1
|
Liu T, Shao T, Jiang J, Ma W, Feng R, Dong D, Wang Y, Bai T, Xu Y. Influence of potassium addition on phosphorus availability and heavy metals immobility of biochar derived from swine manure. Sci Rep 2024; 14:21069. [PMID: 39256459 PMCID: PMC11387754 DOI: 10.1038/s41598-024-69761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Pyrolysis of animal manure at high temperature is necessary to effectively immobilize heavy metals, while the available phosphorus (P) level in biochar is relatively low, rendering it unsuitable for use as fertilizer. In this study, the pretreatment of swine manure with different potassium (K) sources (KOH, K2CO3, CH3COOK and C6H5K3O7) was conducted to produce a biochar with enhanced P availability and heavy metals immobility. The addition of all K compounds lowered the peak temperature of decomposition of cellulose in swine manure. The percentage of ammonium citrate and formic acid extractable P in biochar increased with K addition compared to undoped biochar, with CH3COOK and C6H5K3O7 showing greater effectiveness than KOH and K2CO3, however, water- extractable P did not exhibit significant changes. Additionally, the available and dissolved Si increased due to the doping of K, with KOH and K2CO3 having a stronger effect than CH3COOK and C6H5K3O7. X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed that K addition led to the formation of soluble CaKPO4 and silicate. In addition, the incorporation of K promoted the transformation of labile copper (Cu) and znic (Zn) into the stable fraction while simultaneously reducing their environmental risk. Our study suggest that the co-pyrolysis of swine manure and organic K represents an effective and valuable method for producing biochar with optimized P availability and heavy metals immobility.
Collapse
Affiliation(s)
- Tingwu Liu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Tianci Shao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Jinling Jiang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Wenge Ma
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Ranran Feng
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Dan Dong
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Yan Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Tianxia Bai
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Yonggang Xu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China.
| |
Collapse
|
2
|
Čermáková Z, Hradil D, Bezdička P, Hradilová J, Pánová K. Unique wood ash Co-coloured glass tessera from mediaeval Madonna: Raman spectroscopic study of production technology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123183. [PMID: 37523853 DOI: 10.1016/j.saa.2023.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
While the natron and plant ash glass tesserae may be found on places of importance across the former Roman and Byzantine empires, wood ash glass tesserae are scarce. This is the first time a wood ash glass tessera is studied in detail. It was part of a magnificent 8-metres tall statue of Madonna in Malbork, Poland, created at the end of the 14th century and destroyed at the end of World War Two. It was found to be coloured by cobalt with possible impact of copper, and opacified by Ca-phosphate. Processes previously described in sodium-rich glasses were observed also in the studied potassium-rich wood ash glass tessera, such as diffusion of the respective alkali metal into the Ca-phosphate grains. The elemental composition of the tessera indicates that it is original - mediaeval, from the area north of Alps. Two phases were identified for the first time, to authors' best knowledge, in any glass tessera - leucite (tetragonal KAlSi2O6) and pseudowollastonite (monoclinic CaSiO3). As pseudowollastonite is a high-temperature phase, it may serve as an indicator of production temperature, which was further supported by the study of polymerisation index of model glasses. This study contributes to the knowledge of old technologies and showed that the know-how for opacification was imported from the Mediterranean, while the raw materials employed for the base glass preparation were from the area north of Alps.
Collapse
Affiliation(s)
- Zdeňka Čermáková
- Institute of Inorganic Chemistry of the CAS, v.v.i., ALMA Laboratory, Husinec-Řež 1001, 250 68 Řež, Czech Republic.
| | - David Hradil
- Institute of Inorganic Chemistry of the CAS, v.v.i., ALMA Laboratory, Husinec-Řež 1001, 250 68 Řež, Czech Republic; Academy of Fine Arts in Prague, ALMA Laboratory, U Akademie 4, 170 22 Prague 7, Czech Republic
| | - Petr Bezdička
- Institute of Inorganic Chemistry of the CAS, v.v.i., ALMA Laboratory, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Janka Hradilová
- Academy of Fine Arts in Prague, ALMA Laboratory, U Akademie 4, 170 22 Prague 7, Czech Republic
| | - Karolína Pánová
- Department of Glass and Ceramics, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
3
|
Jamil M, Elouahli A, Abida F, Assaoui J, Gourri E, Hatim Z. Apatitic calcium phosphate /montmorillonite nano-biocomposite: in-situ synthesis, characterization and dissolution properties. Heliyon 2022; 8:e10042. [PMID: 35965974 PMCID: PMC9364031 DOI: 10.1016/j.heliyon.2022.e10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/19/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, calcium phosphate/montmorillonite composites have received attention as a synthetic bone substitutes. In this study, apatitic calcium phosphate/Montmorillonite nano-biocomposites were in-situ synthesized at 22 °C by reaction between calcium hydroxide and orthophosphoric acid in the presence of different contents of montmorillonite (MNa). Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Brunauer–Emmett–Teller (BET) surface areas were used to characterize the prepared powders. The XRD results show that the composites prepared with 2 and 5 wt% MNa and sintered at 900 °C, show the formation of hydroxyapatite (HAP) structure, whereas that prepared with 10 wt% MNa leads to the formation of β-tricalcium phosphate (β-TCP) structure. The HAP structure decomposes at 1000 °C and leads to the formation of biocomposite containing HAP, β and α-TCP. However, β-TCP composites show thermal stability. FTIR and structural refinement results show the incorporation of clay ions into the apatitic structure causing changes in the crystal structure of the formed calcium phosphate phases. The changes in the composition and structure lead to an increase in the dissolution rate of HAP and a decrease in that of β-TCP.
Collapse
Affiliation(s)
- M. Jamil
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
- Team of Mineral Solid Chemistry, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
- Corresponding author.
| | - A. Elouahli
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - F. Abida
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - J. Assaoui
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - E. Gourri
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - Z. Hatim
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| |
Collapse
|
4
|
Noda D, Yamada I, Shinozaki K, Tagaya M. Coordination Effect of Citric Acid to Ca-deficient Hydroxyapatite on the Phase Transition. Dalton Trans 2022; 51:12442-12446. [DOI: 10.1039/d2dt01488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase transition of Ca-deficient hydroxyapatite (CDHA) with citric acid (Cit) coordination was investigated. The Cit promoted the substitution of the K+ ion in CDHA to generate the HA phase....
Collapse
|
5
|
Ballouze R, Marahat MH, Mohamad S, Saidin NA, Kasim SR, Ooi JP. Biocompatible magnesium-doped biphasic calcium phosphate for bone regeneration. J Biomed Mater Res B Appl Biomater 2021; 109:1426-1435. [PMID: 33484103 DOI: 10.1002/jbm.b.34802] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 11/12/2022]
Abstract
Autologous bone grafting remains the gold standard for almost all bone void-filling orthopedic surgery. However, autologous bone grafting has several limitations, thus scientists are trying to identify an ideal synthetic material as an alternative bone graft substitute. Magnesium-doped biphasic calcium phosphate (Mg-BCP) has recently been in the spotlight and is considered to be a potential bone substitute. The Mg-BCP is a mixture of two bioceramics, that is, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), doped with Mg2+ , and can be synthesized through chemical wet-precipitation, sol-gel, single diffusion gel, and solid state reactions. Regardless of the synthesis routes, it is found that the Mg2+ preferentially accommodates in β-TCP lattice instead of the HA lattice. The addition of Mg2+ to BCP leads to desirable physicochemical properties and is found to enhance the apatite-forming ability as compared to pristine BCP. In vitro results suggest that the Mg-BCP is bioactive and not toxic to cells. Implantation of Mg-BCP in in vivo models further affirmed its biocompatibility and efficacy as a bone substitute. However, like the other bioceramics, the optimum physicochemical properties of the Mg-BCP scaffold have yet to be determined. Further investigations are required regarding Mg-BCP applications in bone tissue engineering.
Collapse
Affiliation(s)
- Rama Ballouze
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Muhammad Hanif Marahat
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Sharlina Mohamad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Nor Aini Saidin
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Shah Rizal Kasim
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Jer Ping Ooi
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
6
|
Le Gars Santoni B, Niggli L, Sblendorio G, Alexander D, Stähli C, Bowen P, Döbelin N, Bohner M. Chemically pure β-tricalcium phosphate powders: Evidence of two crystal structures. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.09.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113:23-41. [PMID: 32565369 DOI: 10.1016/j.actbio.2020.06.022] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
β-tricalcium phosphate (β-TCP) is one the most used and potent synthetic bone graft substitute. It is not only osteoconductive, but also osteoinductive. These properties, combined with its cell-mediated resorption, allow full bone defects regeneration. Its clinical outcome is sometimes considered to be "unpredictable", possibly due to a poor understanding of β-TCP physico-chemical properties: β-TCP crystallographic structure is not fully uncovered; recent results suggest that sintered β-TCP is coated with a Ca-rich alkaline phase; β-TCP apatite-forming ability and osteoinductivity may be enhanced by a hydrothermal treatment; β-TCP grain size and porosity are strongly modified by the presence of minute amounts of β-calcium pyrophosphate or hydroxyapatite impurities. The aim of the present article is to provide a critical, but still rather comprehensive review of the current state of knowledge on β-TCP, with a strong focus on its synthesis and physico-chemical properties, and their link to the in vivo response. STATEMENT OF SIGNIFICANCE: The present review documents the richness, breadth, and interest of the research devoted to β-tricalcium phosphate (β-TCP). β-TCP is synthetic, osteoconductive, osteoinductive, and its resorption is cell-mediated, thus making it one of the most potent bone graft substitutes. This comprehensive review reveals that there are a number of aspects, such as surface chemistry, crystallography, or stoichiometry deviations, that are still poorly understood. As such, β-TCP is still an exciting scientific playground despite a 50 year long history and > 200 yearly publications.
Collapse
|
8
|
Spaeth K, Goetz-Neunhoeffer F, Hurle K. Cu2+ doped β-tricalcium phosphate: Solid solution limit and crystallographic characterization by rietveld refinement. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Basu S, Basu B. Unravelling Doped Biphasic Calcium Phosphate: Synthesis to Application. ACS APPLIED BIO MATERIALS 2019; 2:5263-5297. [DOI: 10.1021/acsabm.9b00488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Subhadip Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Boanini E, Gazzano M, Nervi C, Chierotti MR, Rubini K, Gobetto R, Bigi A. Strontium and Zinc Substitution in β-Tricalcium Phosphate: An X-ray Diffraction, Solid State NMR and ATR-FTIR Study. J Funct Biomater 2019; 10:jfb10020020. [PMID: 31060308 PMCID: PMC6616520 DOI: 10.3390/jfb10020020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/15/2023] Open
Abstract
β-tricalcium phosphate (β-TCP) is one of the most common bioceramics, widely applied in bone cements and implants. Herein we synthesized β-TCP by solid state reaction in the presence of increasing amounts of two biologically active ions, namely strontium and zinc, in order to clarify the structural modifications induced by ionic substitution. The results of X-ray diffraction analysis indicate that zinc can substitute for calcium into a β-TCP structure up to about 10 at% inducing a reduction of the cell parameters, whereas the substitution occurs up to about 80 at% in the case of strontium, which provokes a linear increase of the lattice constants, and a slight modification into a more symmetric structure. Rietveld refinements and solid-state 31P NMR spectra demonstrate that the octahedral Ca(5) is the site of β-TCP preferred by the small zinc ion. ATR-FTIR results indicate that zinc substitution provokes a disorder of β-TCP structure. At variance with the behavior of zinc, strontium completely avoids Ca(5) site even at high concentration, whereas it exhibits a clear preference for Ca(4) site. The infrared absorption bands of β-TCP show a general shift towards lower wavenumbers on increasing strontium content. Particularly significant is the shift of the infrared symmetric stretching band at 943 cm−1 due to P(1), that is the phosphate more involved in Ca(4) coordination, which further supports the occupancy preference of strontium.
Collapse
Affiliation(s)
- Elisa Boanini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | | | - Carlo Nervi
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Michele R Chierotti
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Katia Rubini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Roberto Gobetto
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Adriana Bigi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
11
|
Uskoković V, Graziani V, Wu VM, Fadeeva IV, Fomin AS, Presniakov IA, Fosca M, Ortenzi M, Caminiti R, Rau JV. Gold is for the mistress, silver for the maid: Enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:798-810. [PMID: 30423766 PMCID: PMC6366449 DOI: 10.1016/j.msec.2018.10.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 11/23/2022]
Abstract
Self-hardening calcium phosphate cements present ideal bone tissue substitutes from the standpoints of bioactivity and biocompatibility, yet they suffer from (a) weak mechanical properties, (b) negligible osteoinduction without the use of exogenous growth factors, and (c) a lack of intrinsic antibacterial activity. Here we attempt to improve on these deficiencies by studying the properties of self-setting Fe-doped bone-integrative cements containing two different concentrations of the dopant: 0.49 and 1.09 wt% Fe. The hardening process, which involved the transformation of Fe-doped β-tricalcium phosphate (Fe-TCP) to nanocrystalline brushite, was investigated in situ by continuously monitoring the cements using the Energy Dispersive X-Ray Diffraction technique. The setting time was 20 min and the hardening time 2 h, but it took 50 h for the cement to completely stabilize compositionally and mechanically. Still, compared to other similar systems, the phase transformation during hardening was relatively fast and it also followed a relatively simple reaction path, virtually free of complex intermediates and noisy background. Mössbauer spectrometry demonstrated that 57Fe atoms in Fe-TCP were located in two non-equivalent crystallographic sites and distributed over positions with a strong crystal distortion. The pronounced presence of ultrafine crystals in the final, brushite phase contributed to the reduction of the porosity and thereby to the enhancement of the mechanical properties. The compressive strength of the hardened TCP cements increased by more than twofold when Fe was added as a dopant, i.e., from 11.5 ± 0.5 to 24.5 ± 2.0 MPa. The amount of iron released from the cements in physiological media steadied after 10 days and was by an order of magnitude lower than the clinical threshold that triggers the toxic response. The cements exhibited osteoinductive activity, as observed from the elevated levels of expression of genes encoding for osteocalcin and Runx2 in both undifferentiated and differentiated MC3T3-E1 cells challenged with the cements. The osteoinductive effect was inversely proportional to the content of Fe ions in the cements, indicating that an excessive amount of iron can have a detrimental effect on the induction of bone growth by osteoblasts in contact with the cement. In contrast, the antibacterial activity of the cement in the agar assay increased against all four bacterial species analysed (E. coli, S. enteritidis, P. aeruginosa, S. aureus) in direct proportion with the concentration of Fe ions in it, indicating their key effect on the promotion of the antibacterial effect in this material. This effect was less pronounced in broth assays. Experiments involving co-incubation of cements with cells in an alternate magnetic radiofrequency field for 30 min demonstrated a good potential for the use of these magnetic cements in hyperthermia cancer therapies. Specifically, the population of human glioblastoma cells decreased six-fold at the 24 h time point following the end of the magnetic field treatment, while the population of the bone cancer cells dropped approximately twofold. The analysis of the MC3T3-E1 cell/cement interaction reiterated the effects of iron in the cement on the bone growth marker expression by showing signs of adverse effects on the cell morphology and proliferation only for the cement containing the higher concentration of Fe ions (1.09 wt%). Biological testing concluded that the effects of iron are beneficial from the perspective of a magnetic hyperthermia therapy and antibacterial prophylaxis, but its concentration in the material must be carefully optimized to avoid the adverse effects induced above a certain level of iron concentrations.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA; Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052, USA
| | - Valerio Graziani
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Victoria M Wu
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| | - Inna V Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia
| | - Alexander S Fomin
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia
| | - Igor A Presniakov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Marzo Ortenzi
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Ruggero Caminiti
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy; Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy.
| |
Collapse
|
12
|
Meenambal R, Kannan S. Design and structural investigations of Yb 3+ substituted β-Ca 3(PO 4) 2 contrast agents for bimodal NIR luminescence and X-ray CT imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:817-823. [PMID: 30033317 DOI: 10.1016/j.msec.2018.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/02/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
The quest for the development of bone substitutes with contrast agents for diagnostic imaging subsists to distinguish synthetic bone from native human tissue. To this aim, ytterbium (Yb3+) substitutions in β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP) as contrast agents has been developed to differentiate implant materials thereby, facilitating as host for bimodal imaging application by means of NIR luminescence and X-ray computed tomography techniques. A facile aqueous chemical precipitation route with the aid of surfactant is used for the synthesis of Yb3+ substitutions in β-Ca3(PO4)2. The characterization results affirms the ability of β-Ca3(PO4)2 to host 4.36 mol% of Yb3+ while the excess Yb3+ crystallizes as YbPO4. The structure refinement results favour the occupancy of Yb3+ at the Ca2+(5) site of β-Ca3(PO4)2. The absorption and photoluminescence spectra in the near infrared region with emission intensity ~1024 nm in the second biological window correspond to 2F5/2 → 2F7/2 transitions of Yb3+. The designed Yb3+ substituted β-Ca3(PO4)2 does not exhibit any toxicity in human osteosarcoma cell lines and delivers an excellent in vitro CT contrast ability allied by the enhanced signal intensity and high X-ray absorption coefficient.
Collapse
Affiliation(s)
- Rugmani Meenambal
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India.
| |
Collapse
|
13
|
Basu S, Ghosh A, Barui A, Basu B. (Fe/Sr) Codoped Biphasic Calcium Phosphate with Tailored Osteoblast Cell Functionality. ACS Biomater Sci Eng 2018; 4:857-871. [DOI: 10.1021/acsbiomaterials.7b00813] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Aritri Ghosh
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | | |
Collapse
|
14
|
Pascaretti-Grizon F, Guillaume B, Terranova L, Arbez B, Libouban H, Chappard D. Maxillary Sinus Lift with Beta-Tricalcium Phosphate (β-TCP) in Edentulous Patients: A Nanotomographic and Raman Study. Calcif Tissue Int 2017; 101:280-290. [PMID: 28447119 DOI: 10.1007/s00223-017-0280-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/10/2017] [Indexed: 01/06/2023]
Abstract
Sinus lift elevation restores bone mass at the maxilla in edentulate patients before the placement of dental implants. It consists of opening the lateral side of the sinus and grafting beta-tricalcium phosphate granules (β-TCP) under the olfactory membrane. Bone biopsies were obtained in five patients after 60 weeks. They were embedded undecalcified in poly(methyl methacrylate) (pMMA); blocks were analyzed by nanocomputed tomography (nanoCT); specific areas were studied by Raman microspectroscopy. Remnants of β-TCP were osseointegrated and covered with mineralized bone; osteoid tissue was also filling the inner porosity. Macrophages having engulfed numerous β-TCP grains were observed in marrow spaces. β-TCP was identified by nanoCT as osseointegrated particles and as granules in the cytoplasm of macrophages. Raman microspectroscopy permitted to compare the spectra of β-TCP and bone in different areas. The ratio of the ~820 cm-1 band of pMMA (-CH2 groups) on the ν1 phosphate band at 960 cm-1 reflected tissue hydration because water was substituted by MMA during histological processing. In bone, the ratio of the ~960 cm-1 phosphate to the amide 1 band and the ratio ν2 phosphate band by the 1240-1250 amide III band reflect the mineralization degree. Specific bands of β-TCP were found in osseointegrated β-TCP granules and in the grains phagocytized by the macrophages. The hydration degree was maximal for β-TCP phagocytized by macrophages. Raman microspectroscopy associated with nanoCT is a powerful tool in the analysis of the biomaterial degradation and osseointegration.
Collapse
Affiliation(s)
- Florence Pascaretti-Grizon
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Bernard Guillaume
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
- CFI, Collège Français d'Implantologie, 6, rue de Rome, 75005, Paris, France
| | - Lisa Terranova
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Baptiste Arbez
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Hélène Libouban
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France.
- GEROM - NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, 49933, Angers Cedex, France.
| |
Collapse
|
15
|
Singh RK, Srivastava M, Prasad NK, Shetty PH, Kannan S. Hyperthermia effect and antibacterial efficacy of Fe
3+
/Co
2+
co‐substitutions in β‐Ca
3
(PO
4
)
2
for bone cancer and defect therapy. J Biomed Mater Res B Appl Biomater 2017; 106:1317-1328. [DOI: 10.1002/jbm.b.33921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Ram Kishore Singh
- Centre for Nanoscience and Technology, Pondicherry UniversityPuducherry605 014 India
| | - M. Srivastava
- Department of Metallurgical EngineeringIndian Institute of Technology (Banaras Hindu University)Varanasi221005 Uttar Pradesh India
| | - N. K. Prasad
- Department of Metallurgical EngineeringIndian Institute of Technology (Banaras Hindu University)Varanasi221005 Uttar Pradesh India
| | - P. H. Shetty
- Department of Food Science and TechnologyPondicherry UniversityPuducherry605 014 India
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry UniversityPuducherry605 014 India
| |
Collapse
|
16
|
He F, Qian G, Ren W, Li J, Fan P, Shi H, Shi X, Deng X, Wu S, Ye J. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. Biofabrication 2017; 9:025005. [PMID: 28361794 DOI: 10.1088/1758-5090/aa6a62] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymer sphere-based scaffolds, which are prepared by bonding the adjacent spheres via sintering the randomly packed spheres, feature uniform pore structure, full three-dimensional (3D) interconnection, and considerable mechanical strength. However, bioceramic sphere-based scaffolds fabricated by this method have never been reported. Due to high melting temperature of bioceramic, only limited diffusion rate can be achieved when sintering the bioceramic spheres, which is far from enough to form robust bonding between spheres. In the present study, for the first time we fabricated 3D interconnected β-tricalcium phosphate ceramic sphere-based (PG/TCP) scaffolds by introducing phosphate-based glass (PG) as sintering additive and placing uniaxial pressure during the sintering process. The sintering mechanism of PG/TCP scaffolds was unveiled. The PG/TCP scaffolds had hierarchical pore structure, which was composed by interconnected macropores (>200 μm) among spheres, pores (20–120 μm) in the interior of spheres, and micropores (1–3 μm) among the grains. During the sintering process, partial PG reacted with β-TCP, forming β-Ca2P2O7; metal ions from PG substituted to Ca2+ sites of β-TCP. The mechanical properties (compressive strength 2.8–10.6 MPa; compressive modulus 190–620 MPa) and porosity (30%–50%) of scaffolds could be tailored by manipulating the sintering temperatures. The introduction of PG accelerated in vitro degradation of scaffolds, and the PG/TCP scaffolds showed good cytocompatibility. This work may offer a new strategy to prepare bioceramic scaffolds with satisfactory physicochemical properties for application in bone regeneration.
Collapse
Affiliation(s)
- Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Singh RK, Srivastava M, Prasad NK, Awasthi S, Dhayalan A, Kannan S. Iron doped β-Tricalcium phosphate: Synthesis, characterization, hyperthermia effect, biocompatibility and mechanical evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:715-726. [PMID: 28576042 DOI: 10.1016/j.msec.2017.04.130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/22/2023]
Abstract
The ability of β-Tricalcium phosphate [β-TCP, β-Ca3(PO4)2] to host iron at its structural lattice and its associated magnetic susceptibility, hyperthermia effect, biocompatibility and mechanical characteristics is investigated. The studies revealed the ability of β-Ca3(PO4)2 to host 5.02mol% of Fe3+ at its Ca2+(5) site. Excess Fe3+ additions led to the formation of trigonal Ca9Fe(PO4)7 and moreover a minor amount of CaFe3(PO4)3O crystallization was also observed. A gradual increment in the iron content at β-Ca3(PO4)2 results in the simultaneous effect of pronounced hyperthermia effect and mechanical stability. However, the presence of CaFe3(PO4)3O contributes for the reduced hyperthermia effect and mechanical stability of iron substituted β-Ca3(PO4)2. Haemolytic tests, cytotoxicity tests and ALP gene expression analysis confirmed the biocompatibility of the investigated systems.
Collapse
Affiliation(s)
- Ram Kishore Singh
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| | - M Srivastava
- Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, India
| | - N K Prasad
- Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India.
| |
Collapse
|
18
|
Yang Y, He F, Ye J. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1004-9. [DOI: 10.1016/j.msec.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 11/25/2022]
|
19
|
Meenambal R, Poojar P, Geethanath S, Kannan S. Substitutional limit of gadolinium in β-tricalcium phosphate and its magnetic resonance imaging characteristics. J Biomed Mater Res B Appl Biomater 2016; 105:2545-2552. [PMID: 27690186 DOI: 10.1002/jbm.b.33775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/09/2016] [Indexed: 11/11/2022]
Abstract
To compensate the limitations of bone tissue magnetic resonance imaging (MRI), a series of gadolinium (Gd3+ ) substituted β-Tricalcium phosphate [β-TCP, β-Ca3 (PO4 )2 ] were developed. All the powders were characterized using XRD, Raman spectroscopy, Rietveld refinement of the XRD data and the studies confirmed the Gd3+ occupancy at Ca2+ (1), Ca2+ (2) and Ca2+ (3) lattice sites of β-Ca3 (PO4 )2. HR-TEM analysis revealed the spherical nature of particles with diameter about 100 nm. The Gd3+ doped β-Ca3 (PO4 )2 exhibited non-toxic behaviour to MG-63 cells in vitro and the room temperature magnetic field versus magnetization measurements confirmed its paramagnetic behaviour. MRI analysis revelas that it shorten both T1 and T2 proton relaxation times, thus influencing both r1 and r2 relaxivity values that reach 61.97 mM-1 s-1 and 73.35 mM-1 s-1 . © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2545-2552, 2017.
Collapse
Affiliation(s)
- Rugmani Meenambal
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605 014, India
| | - Pavan Poojar
- Medical Imaging Research Centre, Dayananda Sagar Institutions, Bangalore, India
| | - Sairam Geethanath
- Medical Imaging Research Centre, Dayananda Sagar Institutions, Bangalore, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605 014, India
| |
Collapse
|
20
|
Singh RK, Awasthi S, Dhayalan A, Ferreira JMF, Kannan S. Deposition, structure, physical and invitro characteristics of Ag-doped β-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:692-701. [PMID: 26952474 DOI: 10.1016/j.msec.2016.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 01/06/2023]
Abstract
Pure and five silver-doped (0-5Ag) β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2]/chitosan composite coatings were deposited on Titanium (Ti) substrates and their properties that are relevant for applications in hard tissue replacements were assessed. Silver, β-TCP and chitosan were combined to profit from their salient and complementary antibacterial and biocompatible features.The β-Ca3(PO4)2 powders were synthesized by co-precipitation. The characterization results confirmed the Ag(+) occupancy at the crystal lattice of β-Ca3(PO4)2. The Ag-dopedβ-Ca3(PO4)2/chitosan composite coatings deposited by electrophoresis showed good antibacterial activity and exhibited negative cytotoxic effects towards the human osteosarcoma cell line MG-63. The morphology of the coatings was observed by SEM and their efficiency against corrosion of metallic substrates was determined through potentiodynamic polarization tests.
Collapse
Affiliation(s)
- Ram Kishore Singh
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry605 014, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry605 014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry605 014, India
| | - J M F Ferreira
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, Aveiro3810 193, Portugal
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry605 014, India.
| |
Collapse
|
21
|
Kumar PN, Mishra SK, Kannan S. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites. J SOLID STATE CHEM 2015. [DOI: 10.1016/j.jssc.2015.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Singh RK, Kannan S. Synthesis, structural analysis, mechanical, antibacterial and hemolytic activity of Mg²⁺ and Cu²⁺ co-substitutions in β-Ca₃(PO₄)₂. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:530-8. [PMID: 25491861 DOI: 10.1016/j.msec.2014.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/20/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The present study reports the synthesis, structural, mechanical and in vitro characterization of a series of Mg(2+) and Cu(2+) co-substitutions in β-Ca3(PO4)2. Aqueous precipitation technique ensured the formation of calcium deficient apatite with substituted ions in the as prepared conditions and their subsequent heat treatments at 1000°C resulted in the formation of crystalline β-Ca3(PO4)2. The combined substitutions of lower sized Mg(2+) and Cu(2+) in the structural lattice of β-Ca3(PO4)2 led to the significant contraction in a=b-axis and c-axis lattice parameters of β-Ca3(PO4)2. The results from Rietveld refinement confirmed the occupancy of Mg(2+) and Cu(2+) at the Ca(5) site of β-Ca3(PO4)2. The results from mechanical tests proved that Mg(2+) and Cu(2+) substitutions are not hindering the mechanical properties of β-Ca3(PO4)2. The antibacterial and hemolytic results determined for the Mg(2+) and Cu(2+) co-substituted β-Ca3(PO4)2 ensured their good activity against the investigated microbes and also confirmed their blood biocompatibility.
Collapse
Affiliation(s)
- Ram Kishore Singh
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, INDIA
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, INDIA.
| |
Collapse
|
23
|
Synthesis, structure, thermal stability, mechanical and antibacterial behaviour of lanthanum (La3+) substitutions in β-tricalciumphosphate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:598-606. [DOI: 10.1016/j.msec.2014.07.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/06/2014] [Accepted: 07/15/2014] [Indexed: 11/20/2022]
|
24
|
Nanzer S, Oberson A, Huthwelker T, Eggenberger U, Frossard E. The molecular environment of phosphorus in sewage sludge ash: implications for bioavailability. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1050-60. [PMID: 25602834 DOI: 10.2134/jeq2013.05.0202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Producing a P fertilizer from sewage sludge ash (SSA) is a strategy to efficiently recycle P from a secondary raw material. The P speciation in four SSAs was characterized before and after the removal of heavy metals by a thermo-chemical treatment that involved CaCl addition. We chose complementary techniques to determine the direct P speciation, including X-ray powder diffraction, solid-state P direct-polarization magic-angle spinning nuclear magnetic resonance, and X-ray absorption near edge structure. Results from these techniques were compared with operational and functional speciation information obtained from a sequential P extraction and a plant biotest with Italian ryegrass grown on a soil-sand mixture with little available P. The speciation of P in untreated and thermo-chemically treated SSAs depended on their elemental composition. At a molar ratio of Ca:P ≤ 2, SSAs contained combinations of polymorphs of AlPO, β-tricalcium phosphate, and apatite-like P species. In SSAs with a molar ratio of Ca:P > 2, an apatite-like molecular environment was predominant. The thermo-chemical process induced an increase in crystalline phases and enhanced the crystallinity of the P species. The structural order of the bulk sample was the most decisive parameter in controlling the P availability of the studied SSAs to plants. We conclude that, to produce a high-quality fertilizer and despite of the successful heavy metal removal, the thermo-chemical process requires further development toward enhanced P bioavailability.
Collapse
|
25
|
Characterization of Calcium Phosphates Using Vibrational Spectroscopies. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-642-53980-0_8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Mevellec JY, Quillard S, Deniard P, Mekmene O, Gaucheron F, Bouler JM, Buisson JP. Polarized infrared reflectance spectra of brushite (CaHPO4·2H2O) crystal investigation of the phosphate stretching modes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 111:7-13. [PMID: 23602953 DOI: 10.1016/j.saa.2013.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Polarized infrared (IR) reflectance measurements at near-normal incidence were recorded from the ac-plane of a monoclinic brushite (CaHPO4·2H2O) crystal in the 800-1200 cm(-1) spectral range (P-O stretching modes). The adjustment of these data, on the basis of a dispersion analysis (DA) model for monoclinic case, allowed the determination of oscillators parameters for the four P-O stretching observed modes of the phosphate group.
Collapse
Affiliation(s)
- Jean-Yves Mevellec
- CNRS, Institut des Matériaux Jean-Rouxel (IMN) - UMR 6502, Université de Nantes, 2 rue de la Houssinière, B.P. 32229, 44322 Nantes Cedex 3, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kumar PN, Boovarasan M, Singh RK, Kannan S. Synthesis, structural analysis and fabrication of coatings of the Cu2+ and Sr2+ co-substitutions in β-Ca3(PO4)2. RSC Adv 2013. [DOI: 10.1039/c3ra43171a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Cama G, Gharibi B, Sait MS, Knowles JC, Lagazzo A, Romeed S, Di Silvio L, Deb S. A novel method of forming micro- and macroporous monetite cements. J Mater Chem B 2013; 1:958-969. [DOI: 10.1039/c2tb00153e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|