1
|
Douglass M, Garren M, Devine R, Mondal A, Handa H. Bio-inspired hemocompatible surface modifications for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2022; 130:100997. [PMID: 36660552 PMCID: PMC9844968 DOI: 10.1016/j.pmatsci.2022.100997] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When blood first encounters the artificial surface of a medical device, a complex series of biochemical reactions is triggered, potentially resulting in clinical complications such as embolism/occlusion, inflammation, or device failure. Preventing thrombus formation on the surface of blood-contacting devices is crucial for maintaining device functionality and patient safety. As the number of patients reliant on blood-contacting devices continues to grow, minimizing the risk associated with these devices is vital towards lowering healthcare-associated morbidity and mortality. The current standard clinical practice primarily requires the systemic administration of anticoagulants such as heparin, which can result in serious complications such as post-operative bleeding and heparin-induced thrombocytopenia (HIT). Due to these complications, the administration of antithrombotic agents remains one of the leading causes of clinical drug-related deaths. To reduce the side effects spurred by systemic anticoagulation, researchers have been inspired by the hemocompatibility exhibited by natural phenomena, and thus have begun developing medical-grade surfaces which aim to exhibit total hemocompatibility via biomimicry. This review paper aims to address different bio-inspired surface modifications that increase hemocompatibility, discuss the limitations of each method, and explore the future direction for hemocompatible surface research.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Mzyk A, Imbir G, Noguchi Y, Sanak M, Major R, Wiecek J, Kurtyka P, Plutecka H, Trembecka-Wójciga K, Iwasaki Y, Ueda M, Kakinoki S. Dynamic in vitro hemocompatibility of oligoproline self-assembled monolayer surfaces. Biomater Sci 2022; 10:5498-5503. [PMID: 35904349 DOI: 10.1039/d2bm00885h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The blood compatibility of self-assembled monolayers (SAMs) of oligoproline, a nonionic antifouling peptide, was investigated using the cone-and-plate assay imitating arterial blood flow conditions. End-capped oligoprolines composed of 6 and 9 proline residues (Pro6 and Pro9) and a Cys residue were synthesized for preparing SAMs (Pro-SAMs) on Au-sputtered glass. The surface of Pro-SAMs indicated hydrophilic property with a smooth topology. The adsorption of blood components and the adhesion of blood cells, including leukocytes and platelets, were strongly suppressed on Pro-SAMs. Moreover, Pro9-SAM did not trigger the activation of platelets (i.e., the conformational change of GPIIb/IIIa and P-selectin (CD62P) expression on platelets and the formation of aggregates). Our results demonstrate that Pro9-SAM completely inhibited acute thrombogenic responses and the activation of platelets under dynamic conditions.
Collapse
Affiliation(s)
- Aldona Mzyk
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland.,Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands.
| | - Gabriela Imbir
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Yuri Noguchi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. .,Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Marek Sanak
- Department of Medicine, Jagiellonian University Medical College, Skawińska St. 8, 31-066 Cracow, Poland
| | - Roman Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Justyna Wiecek
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Przemyslaw Kurtyka
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Hanna Plutecka
- Department of Medicine, Jagiellonian University Medical College, Skawińska St. 8, 31-066 Cracow, Poland
| | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. .,Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan.,Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Masato Ueda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. .,Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Sachiro Kakinoki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. .,Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan.,Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
3
|
Parizi LF, Ali A, Tirloni L, Oldiges DP, Sabadin GA, Coutinho ML, Seixas A, Logullo C, Termignoni C, DA Silva Vaz I. Peptidase inhibitors in tick physiology. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:129-144. [PMID: 29111611 DOI: 10.1111/mve.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 06/23/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction.
Collapse
Affiliation(s)
- L F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D P Oldiges
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M L Coutinho
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos-CBB and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - I DA Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Self-Assembled Monolayers for Dental Implants. Int J Dent 2018; 2018:4395460. [PMID: 29552036 PMCID: PMC5818935 DOI: 10.1155/2018/4395460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs) for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available), combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials.
Collapse
|
5
|
Brockman KS, Kizhakkedathu JN, Santerre JP. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI). Acta Biomater 2017; 48:368-377. [PMID: 27818307 DOI: 10.1016/j.actbio.2016.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/23/2016] [Accepted: 11/02/2016] [Indexed: 11/15/2022]
Abstract
Biomaterial blood compatibility is a complex process that involves four key pathways, including the coagulation cascade, the complement system, platelets, and leukocytes. While many studies have addressed the initial contact of blood with homopolymeric (e.g. Teflon) or simple copolymeric (e.g. Dacron) biomaterials, relatively less attention has been given to investigating blood coagulation with respect to complex copolymeric systems containing well defined and diverse function. The current study sought to assess the hemocompatibility of a complex polyurethane (PU) containing a unique combination of polar, hydrophobic, and ionic domains (D-PHI). This included a whole blood (WB) study, followed by tests on the intrinsic and extrinsic coagulation pathways, complement activation, platelet activation, and an assessment of the effect of leukocytes on platelet-biomaterial interactions. A small increase in blood clot formation was observed on D-PHI in WB; however, there was no significant increase in clotting via the intrinsic coagulation cascade. No significant increase in platelet adhesion and only a very slight increase in platelet activation were observed in comparison to albumin-coated substrates (negative control). D-PHI showed mild complement activation and increased initiation of the extrinsic pathway of coagulation, along with the observation that leukocytes were important in mediating platelet-biomaterial interactions. It is proposed that complement is responsible for activating coagulation by inciting leukocytes to generate tissue factor (TF), which causes extrinsic pathway activation. This low level of blood clotting on D-PHI's surface may be necessary for the beneficial wound healing of vascular constructs that has been previously reported for this material. STATEMENT OF SIGNIFICANCE Understanding the hemocompatibility of devices intended for blood-contacting applications is important for predicting device failure. Hemocompatibility is a complex parameter (affected by at least four different mechanisms) that measures the level of thrombus generation and immune system activation resulting from blood-biomaterial contact. The complexity of hemocompatibility implies that homopolymers are unlikely to solve the clotting challenges that face most biomaterials. Diversity in surface chemistry (containing hydrophobic, ionic, and polar domains) obtained from engineered polyurethanes can lead to favourable interactions with blood. The current research considered the effect of a highly functionalized polyurethane biomaterial on all four mechanisms in order to provide a comprehensive in vitro measure of the hemocompatibility of this unique material and the important mechanisms at play.
Collapse
Affiliation(s)
- Kathryne S Brockman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3R5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - J Paul Santerre
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3R5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.
| |
Collapse
|
6
|
Pagel M, Beck-Sickinger AG. Multifunctional biomaterial coatings: synthetic challenges and biological activity. Biol Chem 2017; 398:3-22. [DOI: 10.1515/hsz-2016-0204] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
Abstract
A controlled interaction of materials with their surrounding biological environment is of great interest in many fields. Multifunctional coatings aim to provide simultaneous modulation of several biological signals. They can consist of various combinations of bioactive, and bioinert components as well as of reporter molecules to improve cell-material contacts, prevent infections or to analyze biochemical events on the surface. However, specific immobilization and particular assembly of various active molecules are challenging. Herein, an overview of multifunctional coatings for biomaterials is given, focusing on synthetic strategies and the biological benefits by displaying several motifs.
Collapse
|
7
|
Basterretxea A, Haga Y, Sanchez-Sanchez A, Isik M, Irusta L, Tanaka M, Fukushima K, Sardon H. Biocompatibility and hemocompatibility evaluation of polyether urethanes synthesized using DBU organocatalyst. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Childers EP, Peterson GI, Ellenberger AB, Domino K, Seifert GV, Becker ML. Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on l-Valine-Based Poly(ester urea). Biomacromolecules 2016; 17:3396-3403. [DOI: 10.1021/acs.biomac.6b01195] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Erin P. Childers
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gregory I. Peterson
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Alex B. Ellenberger
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Karen Domino
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gabrielle V. Seifert
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
9
|
Dhahri M, Rodriguez-Ruiz V, Aid-Launais R, Ollivier V, Pavon-Djavid G, Journé C, Louedec L, Chaubet F, Letourneur D, Maaroufi RM, Meddahi-Pellé A. In vitro
and in vivo
hemocompatibility evaluation of a new dermatan sulfate-modified PET patch for vascular repair surgery. J Biomed Mater Res B Appl Biomater 2016; 105:2001-2009. [DOI: 10.1002/jbm.b.33733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Manel Dhahri
- Laboratoire de Pharmacologie 04/UR/01-09, Faculté de Médecine, Université de Monastir; Monastir Tunisia
| | - Violeta Rodriguez-Ruiz
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Rachida Aid-Launais
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Véronique Ollivier
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Graciela Pavon-Djavid
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Clément Journé
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Liliane Louedec
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Frédéric Chaubet
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Didier Letourneur
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Raoui M. Maaroufi
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de recherche Génétique, biodiversité et valorisation des bioressources LR11ES41, Université de Monastir; Monastir Tunisia
| | - Anne Meddahi-Pellé
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| |
Collapse
|
10
|
Zhao W, Han Z, Ma L, Sun S, Zhao C. Highly hemo-compatible, mechanically strong, and conductive dual cross-linked polymer hydrogels. J Mater Chem B 2016; 4:8016-8024. [DOI: 10.1039/c6tb02259f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Novel hydrogels with highly hemo-compatible, mechanically strong and conductive properties are developed as promising candidates for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Zhiyuan Han
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Shudong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| |
Collapse
|
11
|
|
12
|
Freitas SC, Maia S, Figueiredo AC, Gomes P, Pereira PJ, Barbosa MA, Martins MCL. Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide. Acta Biomater 2014; 10:1227-37. [PMID: 24316365 DOI: 10.1016/j.actbio.2013.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Blood-contacting medical devices have been associated with severe clinical complications, such as thrombus formation, triggered by the activation of the coagulation cascade due to the adsorption of certain plasma proteins on the surface of biomaterials. Hence, the coating of such surfaces with antithrombotic agents has been used to increase biomaterial haemocompatibility. Biomaterial-induced clotting may also be decreased by albumin adsorption from blood plasma in a selective and reversible way, since this protein is not involved in the coagulation cascade. In this context, this paper reports that the immobilization of the thrombin inhibitor D-Phe-Pro-D-Arg-D-Thr-CONH2 (fPrt) onto nanostructured surfaces induces selective and reversible adsorption of albumin, delaying the clotting time when compared to peptide-free surfaces. fPrt, synthesized with two glycine residues attached to the N-terminus (GGfPrt), was covalently immobilized onto self-assembled monolayers (SAMs) having different ratios of carboxylate-hexa(ethylene glycol)- and tri(ethylene glycol)-terminated thiols (EG6-COOH/EG3) that were specifically designed to control GGfPrt orientation, exposure and density at the molecular level. In solution, GGfPrt was able to inactivate the enzymatic activity of thrombin and to delay plasma clotting time in a concentration-dependent way. After surface immobilization, and independently of its concentration, GGfPrt lost its selectivity to thrombin and its capacity to inhibit thrombin enzymatic activity against the chromogenic substrate n-p-tosyl-Gly-Pro-Arg-p-nitroanilide. Nevertheless, surfaces with low concentrations of GGfPrt could delay the capacity of adsorbed thrombin to cleave fibrinogen. In contrast, GGfPrt immobilized in high concentrations was found to induce the procoagulant activity of the adsorbed thrombin. However, all surfaces containing GGfPrt have a plasma clotting time similar to the negative control (empty polystyrene wells), showing resistance to coagulation, which is explained by its capacity to adsorb albumin in a selective and reversible way. This work opens new perspectives to the improvement of the haemocompatibility of blood-contacting medical devices.
Collapse
|
13
|
Zhang K, Liu T, Li JA, Chen JY, Wang J, Huang N. Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization. J Biomed Mater Res A 2013; 102:588-609. [PMID: 23520056 DOI: 10.1002/jbm.a.34714] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Kun Zhang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Barkam S, Saraf S, Seal S. Fabricated micro-nano devices for in vivo and in vitro biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:544-68. [PMID: 23894041 DOI: 10.1002/wnan.1236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/04/2013] [Accepted: 06/19/2013] [Indexed: 12/11/2022]
Abstract
In recent years, the innovative use of microelectromechanical systems (MEMSs) and nanoelectromechanical systems (NEMSs) in biomedical applications has opened wide opportunities for precise and accurate human diagnostics and therapeutics. The introduction of nanotechnology in biomedical applications has facilitated the exact control and regulation of biological environments. This ability is derived from the small size of the devices and their multifunctional capabilities to operate at specific sites for selected durations of time. Researchers have developed wide varieties of unique and multifunctional MEMS/NEMS devices with micro and nano features for biomedical applications (BioMEMS/NEMS) using the state of the art microfabrication techniques and biocompatible materials. However, the integration of devices with the biological milieu is still a fundamental issue to be addressed. Devices often fail to operate due to loss of functionality, or generate adverse toxic effects inside the body. The in vitro and in vivo performance of implantable BioMEMS such as biosensors, smart stents, drug delivery systems, and actuation systems are researched extensively to understand the interaction of the BioMEMS devices with physiological environments. BioMEMS developed for drug delivery applications include microneedles, microreservoirs, and micropumps to achieve targeted drug delivery. The biocompatibility of BioMEMS is further enhanced through the application of tissue and smart surface engineering. This involves the application of nanotechnology, which includes the modification of surfaces with polymers or the self-assembly of monolayers of molecules. Thereby, the adverse effects of biofouling can be reduced and the performance of devices can be improved in in vivo and in vitro conditions.
Collapse
Affiliation(s)
- Swetha Barkam
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | | | | |
Collapse
|