1
|
Wang X, Liu F, Wang T, He Y, Guo Y. Applications of hydrogels in tissue-engineered repairing of temporomandibular joint diseases. Biomater Sci 2024; 12:2579-2598. [PMID: 38679944 DOI: 10.1039/d3bm01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Ji D, Zhang Z, Sun J, Cao W, Wang Z, Wang X, Cao T, Han J, Zhu J. Strong, Tough, and Biocompatible Poly(vinyl alcohol)-Poly(vinylpyrrolidone) Multiscale Network Hydrogels Reinforced by Aramid Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38654450 DOI: 10.1021/acsami.4c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Poly(vinyl alcohol) (PVA) hydrogels are water-rich, three-dimensional (3D) network materials that are similar to the tissue structure of living organisms. This feature gives hydrogels a wide range of potential applications, including drug delivery systems, articular cartilage regeneration, and tissue engineering. Due to the large amount of water contained in hydrogels, achieving hydrogels with comprehensive properties remains a major challenge, especially for isotropic hydrogels. This study innovatively prepares a multiscale-reinforced PVA hydrogel from molecular-level coupling to nanoscale enhancement by chemically cross-linking poly(vinylpyrrolidone) (PVP) and in situ assembled aromatic polyamide nanofibers (ANFs). The optimized ANFs-PVA-PVP (APP) hydrogels have a tensile strength of ≈9.7 MPa, an elongation at break of ≈585%, a toughness of ≈31.84 MJ/m3, a compressive strength of ≈10.6 MPa, and a high-water content of ≈80%. It is excellent among all reported PVA hydrogels and even comparable to some anisotropic hydrogels. System characterizations show that those performances are attributed to the particular multiscale load-bearing structure and multiple interactions between ANFs and PVA. Moreover, APP hydrogels exhibit excellent biocompatibility and a low friction coefficient (≈0.4). These valuable performances pave the way for broad potential in many advanced applications such as biological tissue replacement, flexible wearable devices, electronic skin, and in vivo sensors.
Collapse
Affiliation(s)
- Dongchao Ji
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| | - Zhibo Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| | - Jingxuan Sun
- School of Stomatology, Harbin Medical University, Harbin 150001, P. R. China
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| | - Zhuochao Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xiaolei Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Tengyue Cao
- Beijing No. 80 High School, Beijing 100000, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| |
Collapse
|
3
|
Ren H, Guo A, Luo C. Sandwich hydrogel to realize cartilage-mimetic structures and performances from polyvinyl alcohol, chitosan and sodium hyaluronate. Carbohydr Polym 2024; 328:121738. [PMID: 38220330 DOI: 10.1016/j.carbpol.2023.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Developing artificial substitutes that mimic the structures and performances of natural cartilage is of great importance. However, it is challenging to integrate the high strength, excellent biocompatibility, low coefficient of friction, long-term wear resistance, outstanding swelling resistance, and osseointegration potential into one material. Herein, a sandwich hydrogel with cartilage-mimetic structures and performances was prepared to achieve this goal. The precursor hydrogel was obtained by freezing-thawing the mixture of poly vinyl alcohol, chitosan and deionized water three cycles, accompanied by soaking in sodium hyaluronate solution. The top of the precursor hydrogel was hydrophobically modified with lauroyl chloride and then loaded with lecithin, while the bottom was mineralized with hydroxyapatite. Due to the multiple linkages (crystalline domains, hydrogen bonds, and ionic interactions), the compressive stress was 71 MPa. Owing to the synergy of the hydrophobic modification and lecithin, the coefficient of friction was 0.01. Additionally, no wear trace was observed after 50,000 wear cycles. Remarkably, hydroxyapatite enabled the hydrogel osseointegration potential. The swelling ratio of the hydrogel was 0.06 g/g after soaking in simulated synovial fluid for 7 days. Since raw materials were non-toxic, the cell viability was 100 %. All of the above merits make it an ideal material for cartilage replacement.
Collapse
Affiliation(s)
- Hanyu Ren
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Andi Guo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Chunhui Luo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, Ningxia, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
4
|
Zhong Y, Lin Q, Yu H, Shao L, Cui X, Pang Q, Zhu Y, Hou R. Construction methods and biomedical applications of PVA-based hydrogels. Front Chem 2024; 12:1376799. [PMID: 38435666 PMCID: PMC10905748 DOI: 10.3389/fchem.2024.1376799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Polyvinyl alcohol (PVA) hydrogel is favored by researchers due to its good biocompatibility, high mechanical strength, low friction coefficient, and suitable water content. The widely distributed hydroxyl side chains on the PVA molecule allow the hydrogels to be branched with various functional groups. By improving the synthesis method and changing the hydrogel structure, PVA-based hydrogels can obtain excellent cytocompatibility, flexibility, electrical conductivity, viscoelasticity, and antimicrobial properties, representing a good candidate for articular cartilage restoration, electronic skin, wound dressing, and other fields. This review introduces various preparation methods of PVA-based hydrogels and their wide applications in the biomedical field.
Collapse
Affiliation(s)
- Yi Zhong
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Qi Lin
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Han Yu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, China
| | - Xiang Cui
- Department of Otorhinolaryngology, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Qian Pang
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Yabin Zhu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Ruixia Hou
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Hao M, Wang Y, Li L, Liu Y, Bai Y, Zhou W, Lu Q, Sun F, Li L, Feng S, Wei W, Zhang T. Tough Engineering Hydrogels Based on Swelling-Freeze-Thaw Method for Artificial Cartilage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25093-25103. [PMID: 35606333 DOI: 10.1021/acsami.2c02990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Articular cartilage, which exhibits toughness and ultralow friction even under high squeezing pressures, plays an important role in the daily movement of joints. However, joint soft tissue lesions or injuries caused by diseases, trauma, or human functional decline are inevitable. Poly(vinyl alcohol) (PVA) hydrogels, which have a water content and compressive strength similar to those of many tissues and organs, have the potential to replace tough connective tissues, including cartilage. However, currently, PVA hydrogels are not suitable for complex dynamic environments and lack rebound resilience, especially under long-term or multicycle mechanical loads. Inspired by biological tissues that exhibit increased mechanical strength after swelling, we report a tough engineered hydrogel (TEHy) fabricated by swelling and freeze-thaw methods with a high compressive strength (31 MPa), high toughness (1.17 MJ m-3), a low friction coefficient (0.01), and a low energy loss factor (0.22). Notably, the TEHy remained remarkably resilient after 100 000 cycles of contact extrusion and remains intact after being compressed by an automobile with a weight of approximately 1600 kg. The TEHy also exhibited excellent water swelling resistance (volume and weight changes less than 5%). Moreover, skeletal muscle cells were able to readily attach and proliferate on the surface of TEHy-6, suggesting its outstanding biocompatibility. Overall, this swelling and freeze-thaw strategy solves the antifatigue and stability problems of PVA hydrogels under large static loads (>10 000 N) and provides an avenue to fabricate engineering hydrogels with strong antifatigue and antiswelling properties and ultralow friction for potential use as biomaterials in tissue engineering.
Collapse
Affiliation(s)
- Mingming Hao
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Yongfeng Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Lianhui Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Yinhang Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Yuanyuan Bai
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Weifan Zhou
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Qifeng Lu
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Fuqin Sun
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Lili Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Simin Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Wei Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ting Zhang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| |
Collapse
|
6
|
Hydrogels as Corneal Stroma Substitutes for In Vitro Evaluation of Drug Ocular Permeation. Pharmaceutics 2022; 14:pharmaceutics14040850. [PMID: 35456684 PMCID: PMC9027330 DOI: 10.3390/pharmaceutics14040850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogels are complex hydrophilic structures, consisting of crosslinked homopolymers or copolymers insoluble in water. Due to their controllable bio-physicochemical properties mimicking the morphology of the native extracellular matrix, they are a key part of a lot of research fields, including medicine, pharmaceutics, and tissue engineering. This paper was focused on the preparation and characterization of hydrogels from different blends of polyvinyl alcohol (PVA) with microcrystalline cellulose (MCC) and gelatin (GEL) at various ratios, and from gelatin and chitosan alone to understand their feasibility of utilizing as corneal stroma substitutes in permeability tests for drug candidate molecules in early stages of their development. The characterization was carried out by differential scanning calorimetry, electron microscopy (SEM), water content, mass loss, water permeability, wettability, and tensile stress–strain tests. After the physicochemical characterization, PVA/MCC blend and chitosan proved to be the most promising constructs, showing negligible mass loss after immersion in aqueous medium for two weeks and low hydrodynamic permeability. They were then employed in drug molecules permeation studies and these data were compared to that obtained through excised tissues. The results obtained showed that PVA/MCC hydrogels have similar mechanical and permeability properties to corneal stroma.
Collapse
|
7
|
Yang M, Xiang D, Chen Y, Cui Y, Wang S, Liu W. An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc. MATERIALS 2022; 15:ma15041481. [PMID: 35208022 PMCID: PMC8875496 DOI: 10.3390/ma15041481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Disc herniation is one of the most ubiquitous healthcare problems in modern cities—severe patients eventually require surgical intervention. However, the existing operations—spinal fusion and artificial disc replacement—alter the biomechanics of the spine, leaving much room for improvement. The appropriateness of polyvinyl alcohol (PVA) for biomedical applications has been recognised due to its high water content, excellent biocompatibility, and versatile mechanical properties. In this study, a newly-designed PVA–bacterial cellulose (PVA-BC) composite was assembled to mimic both the biomechanics and annular structure of natural intervertebral discs (IVDs). PVA-BC composites of various concentrations were fabricated and tested under unconfined compression and compressive creep in order to acquire the values of the normalised compressive stiffness and whole normalised deformation. The normalised compressive stiffness increased considerably with an increasing PVA concentration, spanning from 1.82 (±0.18) to 3.50 (±0.14) MPa, and the whole normalised deformation decreased from 0.25 to 0.13. Formulations of 40% PVA provided the most accurate mimicry of natural human IVDs in normalised whole deformation, and demonstrated higher dimensional stability. The biocompatible results further confirmed that the materials had excellent biocompatibility. The novel bionic structure and formulations of the PVA-BC materials mimicked the biomechanics and structure of natural IVDs, and ensured dimensional stability under prolonged compression, reducing the risk of impingement on the surrounding tissue. The PVA-BC composite is a promising material for third-generation artificial IVDs with integrated construction.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Dingding Xiang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| | - Yuru Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Cui
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| |
Collapse
|
8
|
Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Ortega PFR, Galvão BRL, de Oliveira PSC, Bastos GAA, Bernardes MRF, Lavall RL, Trigueiro JPC. Thermochromism in Polydiacetylene/Poly(vinyl alcohol) Hydrogels Obtained by the Freeze–Thaw Method: A Theoretical and Experimental Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paulo F. R. Ortega
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas, 5253-Nova Suíça, CEP 30421-5169 Belo Horizonte, Minas Gerais, Brazil
| | - Breno R. L. Galvão
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas, 5253-Nova Suíça, CEP 30421-5169 Belo Horizonte, Minas Gerais, Brazil
| | - Pedro S. C. de Oliveira
- Departamento de Química/ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Grasielli A. A. Bastos
- Departamento de Química/ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Matheus R. F. Bernardes
- Departamento de Química/ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo L. Lavall
- Departamento de Química/ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - João P. C. Trigueiro
- Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais—Campus Betim, Rua Itaguaçu, 595, São Caetano, CEP 32677-562 Betim, Minas Gerais, Brazil
| |
Collapse
|
10
|
Kudłacik-Kramarczyk S, Drabczyk A, Głąb M, Gajda P, Jaromin A, Czopek A, Zagórska A, Tyliszczak B. Synthesis and Physicochemical Evaluation of Bees' Chitosan-Based Hydrogels Modified with Yellow Tea Extract. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3379. [PMID: 34207214 PMCID: PMC8235593 DOI: 10.3390/ma14123379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/29/2023]
Abstract
The novelty of the research involves designing the measurement methodology aimed at determining the structure-property relationships in the chitosan-based hydrogels containing yellow tea extract. Performed investigations allowed us to determine the swelling properties of hydrogels in selected time intervals, evaluate the mutual interactions between the hydrogels and simulated physiological liquids via pH measurements and directly assess the impact of such interactions on the chemical structure of hydrogels using Fourier transform infrared (FT-IR) spectroscopy and their wettability by the measurements of the flatness of the drop on the surface of the tested samples via the static drop method. Next, the surface morphology of hydrogels was characterized by the Scanning Electron Miscorcopy (SEM) and their elasticity under the tension applied was also verified. It was proved that incubation in simulated physiological liquids resulted in a decrease in contact angles of hydrogels, even by 60%. This also caused their certain degradation which was reflected in lower intensities of bands on FT-IR spectra. Further, 23% v/v yellow tea extract in hydrogel matrices caused the decrease of their tensile strength. An increase in the amount of the crosslinker resulted in a decrease in the sorption capacity of hydrogels wherein their modification caused greater swelling ability. In general, the investigations performed provided much information on the tested materials which may be meaningful considering their application, e.g., as dressing materials.
Collapse
Affiliation(s)
- Sonia Kudłacik-Kramarczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Anna Drabczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Magdalena Głąb
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Paweł Gajda
- Department of Nuclear Energy, Faculty of Energy end Fuels, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland;
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, 14a Joliot-Curie St., 50-383 Wrocław, Poland;
| | - Anna Czopek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (A.C.); (A.Z.)
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (A.C.); (A.Z.)
| | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
11
|
Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2021; 9:603408. [PMID: 33585430 PMCID: PMC7873466 DOI: 10.3389/fbioe.2021.603408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
12
|
Shrestha B, Stojkova K, Yi R, Anastasio MA, Ye JY, Brey EM. Gold nanorods enable noninvasive longitudinal monitoring of hydrogels in vivo with photoacoustic tomography. Acta Biomater 2020; 117:374-383. [PMID: 33010515 DOI: 10.1016/j.actbio.2020.09.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/15/2023]
Abstract
Longitudinal in vivo monitoring is essential for the design and evaluation of biomaterials. An ideal method would provide three-dimensional quantitative information, high spatial resolution, deep tissue penetration, and contrast between tissue and material structures. Photoacoustic (PA) or optoacoustic imaging is a hybrid technique that allows three-dimensional imaging with high spatial resolution. In addition, photoacoustic imaging allows for imaging of vascularization based on the intrinsic contrast of hemoglobin. In this study, we investigated photoacoustic computed tomography (PACT) as a tool for longitudinal monitoring of an implanted hydrogel in a small animal model. Hydrogels were loaded with gold nanorods to enhance contrast and imaged weekly for 8 weeks. PACT allowed non-invasive three-dimensional, quantitative imaging of the hydrogels over the entire 8 weeks. Quantitative volume analysis was used to evaluate the in vivo degradation kinetics of the implants which deviated slightly from in vitro predictions. Multispectral imaging allowed for the simultaneous analysis of hydrogel degradation and local vascularization. These results provide support for the substantial potential of PACT as a tool for insight into biomaterial performance in vivo.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| | - Rich Yi
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| | - Mark A Anastasio
- Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Jing Yong Ye
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| |
Collapse
|
13
|
Darabi MA, Khosrozadeh A, Wang Y, Ashammakhi N, Alem H, Erdem A, Chang Q, Xu K, Liu Y, Luo G, Khademhosseini A, Xing M. An Alkaline Based Method for Generating Crystalline, Strong, and Shape Memory Polyvinyl Alcohol Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902740. [PMID: 33173720 PMCID: PMC7610272 DOI: 10.1002/advs.201902740] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/28/2020] [Accepted: 02/27/2020] [Indexed: 05/25/2023]
Abstract
Strong, stretchable, and durable biomaterials with shape memory properties can be useful in different biomedical devices, tissue engineering, and soft robotics. However, it is challenging to combine these features. Semi-crystalline polyvinyl alcohol (PVA) has been used to make hydrogels by conventional methods such as freeze-thaw and chemical crosslinking, but it is formidable to produce strong materials with adjustable properties. Herein, a method to induce crystallinity and produce physically crosslinked PVA hydrogels via applying high-concentration sodium hydroxide into dense PVA polymer is introduced. Such a strategy enables the production of physically crosslinked PVA biomaterial with high mechanical properties, low water content, resistance to injury, and shape memory properties. It is also found that the developed PVA hydrogel can recover 90% of plastic deformation due to extension upon supplying water, providing a strong contraction force sufficiently to lift objects 1100 times more than their weight. Cytocompatibility, antifouling property, hemocompatibility, and biocompatibility are also demonstrated in vitro and in vivo. The fabrication methods of PVA-based catheters, injectable electronics, and microfluidic devices are demonstrated. This gelation approach enables both layer-by-layer and 3D printing fabrications.
Collapse
Affiliation(s)
- Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Radiological SciencesDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
- Terasaki Institute for Biomedical InnovationLos AngelesCA90024USA
| | - Ali Khosrozadeh
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
- Department of Physical & Environmental SciencesUniversity of Toronto ScarboroughTorontoOntarioM1C 1A4Canada
| | - Ying Wang
- Institute of Burn ResearchState Key Lab of Trauma Burns and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Radiological SciencesDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Halima Alem
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Université de LorraineCNRSInstitut Jean Lamour (UMR 7198)Campus Artem 2 allée André Guinier‐BP 50840Nancy CedexF54011France
| | - Ahmet Erdem
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of ChemistryKocaeli UniversityUmuttepe CampusKocaeli41380Turkey
- Department of Biomedical EngineeringKocaeli UniversityUmuttepe CampusKocaeli41380Turkey
| | - Qiang Chang
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
| | - Kaige Xu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
| | - Yuqing Liu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Lab of Trauma Burns and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Radiological SciencesDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- Terasaki Institute for Biomedical InnovationLos AngelesCA90024USA
- Department of Chemical EngineeringUniversity of CaliforniaLos AngelesCAUSA
| | - Malcolm Xing
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
| |
Collapse
|
14
|
Getangama NN, de Bruyn JR, Hutter JL. Dielectric properties of PVA cryogels prepared by freeze-thaw cycling. J Chem Phys 2020; 153:044901. [PMID: 32752703 DOI: 10.1063/5.0007251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Solutions of polyvinyl alcohol (PVA) in water can form gels upon repeated freezing and thawing. These PVA cryogels have applications as biomaterials, including artificial tissue and drug delivery systems. We have studied the dielectric properties of PVA cryogels within the freeze-thaw cycles as a function of both frequency and temperature in order to understand the physical changes that take place during the thermal cycling process. Our results indicate that most of the changes in dielectric properties occur during the cooling phase of the first cycle and suggest that the solution must be cooled below a critical temperature of about 263 K for the formation of a gel that persists after thawing. The material's dielectric spectrum shows the presence of several relaxation processes. We identify one of these with the dielectric relaxation of ice and two others with motions of the PVA polymer chains. The temperature dependence of the polymeric relaxation times suggests that they are both thermally activated, with an activation energy of roughly 300 kJ/mol.
Collapse
Affiliation(s)
| | - John R de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Jeffrey L Hutter
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
15
|
Mihalko WM, Haider H, Kurtz S, Marcolongo M, Urish K. New materials for hip and knee joint replacement: What's hip and what's in kneed? J Orthop Res 2020; 38:1436-1444. [PMID: 32437026 DOI: 10.1002/jor.24750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/04/2023]
Abstract
Over the last three decades there have been significant advancements in the knee and hip replacement technology that has been driven by an issue in the past concerning adverse local tissue reactions, aseptic and septic loosening. The implants and the materials we utilize have improved over the last two decades and in knee and hip replacement there has been a decrease in the failures attributed to wear and osteolysis. Despite these advancements there are still issues with patient satisfaction and early revisions due to septic and aseptic loosening in knee replacement patients. This article reviews the state of current implant material technology in hip and knee replacement surgery, discusses some of the unmet needs we have in biomaterials, and reviews some of the current biomaterials and technology that may be able to solve the most common issues in the knee and hip replacement surgery.
Collapse
Affiliation(s)
- William M Mihalko
- Department of Orthopaedic Surgery and Biomedical Engineering, Campbell Clinic Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hani Haider
- Orthopaedic Biomechanics and Advanced Surgical Technologies Laboratory, Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven Kurtz
- Exponent Inc., Drexel University, Philadelphia, Pennsylvania
| | - Michele Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Kenneth Urish
- Department of Orthopaedic Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Horkay F, Basser PJ. Composite Hydrogel Model of Cartilage Predicts Its Load-Bearing Ability. Sci Rep 2020; 10:8103. [PMID: 32415132 PMCID: PMC7228937 DOI: 10.1038/s41598-020-64917-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage is a load-bearing tissue found in animal and human joints. It is a composite gel-like material in which a fibrous collagen network encapsulates large proteoglycan assemblies that imbibe fluid and “inflate” the network. Here we describe a composite hydrogel consisting of a cross-linked polyvinyl alcohol matrix filled with poly(acrylic acid) microparticles that mimics functional properties and biomechanical behavior of cartilage. The swelling and mechanical behaviors of this biomimetic model system are strikingly similar to that of human cartilage. The development of synthetic composite gel-based articular cartilage analog suggests new avenues to explore material properties, and their change in disease and degeneration, as well as novel strategies for developing composite tissue-engineered cartilage constructs for regenerative medicine applications.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD, 20892-5772, USA.
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD, 20892-5772, USA
| |
Collapse
|
17
|
Lei Y, Chen X, Li Z, Zhang L, Sun W, Li L, Tang F. A new process for customized patient-specific aortic stent graft using 3D printing technique. Med Eng Phys 2020; 77:80-87. [PMID: 31937437 DOI: 10.1016/j.medengphy.2019.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 11/14/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022]
Abstract
Endovascular aneurysm repair (EVAR) is a popular and effective treatment for descending aortic disease. However, the majority of existing coating stents used in EVAR are of a standard design which may not meet the size or structural requirements of different patients. Therefore, in this paper, we propose using 3D printing and controlled deposition as a patient-specific aortic stent graft manufacturing technique. The methodology involves the use of a rapid prototyping study sacrificial core-coating forming (RPSC-CF) technique to develop an aortic stent graft that consists of a film and metallic stent. Polyether polyurethane and nickel-titanium alloys were chosen due to their shape memory properties and good biocompatibility. The resulting customized stent grafts meet the demands of personalized therapy and invasive surgery, and perform well as demonstrated from burst pressure testing and the degree of radial support provided and radial support force tests, laying the foundation for precise aortic dissection treatment.
Collapse
Affiliation(s)
- Yang Lei
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; Beijing Institute of Aeronautical Materials, Beijing 100095, China
| | - Xin Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; China Electronics Technology Group Corporation, Beijing 100846, China
| | - Zhen Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Wei Sun
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Li
- The First Hospital of Tsinghua University, Beijing 100016, China
| | - Feng Tang
- The First Hospital of Tsinghua University, Beijing 100016, China
| |
Collapse
|
18
|
Saadon S, Razak SIA, Ismail AE, Nayan NHM, Fakhruddin K. Influence of Diclofenac Sodium Loading on Physicochemical and Mechanical Properties of Dual Layer Polyvinyl Alcohol Transdermal Patch. JOURNAL OF PHYSICS: CONFERENCE SERIES 2019; 1372:012049. [DOI: 10.1088/1742-6596/1372/1/012049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Oliveira AS, Seidi O, Ribeiro N, Colaço R, Serro AP. Tribomechanical Comparison between PVA Hydrogels Obtained Using Different Processing Conditions and Human Cartilage. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3413. [PMID: 31635284 PMCID: PMC6829290 DOI: 10.3390/ma12203413] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Designing materials for cartilage replacement raises several challenges due to the complexity of the natural tissue and its unique tribomechanical properties. Poly(vinyl alcohol) (PVA) hydrogels have been explored for such purpose since they are biocompatible, present high chemical stability, and their properties may be tailored through different strategies. In this work, the influence of preparation conditions of PVA hydrogels on its morphology, water absorption capacity, thermotropic behavior, mechanical properties, and tribological performance was evaluated and compared with those of human cartilage (HC). The hydrogels were obtained by cast-drying (CD) and freeze-thawing (FT), in various conditions. It was found that the method of preparation of the PVA hydrogels critically affects their microstructure and performance. CD gels presented a denser structure, absorbed less water, were stiffer, dissipated less energy, and withstood higher loads than FT gels. Moreover, they led to friction coefficients against stainless steel comparable with those of HC. Overall, CD hydrogels had a closer performance to natural HC, when compared to FT ones.
Collapse
Affiliation(s)
- Andreia Sofia Oliveira
- Centro de Química Estrutural (CQE), Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Instituto de Engenharia Mecânica Instituto Superior Técnico (IDMEC)-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Oumar Seidi
- Institut Supérieur des BioSciences (ISBS), École Supérieure d'Ingénieurs de Paris-Est Créteil, 71 Rue Saint-Simon, 94000 Créteil, France.
| | - Nuno Ribeiro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Instituto de Engenharia Mecânica Instituto Superior Técnico (IDMEC)-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Departamento de Ortopedia, Hospital Lusíadas Lisboa, R. Abílio Mendes 12, 1500-458 Lisboa, Portugal.
| | - Rogério Colaço
- Instituto de Engenharia Mecânica Instituto Superior Técnico (IDMEC)-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.
| |
Collapse
|
20
|
Gull N, Khan SM, Zahid Butt MT, Khalid S, Shafiq M, Islam A, Asim S, Hafeez S, Khan RU. In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: a preclinical study. RSC Adv 2019; 9:31078-31091. [PMID: 35529386 PMCID: PMC9072301 DOI: 10.1039/c9ra05025f] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/01/2019] [Indexed: 12/18/2022] Open
Abstract
Systematic administration of painkillers and anti-inflammatory drugs is routinely employed to minimize pain and bodily disorders. Controlled drug delivery has the potential to improve the outcomes of disorders by providing sustained exposure to efficacious drug concentrations. Herein, we report the fabrication of multi-responsive hydrogels using reactive and functional polymers such as chitosan and polyvinyl pyrrolidone by varying the concentration of a cleavable crosslinker, tetraethyl orthosilicate. The swelling indices of the hydrogels were evaluated in distilled water, solutions with different pH values and different electrolytes. FTIR, WAXRD and TGA were conducted to investigate the structures, crystallinities and thermal stabilities of the prepared multi-responsive hydrogels, respectively. The ultimate tensile strength and elongations at break of the fabricated hydrogels were investigated to assess their mechanical stability. Optical microscopy, biodegradation, antimicrobial and cytotoxicity analyses were further carried out to verify the magnified crosslinked and porous structures, biodegradabilities, biocompatibilities and toxic behaviour of the as-prepared hydrogels, respectively. Drug release analysis was conducted to evaluate their release behaviour in PBS, SGF, SIF and electrolyte solutions. The overall results indicate the successful development of novel, non-toxic and sustained drug deliverable hydrogels, which can be considered as a paramount success towards the fabrication of controlled drug delivery systems.
Collapse
Affiliation(s)
- Nafisa Gull
- Department of Polymer Engineering and Technology, University of the Punjab Lahore 54590 Pakistan +92 333 897 6303 +92 300 715 2120
| | - Shahzad Maqsood Khan
- Department of Polymer Engineering and Technology, University of the Punjab Lahore 54590 Pakistan +92 333 897 6303 +92 300 715 2120
| | | | - Syed Khalid
- Research Center of Materials Science, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Muhammad Shafiq
- Department of Polymer Engineering and Technology, University of the Punjab Lahore 54590 Pakistan +92 333 897 6303 +92 300 715 2120
| | - Atif Islam
- Department of Polymer Engineering and Technology, University of the Punjab Lahore 54590 Pakistan +92 333 897 6303 +92 300 715 2120
| | - Sumreen Asim
- Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan 64200 Pakistan
| | - Sadaf Hafeez
- Department of Polymer Engineering and Technology, University of the Punjab Lahore 54590 Pakistan +92 333 897 6303 +92 300 715 2120
| | - Rafi Ullah Khan
- Department of Polymer Engineering and Technology, University of the Punjab Lahore 54590 Pakistan +92 333 897 6303 +92 300 715 2120
| |
Collapse
|
21
|
Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, García-Carvajal ZY. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581780] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rogelio Rodríguez-Rodríguez
- Unidad Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - Hugo Espinosa-Andrews
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, México
| | | | - Zaira Yunuen García-Carvajal
- Unidad Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| |
Collapse
|
22
|
Wahab AHA, Saad APM, Harun MN, Syahrom A, Ramlee MH, Sulong MA, Kadir MRA. Developing functionally graded PVA hydrogel using simple freeze-thaw method for artificial glenoid labrum. J Mech Behav Biomed Mater 2019; 91:406-415. [DOI: 10.1016/j.jmbbm.2018.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
|
23
|
Sa’adon S, Abd Razak SI, Ismail AE, Fakhruddin K. Fabrication of Dual Layer Polyvinyl Alcohol Transdermal Patch: Effect of Freezing-Thawing Cycles on Morphological and Swelling Ability. PROCEDIA COMPUTER SCIENCE 2019; 158:51-57. [DOI: 10.1016/j.procs.2019.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
24
|
Synthetic Materials for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:31-52. [DOI: 10.1007/978-3-319-76711-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Van Bellinghen X, Idoux-Gillet Y, Pugliano M, Strub M, Bornert F, Clauss F, Schwinté P, Keller L, Benkirane-Jessel N, Kuchler-Bopp S, Lutz JC, Fioretti F. Temporomandibular Joint Regenerative Medicine. Int J Mol Sci 2018; 19:E446. [PMID: 29393880 PMCID: PMC5855668 DOI: 10.3390/ijms19020446] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 01/09/2023] Open
Abstract
The temporomandibular joint (TMJ) is an articulation formed between the temporal bone and the mandibular condyle which is commonly affected. These affections are often so painful during fundamental oral activities that patients have lower quality of life. Limitations of therapeutics for severe TMJ diseases have led to increased interest in regenerative strategies combining stem cells, implantable scaffolds and well-targeting bioactive molecules. To succeed in functional and structural regeneration of TMJ is very challenging. Innovative strategies and biomaterials are absolutely crucial because TMJ can be considered as one of the most difficult tissues to regenerate due to its limited healing capacity, its unique histological and structural properties and the necessity for long-term prevention of its ossified or fibrous adhesions. The ideal approach for TMJ regeneration is a unique scaffold functionalized with an osteochondral molecular gradient containing a single stem cell population able to undergo osteogenic and chondrogenic differentiation such as BMSCs, ADSCs or DPSCs. The key for this complex regeneration is the functionalization with active molecules such as IGF-1, TGF-β1 or bFGF. This regeneration can be optimized by nano/micro-assisted functionalization and by spatiotemporal drug delivery systems orchestrating the 3D formation of TMJ tissues.
Collapse
Affiliation(s)
- Xavier Van Bellinghen
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Marion Pugliano
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Francois Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Pascale Schwinté
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
| | - Jean Christophe Lutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
- Faculté de Médecine, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France.
| | - Florence Fioretti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| |
Collapse
|
26
|
Tribological properties of PVA/PVP blend hydrogels against articular cartilage. J Mech Behav Biomed Mater 2018; 78:36-45. [DOI: 10.1016/j.jmbbm.2017.10.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022]
|
27
|
A 'degradable' poly(vinyl alcohol) iron oxide nanoparticle hydrogel. Acta Biomater 2017; 58:376-385. [PMID: 28499634 DOI: 10.1016/j.actbio.2017.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
Polymeric materials that contain magnetic nanoparticles are extremely useful in many applications including as multifunctional drug carriers, imaging contrast agents, or scaffold material. There is a need for biomaterials with appropriate chemical, mechanical, and magnetic properties that also have the ability to degrade or dissolve over time so they can be eliminated from the body following use. In this work, we explore the use of iron oxide nanoparticle (IONP) formation in poly(vinyl alcohol) (PVA) as a crosslinking method in conjunction with physical crosslinking achieved using low temperature thermal cycling (LTTC). PVA-IONP hydrogels were fabricated and characterized. IONPs contribute to the crosslinking of the PVA-IONP material, and their subsequent removal reduces crosslinking, and therefore stability, of the material, allowing dissolution to occur. Dissolution studies were performed on PVA-IONP hydrogels and dissolution was compared for films in solutions of varying pH, in the presence of iron chelating agents, and in simulated physiological and tumor conditions in cell culture media. Iron release, mass loss, and mechanical testing data was collected. This work demonstrates the ability of this biomaterial to 'degrade' over time, which may be very advantageous for applications such as drug delivery. This importance of this work extends to other areas such as the use of stimuli-responsive hydrogels. STATEMENT OF SIGNIFICANCE This manuscript explores the stability of an iron oxide nanoparticle (IONP)-containing, physically crosslinked poly(vinyl alcohol) (PVA) hydrogel. The PVA-IONP hydrogel's stability is imparted through crosslinks created through a low temperature thermal cycling process and through the IONPs. Subsequent IONP removal reduces crosslinks so material dissolution can occur, resulting in a 'degradable' and multifunctional biomaterial. PVA-IONP films were fabricated, characterized and evaluated in terms of dissolution in solutions of varying pH and in the presence of chelating agents. Iron release, mass loss, and mechanical testing data demonstrate the ability of the PVA-IONP biomaterial to 'degrade' over time. This degradability has not yet been demonstrated for crosslinked PVA hydrogels. These results are relevant to the development of degradable multifunctional drug carriers, image contrast agents, or magnetic scaffold materials.
Collapse
|
28
|
Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 2017; 139:127-138. [PMID: 28601703 DOI: 10.1016/j.biomaterials.2017.06.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/16/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
Despite great potential, delivery remains as the most significant barrier to the widespread use of siRNA therapeutics. siRNA has delivery limitations due to susceptibility to RNase degradation, low cellular uptake, and poor tissue-specific localization. Here, we report the development of a hybrid nanoparticle (NP)/hydrogel system that overcomes these challenges. Hydrogels provide localized and sustained delivery via controlled release of entrapped siRNA/NP complexes while NPs protect and enable efficient cytosolic accumulation of siRNA. To demonstrate therapeutic efficacy, regenerative siRNA against WW domain-containing E3 ubiquitin protein ligase 1 (Wwp1) complexed with NP were entrapped within poly(ethylene glycol) (PEG)-based hydrogels and implanted at sites of murine mid-diaphyseal femur fractures. Results showed localization of hydrogels and controlled release of siRNA/NPs at fractures for 28 days, a timeframe over which fracture healing occurs. siRNA/NP sustained delivery from hydrogels resulted in significant Wwp1 silencing at fracture callus compared to untreated controls. Fractures treated with siRNA/NP hydrogels exhibited accelerated bone formation and significantly increased biomechanical strength. This NP/hydrogel siRNA delivery system has outstanding therapeutic promise to augment fracture healing. Owing to the structural similarities of siRNA, the development of the hydrogel platform for in vivo siRNA delivery has myriad therapeutic possibilities in orthopaedics and beyond.
Collapse
|
29
|
|
30
|
Jazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, Almeida L, Tayebi L. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:913-929. [DOI: 10.1016/j.msec.2016.08.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023]
|
31
|
Yang JM, Yang JH, Tsou SC, Ding CH, Hsu CC, Yang KC, Yang CC, Chen KS, Chen SW, Wang JS. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:170-177. [DOI: 10.1016/j.msec.2016.04.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 01/12/2023]
|
32
|
Shi Y, Xiong D, Liu Y, Wang N, Zhao X. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:172-80. [DOI: 10.1016/j.msec.2016.04.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
|
33
|
Composite vascular scaffold combining electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves structure. J Mech Behav Biomed Mater 2016; 61:12-25. [DOI: 10.1016/j.jmbbm.2016.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 11/20/2022]
|
34
|
|
35
|
Gu B, Sun X, Papadimitrakopoulos F, Burgess DJ. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites. J Control Release 2016; 228:170-178. [PMID: 26965956 DOI: 10.1016/j.jconrel.2016.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/28/2016] [Accepted: 03/06/2016] [Indexed: 12/23/2022]
Abstract
The aim of this study was to understand the polymer degradation and drug release mechanism from PLGA microspheres embedded in a PVA hydrogel. Two types of microspheres were prepared with different molecular weight PLGA polymers (approximately 25 and 7 kDa) to achieve different drug release profiles, with a 9-day lag phase and without a lag phase, respectively. The kinetics of water uptake into the microspheres coincided with the drug release profiles for both formulations. For the 25 kDa microspheres, minimal water uptake was observed in the early part of the lag phase followed by substantial water uptake at the later stages and in the drug release phase. For the 7 kDa microspheres, water uptake occurred simultaneously with drug release. Water uptake was approximately 2-3 times that of the initial microsphere weight for both formulations. The internal structure of the PLGA microspheres was evaluated using low temperature scanning electron microscopy (cryo-SEM). Burst drug release occurred followed by pore forming from the exterior to the core of both microspheres. A well-defined hydrogel/microsphere interface was observed. For the 25 kDa microspheres, internal pore formation and swelling occurred before the second drug release phase. The surface layer of the microspheres remained intact whereas swelling, and degradation of the core continued throughout the drug release period. In addition, microsphere swelling reduced glucose transport through the coatings in PBS media and this was considered to be a as a consequence of the increased thickness of the coatings. The combination of the swelling and microdialysis results provides a fresh understanding on the competing processes affecting molecular transport of bioanalytes (i.e. glucose) through these composite coatings during prolonged exposure in PBS.
Collapse
Affiliation(s)
- Bing Gu
- University of Connecticut, School of Pharmacy, Storrs 06269, USA
| | - Xuanhao Sun
- University of Connecticut, Bioscience Electron Microscopy Laboratory, Storrs 06269, USA
| | | | - Diane J Burgess
- University of Connecticut, School of Pharmacy, Storrs 06269, USA.
| |
Collapse
|
36
|
Mechanical properties derived from phase separation in co-polymer hydrogels. J Mech Behav Biomed Mater 2016; 55:286-294. [DOI: 10.1016/j.jmbbm.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022]
|
37
|
Oliveira RN, McGuinness GB, Rouze R, Quilty B, Cahill P, Soares GDA, Thiré RMSM. PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications. J Appl Polym Sci 2015. [DOI: 10.1002/app.42129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Renata N. Oliveira
- Centre for Medical Engineering Research; Dublin City University; Dublin 9 Dublin Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University; Dublin 9 Dublin Ireland
| | - Garrett B. McGuinness
- Centre for Medical Engineering Research; Dublin City University; Dublin 9 Dublin Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University; Dublin 9 Dublin Ireland
| | - Regis Rouze
- School of Biotechnology, Dublin City University; Dublin 9 Dublin Ireland
| | - Brid Quilty
- School of Biotechnology, Dublin City University; Dublin 9 Dublin Ireland
| | - Paul Cahill
- Centre for Medical Engineering Research; Dublin City University; Dublin 9 Dublin Ireland
- School of Biotechnology, Dublin City University; Dublin 9 Dublin Ireland
| | - Gloria D. A. Soares
- Institute of Biomedical Sciences, Health Science Centre, Federal University of Rio de Janeiro; 21945-970 Rio de Janeiro Brazil
| | - Rossana M. S. M. Thiré
- Program of Metallurgical and Materials Engineering, COPPE; Federal University of Rio de Janeiro; 21945-970 Rio de Janeiro Brazil
| |
Collapse
|
38
|
Kazimierska-Drobny K, El Fray M, Kaczmarek M. Determination of mechanical and hydraulic properties of PVA hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:48-54. [DOI: 10.1016/j.msec.2014.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/07/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022]
|
39
|
Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W. Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydr Polym 2015; 118:60-9. [DOI: 10.1016/j.carbpol.2014.11.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/10/2023]
|
40
|
Tailored PVA/ECM scaffolds for cartilage regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:762189. [PMID: 25147814 PMCID: PMC4131468 DOI: 10.1155/2014/762189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 11/20/2022]
Abstract
Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM), which is decellularized Wharton's jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA). Wharton's jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton's jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.
Collapse
|
41
|
Taleb C, Berner S, Mantovani Ruggiero G. First metacarpal resurfacing with polyvinyl alcohol implant in osteoarthritis: preliminary study. ACTA ACUST UNITED AC 2014; 33:189-95. [PMID: 24880607 DOI: 10.1016/j.main.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/27/2014] [Accepted: 03/01/2014] [Indexed: 11/16/2022]
Abstract
Osteoarthritis of first carpometacarpal (CMC) joint is a condition that is frequently encountered in hand surgery. If conservative treatment fails, several surgical procedures are available ranging from arthroscopic debridement to total joint arthroplasty. This study focuses on a new resurfacing technique for the base of the first metacarpal using a polyvinyl alcohol hydrogel implant. Our preliminary study found good clinical outcomes and no inflammatory reaction after a follow-up of 30 months. However prospective studies with a longer follow-up and more patient are needed to confirm these results.
Collapse
Affiliation(s)
- C Taleb
- Hand surgery department, Beneficência Portuguesa de Sao Paulo Hospital, Sao Paulo, Brazil; Hand surgery department, University Hospital of Strasbourg, 21075 Illkirch, France.
| | - S Berner
- Hand surgery department, Sinai Hospital of Baltimore, Maryland, USA
| | - G Mantovani Ruggiero
- Hand surgery department, Beneficência Portuguesa de Sao Paulo Hospital, Sao Paulo, Brazil
| |
Collapse
|
42
|
Wan W, Bannerman AD, Yang L, Mak H. Poly(Vinyl Alcohol) Cryogels for Biomedical Applications. POLYMERIC CRYOGELS 2014. [DOI: 10.1007/978-3-319-05846-7_8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Leone G, Bidini A, Lamponi S, Magnani A. States of water, surface and rheological characterisation of a new biohydrogel as articular cartilage substitute. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Via Aldo Moro 2 53100 Siena Italy and INSTM
| | | | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Via Aldo Moro 2 53100 Siena Italy and INSTM
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Via Aldo Moro 2 53100 Siena Italy and INSTM
| |
Collapse
|
44
|
Sun X, Fujimoto T, Uyama H. Fabrication of a poly(vinyl alcohol) monolith via thermally impacted non-solvent-induced phase separation. Polym J 2013. [DOI: 10.1038/pj.2013.18] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Holloway JL, Lowman AM, Palmese GR. Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions. Acta Biomater 2013; 9:5013-21. [PMID: 23022548 DOI: 10.1016/j.actbio.2012.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022]
Abstract
The osmotic pressure of the medium used for in vitro swelling evaluation has been shown to have a significant effect on the swelling behavior of a material. In this study, the effect of osmotic pressure during swelling on poly(vinyl alcohol) hydrogel material properties was evaluated in vitro. Osmotic pressure solutions are necessary in order to mimic the swelling pressure observed in vivo for soft tissues present in load-bearing joints. Hydrogels were characterized after swelling by mechanical testing, X-ray diffraction and optical microscopy in the hydrated state. Results indicated that hydrogel mechanical properties remained tailorable with respect to initial processing parameters; however, significant aging occurred in osmotic solution. This was observed when evaluating the mechanical properties of the hydrogels, which, before swelling, ranged from 0.04 to 0.78 MPa but, after swelling in vitro using osmotic pressure solution, ranged from 0.32 to 0.93 MPa. Significant aging was also noted when evaluating crystallinity, with the relative crystallinity ranging between 0.4 and 5.0% before swelling and between 6.5 nd 8.0% after swelling. When compared to swelling in a non-osmotic pressure solution or in phosphate-buffered saline solution, the mechanical properties were more dependent upon the final swelling content. Furthermore, increases in crystallinity were not as significant after swelling. These results highlight the importance of choosing the appropriate swelling medium for in vitro characterization based on the desired application.
Collapse
Affiliation(s)
- Julianne L Holloway
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, 3141 Chestnut St., PA 19104, USA
| | | | | |
Collapse
|
46
|
Ng KW, Torzilli PA, Warren RF, Maher SA. Characterization of a macroporous polyvinyl alcohol scaffold for the repair of focal articular cartilage defects. J Tissue Eng Regen Med 2012; 8:164-8. [PMID: 22549901 DOI: 10.1002/term.1510] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 11/08/2022]
Abstract
Focal cartilage defects reduce the ability of articular cartilage to resist mechanical loading and provide lubrication during joint motion. The limitations in current surgical treatments have motivated the use of biocompatible scaffolds as a future treatment option. Here we describe a second generation macroporous, polyvinyl alcohol (PVA) scaffold with independently tunable morphological and mechanical properties. The compressive moduli of the PVA scaffold increased with increasing polymer concentration and applied compressive strain, with values in the range for human articular cartilage (HA > 1000 kPa, EY > 500 kPa). Scaffolds also possessed strain-dependent permeability and Poisson's ratio. The interconnected macroporous network was found to facilitate chondrocyte seeding and proliferation through the scaffold over one week in culture. Overall, these promising characteristics demonstrate the potential of this macroporous scaffold for future studies in focal cartilage defect repair.
Collapse
Affiliation(s)
- Kenneth W Ng
- Hospital for Special Surgery, New York, New York, USA
| | | | | | | |
Collapse
|
47
|
Baker MI, Walsh SP, Schwartz Z, Boyan BD. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 2012; 100:1451-7. [PMID: 22514196 DOI: 10.1002/jbm.b.32694] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/20/2012] [Accepted: 01/29/2012] [Indexed: 12/28/2022]
Abstract
Polyvinyl alcohol (PVA) is a synthetic polymer derived from polyvinyl acetate through partial or full hydroxylation. PVA is commonly used in medical devices due to its low protein adsorption characteristics, biocompatibility, high water solubility, and chemical resistance. Some of the most common medical uses of PVA are in soft contact lenses, eye drops, embolization particles, tissue adhesion barriers, and as artificial cartilage and meniscus. The purpose of this review is to evaluate the available published information on PVA with respect to its safety as a medical device implant material for cartilage replacement. The review includes historical clinical use of PVA in orthopedics, and in vitro and in vivo biocompatibility studies. Finally, the safety recommendation involving the further development of PVA cryogels for cartilage replacement is addressed.
Collapse
Affiliation(s)
- Maribel I Baker
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
48
|
Bershtein VA, Gun'ko VM, Egorova LM, Wang Z, Illsley M, Voronin EF, Prikhod'ko GP, Yakushev PN, Leboda R, Skubiszewska-Zięba J, Mikhalovsky SV. Dynamics, thermal behaviour and elastic properties of thin films of poly(vinyl alcohol) nanocomposites. RSC Adv 2012. [DOI: 10.1039/c1ra00535a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|