10.1080/00222348.2013.861304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Eldesoqi K, Seebach C, Nguyen Ngoc C, Meier S, Nau C, Schaible A, Marzi I, Henrich D. High calcium bioglass enhances differentiation and survival of endothelial progenitor cells, inducing early vascularization in critical size bone defects. PLoS One 2013; 8:e79058. [PMID: 24244419 PMCID: PMC3828289 DOI: 10.1371/journal.pone.0079058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/21/2013] [Indexed: 01/21/2023] Open
Abstract
Early vascularization is a prerequisite for successful bone healing and endothelial progenitor cells (EPC), seeded on appropriate biomaterials, can improve vascularization. The type of biomaterial influences EPC function with bioglass evoking a vascularizing response. In this study the influence of a composite biomaterial based on polylactic acid (PLA) and either 20 or 40% bioglass, BG20 and BG40, respectively, on the differentiation and survival of EPCs in vitro was investigated. Subsequently, the effect of the composite material on early vascularization in a rat calvarial critical size defect model with or without EPCs was evaluated. Human EPCs were cultured with β-TCP, PLA, BG20 or BG40, and seeding efficacy, cell viability, cell morphology and apoptosis were analysed in vitro. BG40 released the most calcium, and improved endothelial differentiation and vitality best. This effect was mimicked by adding an equivalent amount of calcium to the medium and was diminished in the presence of the calcium chelator, EGTA. To analyze the effect of BG40 and EPCs in vivo, a 6-mm diameter critical size calvarial defect was created in rats (n = 12). Controls (n = 6) received BG40 and the treatment group (n = 6) received BG40 seeded with 5×105 rat EPCs. Vascularization after 1 week was significantly improved when EPCs were seeded onto BG40, compared to implanting BG40 alone. This indicates that Ca2+ release improves EPC differentiation and is useful for enhanced early vascularization in critical size bone defects.
Collapse
Affiliation(s)
- Karam Eldesoqi
- Department of Trauma-, Hand- and Reconstructive Surgery, Hospital of the Goethe- University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|