1
|
Lu X, Yu Q, Johari SA, Wang Z. Microplastics with different functional groups modulate cellular and molecular mechanisms of reduced graphene oxide toxicity on the green microalga, Scenedesmus obliquus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108949. [PMID: 39053316 DOI: 10.1016/j.plaphy.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Even though microplastics (MPs) and graphene nanomaterials (GNMs) have demonstrated individual toxicity towards aquatic organisms, the knowledge gap lies in the lack of understanding regarding their combined toxicity. The difference between the combined toxicity of MPs and GNMs, in contrast to their individual toxicities, and furthermore, the elucidation of the mechanism of this combined toxicity are scientific questions that remain to be addressed. In this study, we examined the individual and combined toxicity of three polystyrene microplastics (MPs) with different functional groups-unmodified, carboxyl-modified (COOH-), and amino-modified (NH2-) MPs-in combination with reduced graphene oxide (RGO) on the freshwater microalga Scenedesmus obliquus. More importantly, we explored the cellular and molecular mechanisms responsible for the observed toxicity. The results indicated that the growth inhibition toxicity of RGO, either alone or in combination with the three MPs, against S. obliquus increased gradually with higher particle concentrations. The mitigating effect of MPs-NH2 on RGO-induced toxicity was most significant at a higher concentration, surpassing the effect of unmodified MPs. However, the MPs-COOH did not exhibit a substantial impact on the toxicity of RGO. Unmodified MPs and MPs-COOH aggravated the inhibition effects of RGO on the cell membrane integrity and oxidative stress-related biomarkers. Additionally, MPs-COOH exhibited a stronger inhibition effect on RGO-induced biomarkers compared to unmodified MPs. In contrast, the MPs-NH2 alleviated the inhibition effect of RGO on the biomarkers. Furthermore, the presence of differently functionalized MPs did not significantly affect RGO-induced oxidative stress and photosynthesis-related gene expression in S. obliquus, indicating a limited ability to modulate RGO genotoxicity at the molecular level. These findings can offer a more accurate understanding of the combined risks posed by these micro- and nano-materials and assist in designing more effective mitigation strategies.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Qi Yu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou, 510535, PR China
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
2
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Pandit J, Alam MS, Javed MN, Waziri A, Imam SS. Emerging Roles of Carbon Nanohorns As Sustainable Nanomaterials in Sensor, Catalyst, and Biomedical Applications. HANDBOOK OF GREEN AND SUSTAINABLE NANOTECHNOLOGY 2023:1721-1747. [DOI: 10.1007/978-3-031-16101-8_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
4
|
Pandit J, Alam MS, Javed MN, Waziri A, Imam SS. Emerging Roles of Carbon Nanohorns As Sustainable Nanomaterials in Sensor, Catalyst, and Biomedical Applications. HANDBOOK OF GREEN AND SUSTAINABLE NANOTECHNOLOGY 2022:1-27. [DOI: 10.1007/978-3-030-69023-6_48-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 09/22/2024]
|
5
|
Guo Z, Chakraborty S, Monikh FA, Varsou DD, Chetwynd AJ, Afantitis A, Lynch I, Zhang P. Surface Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects. Adv Biol (Weinh) 2021; 5:e2100637. [PMID: 34288601 DOI: 10.1002/adbi.202100637] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Indexed: 01/08/2023]
Abstract
The increasing exploitation of graphene-based materials (GBMs) is driven by their unique properties and structures, which ignite the imagination of scientists and engineers. At the same time, the very properties that make them so useful for applications lead to growing concerns regarding their potential impacts on human health and the environment. Since GBMs are inert to reaction, various attempts of surface functionalization are made to make them reactive. Herein, surface functionalization of GBMs, including those intentionally designed for specific applications, as well as those unintentionally acquired (e.g., protein corona formation) from the environment and biota, are reviewed through the lenses of nanotoxicity and design of safe materials (safe-by-design). Uptake and toxicity of functionalized GBMs and the underlying mechanisms are discussed and linked with the surface functionalization. Computational tools that can predict the interaction of GBMs behavior with their toxicity are discussed. A concise framing of current knowledge and key features of GBMs to be controlled for safe and sustainable applications are provided for the community.
Collapse
Affiliation(s)
- Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Swaroop Chakraborty
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Fazel Abdolahpur Monikh
- Department of Environmental & Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland
| | - Dimitra-Danai Varsou
- School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia, 1046, Cyprus
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
6
|
Zhang M, Xu Y, Yang M, Yudasaka M, Okazaki T. Comparative assessments of the biodistribution and toxicity of oxidized single-walled carbon nanotubes dispersed with two different reagents after intravenous injection. Nanotoxicology 2021; 15:798-811. [PMID: 33944663 DOI: 10.1080/17435390.2021.1919778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study compared the effects of two commonly-used dispersants, bovine serum albumin (BSA) and polyethylene glycol (PEG), on the biodistribution and toxicity of oxidized super-growth single-wall carbon nanotubes (oxSG) injected intravenously into mice over 3 months. About 1-2% of the injected dose (ID) of oxSG dispersed in BSA (oxSG-BSA) was present in the lungs at all time points. By contrast, about 15% of the ID of oxSG dispersed in PEG (oxSG-PEG) was present in the lungs at 1 day (D1), with accumulation decreasing to about 5% of the ID at 90 days (D90). About 70-80% of the IDs of both oxSG-BSA and oxSG-PEG were present in the liver at D1; by D90, about 15% of the IDs were cleared slowly (oxSG-BSA) or rapidly (oxSG-PEG). In the spleen, about 7% of the IDs of both oxSG-BSA and oxSG-PEG were present at all time points. The toxicities of oxSG-BSA and oxSG-PEG were comparable: no obvious signs of inflammation were observed on histological assessments of the lungs, liver, and spleen and on measurements of cytokine activity in blood plasma and tissue lysates. Concentrations of aspartate transaminase slightly increased at some time points in blood plasma, suggesting that oxSG-BSA and oxSG-PEG were slightly hepatoxic. Taken together, these results indicated that the dispersants had limited effect on the biodistribution and toxicity of oxSGs.
Collapse
Affiliation(s)
- Minfang Zhang
- National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan
| | - Ying Xu
- National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan
| | - Mei Yang
- National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan
| | - Masako Yudasaka
- National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan.,Meijo University, Nagoya, Japan
| | - Toshiya Okazaki
- National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
7
|
Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. Pharmaceutics 2020; 12:pharmaceutics12090850. [PMID: 32906852 PMCID: PMC7558911 DOI: 10.3390/pharmaceutics12090850] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer has become one of the most prevalent diseases worldwide, with increasing incidence in recent years. Current pharmacological strategies are not tissue-specific therapies, which hampers their efficacy and results in toxicity in healthy organs. Carbon-based nanomaterials have emerged as promising nanoplatforms for the development of targeted delivery systems to treat diseased cells. Single-walled carbon nanohorns (SWCNH) are graphene-based horn-shaped nanostructure aggregates with a multitude of versatile features to be considered as suitable nanosystems for targeted drug delivery. They can be easily synthetized and functionalized to acquire the desired physicochemical characteristics, and no toxicological effects have been reported in vivo followed by their administration. This review focuses on the use of SWCNH as drug delivery systems for cancer therapy. Their main applications include their capacity to act as anticancer agents, their use as drug delivery systems for chemotherapeutics, photothermal and photodynamic therapy, gene therapy, and immunosensing. The structure, synthesis, and covalent and non-covalent functionalization of these nanoparticles is also discussed. Although SWCNH are in early preclinical research yet, these nanotube-derived nanostructures demonstrate an interesting versatility pointing them out as promising forthcoming drug delivery systems to target and treat cancer cells.
Collapse
|
8
|
Nakamura M, Tahara Y, Fukata S, Zhang M, Yang M, Iijima S, Yudasaka M. Significance of Optimization of Phospholipid Poly(Ethylene Glycol) Quantity for Coating Carbon Nanohorns to Achieve Low Cytotoxicity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565
| | - Yoshio Tahara
- Nanotube Research Center, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565
| | - Shinsuke Fukata
- Nanotube Research Center, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565
| | - Minfang Zhang
- CNT-Application Research Center, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565
| | - Mei Yang
- CNT-Application Research Center, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565
| | - Sumio Iijima
- Meijo University, 1-501 Shiogamaguchi, Nagoya, Aichi 468-8502
| | - Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565
- Meijo University, 1-501 Shiogamaguchi, Nagoya, Aichi 468-8502
| |
Collapse
|
9
|
Shi Y, Shi Z, Li S, Zhang Y, He B, Peng D, Tian J, Zhao M, Wang X, Zhang Q. The interactions of single-wall carbon nanohorns with polar epithelium. Int J Nanomedicine 2017; 12:4177-4194. [PMID: 28615944 PMCID: PMC5459976 DOI: 10.2147/ijn.s133295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Single-wall carbon nanohorns (SWCNHs), which have multitudes of horn interstices, an extensive surface area, and a spherical aggregate structure, offer many advantages over other carbon nanomaterials being used as a drug nanovector. The previous studies on the interaction between SWCNHs and cells have mostly emphasized on cellular uptake and intracellular trafficking, but seldom on epithelial cells. Polar epithelium as a typical biological barrier constitutes the prime obstacle for the transport of therapeutic agents to target site. This work tried to explore the permeability of SWCNHs through polar epithelium and their abilities to modulate transcellular transport, and evaluate the potential of SWCNHs in drug delivery. Madin-Darby canine kidney (MDCK) cell monolayer was used as a polar epithelial cell model, and as-grown SWCNHs, together with oxidized and fluorescein isothiocyanate-conjugated bovine serum albumin-labeled forms, were constructed and comprehensively investigated in vitro and in vivo. Various methods such as transmission electron microscopy and confocal imaging were used to visualize their intracellular uptake and localization, as well as to investigate the potential transcytotic process. The related mechanism was explored by specific inhibitors. Additionally, fast multispectral optoacoustic tomography imaging was used for monitoring the distribution and transport process of SWCNHs in vivo after oral administration in nude mice, as an evidence for their interaction with the intestinal epithelium. The results showed that SWCNHs had a strong bioadhesion property, and parts of them could be uptaken and transcytosed across the MDCK monolayer. Multiple mechanisms were involved in the uptake and transcytosis of SWCNHs with varying degrees. After oral administration, oxidized SWCNHs were distributed in the gastrointestinal tract and retained in the intestine for up to 36 h probably due to their surface adhesion and endocytosis into the intestinal epithelium. Overall, this comprehensive investigation demonstrated that SWCNHs can serve as a promising nanovector that can cross the barrier of polar epithelial cells and deliver drugs effectively.
Collapse
Affiliation(s)
- Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| | - Zujin Shi
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Suxin Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| | - Yuan Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| | - Dong Peng
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences
| | - Ming Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| |
Collapse
|
10
|
Zhong C, Zhao X, Wang L, Li Y, Zhao Y. Facile synthesis of biocompatible MoSe2 nanoparticles for efficient targeted photothermal therapy of human lung cancer. RSC Adv 2017. [DOI: 10.1039/c6ra27384j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A schematic illustration of FA–PL–MoSe2 nanoparticles preparation and tumor targeted photothermal therapy.
Collapse
Affiliation(s)
- Chunlei Zhong
- The Second Department of Respiratory Medicine
- The First Affiliated Hospital of Xinxiang Medical University
- Weihui 453100
- China
| | - Xin Zhao
- The Second Department of Respiratory Medicine
- The First Affiliated Hospital of Xinxiang Medical University
- Weihui 453100
- China
| | - Lijiang Wang
- The Second Department of Respiratory Medicine
- The First Affiliated Hospital of Xinxiang Medical University
- Weihui 453100
- China
| | - Yunxia Li
- The Second Department of Respiratory Medicine
- The First Affiliated Hospital of Xinxiang Medical University
- Weihui 453100
- China
| | - Yingying Zhao
- The Second Department of Respiratory Medicine
- The First Affiliated Hospital of Xinxiang Medical University
- Weihui 453100
- China
| |
Collapse
|
11
|
Lamprecht C, Taale M, Paulowicz I, Westerhaus H, Grabosch C, Schuchardt A, Mecklenburg M, Böttner M, Lucius R, Schulte K, Adelung R, Selhuber-Unkel C. A Tunable Scaffold of Microtubular Graphite for 3D Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14980-5. [PMID: 27258400 PMCID: PMC4940076 DOI: 10.1021/acsami.6b00778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/03/2016] [Indexed: 05/30/2023]
Abstract
Aerographite (AG) is a novel carbon-based material that exists as a self-supportive 3D network of interconnected hollow microtubules. It can be synthesized in a variety of architectures tailored by the growth conditions. This flexibility in creating structures presents interesting bioengineering possibilities such as the generation of an artificial extracellular matrix. Here we have explored the feasibility and potential of AG as a scaffold for 3D cell growth employing cyclic RGD (cRGD) peptides coupled to poly(ethylene glycol) (PEG) conjugated phospholipids for surface functionalization to promote specific adhesion of fibroblast cells. Successful growth and invasion of the bulk material was followed over a period of 4 days.
Collapse
Affiliation(s)
| | - Mohammadreza Taale
- Institute for Materials Science, University of Kiel, 24143 Kiel, Germany
| | - Ingo Paulowicz
- Institute for Materials Science, University of Kiel, 24143 Kiel, Germany
| | - Hannes Westerhaus
- Institute for Materials Science, University of Kiel, 24143 Kiel, Germany
| | - Carsten Grabosch
- Institute for Materials Science, University of Kiel, 24143 Kiel, Germany
| | - Arnim Schuchardt
- Institute for Materials Science, University of Kiel, 24143 Kiel, Germany
| | - Matthias Mecklenburg
- Institute of Polymers and Composites, Hamburg
University of Technology, 21073 Hamburg, Germany
| | - Martina Böttner
- Institute of Anatomy, University of Kiel, 24118 Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, University of Kiel, 24118 Kiel, Germany
| | - Karl Schulte
- Institute of Polymers and Composites, Hamburg
University of Technology, 21073 Hamburg, Germany
| | - Rainer Adelung
- Institute for Materials Science, University of Kiel, 24143 Kiel, Germany
| | | |
Collapse
|
12
|
Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev 2016; 116:4850-83. [PMID: 27074223 DOI: 10.1021/acs.chemrev.5b00611] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbon nanohorns (sometimes also known as nanocones) are conical carbon nanostructures constructed from an sp(2) carbon sheet. Nanohorns require no metal catalyst in their synthesis, and can be produced in industrial quantities. They provide a realistic and useful alternative to carbon nanotubes, and possibly graphene, in a wide range of applications. They also have their own unique behavior due to their specific conical morphology. However, their research and development has been slowed by several factors, notably during synthesis, they aggregate into spherical clusters ∼100 nm in diameter, blocking functionalization and treatment of individual nanocones. This limitation has recently been overcome with a new approach to separating these "dahlia-like" clusters into individual nanocones. In this review, we describe the structure, synthesis, and topology of carbon nanohorns, and provide a detailed review of nanohorn chemistry.
Collapse
Affiliation(s)
- Nikolaos Karousis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Irene Suarez-Martinez
- Nanochemistry Research Institute, Department of Physics, Curtin University of Technology , P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Christopher P Ewels
- Institut des Materiaux Jean Rouxel, CNRS, Université de Nantes , 2 Rue de la Houssiniere, BP32229, 44322 Nantes, France
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
13
|
Wang R, Cui H, Wang J, Li N, Zhao Q, Zhou Y, Lv Z, Zhong W. Enhancing the antitumor effect of methotrexate in intro and in vivo by a novel targeted single-walled carbon nanohorn-based drug delivery system. RSC Adv 2016. [DOI: 10.1039/c6ra06667d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The present research reports a smart multifunctional oxidized single-wall carbon nanohorns (oxSWNHs) drug delivery system (DDS) which could enhance the anti-tumor effect of methotrexate (MTX).
Collapse
Affiliation(s)
- Ran Wang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Hongjing Cui
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Junling Wang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Nannan Li
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Qian Zhao
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Ying Zhou
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Zhiyi Lv
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Wenying Zhong
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
- Department of Medicinal Chemistry
| |
Collapse
|
14
|
Yudasaka M, Zhang M, Matsumura S, Yuge R, Ichihashi T, Irie H, Shiba K, Iijima S. Not nanocarbon but dispersant induced abnormality in lysosome in macrophages in vivo. NANOTECHNOLOGY 2015; 26:195102. [PMID: 25904306 DOI: 10.1088/0957-4484/26/19/195102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The properties of nanocarbons change from hydrophobic to hydrophilic as a result of coating them with dispersants, typically phospholipid polyethylene glycols, for biological studies. It has been shown that the dispersants remain attached to the nanocarbons when they are injected in mice and influence the nanocarbons' biodistribution in vivo. We show in this report that the effects of dispersants also appear at the subcellular level in vivo. Carbon nanohorns (CNHs), a type of nanocarbon, were dispersed with ceramide polyethylene glycol (CPEG) and intravenously injected in mice. Histological observations and electron microscopy with energy dispersive x-ray analysis revealed that, in liver and spleen, the lysosome membranes were damaged, and the nanohorns formed a complex with hemosiderin in the lysosomes of the macrophages. It is inferred that the lysosomal membrane was damaged by sphigosine generated as a result of CPEG decomposition, which changed the intra lysosomal conditions, inducing the formation of the CPEG-CNH and hemosiderin complex. For comparison, when glucose was used instead of CPEG, neither the nanohorn–hemosiderin complex nor lysosomal membrane damage was found. Our results suggest that surface functionalization can control the behavior of nancarbons in cells in vivo and thereby improve their suitability for medical applications.
Collapse
|
15
|
Novel applications of ubiquinone biopolymer nanocarriers for preventive and regenerative therapeutics: The Saccharomyces cerevisiae paradigm. Int J Pharm 2015; 478:416-425. [DOI: 10.1016/j.ijpharm.2014.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/30/2023]
|
16
|
Li N, Zhao Q, Shu C, Ma X, Li R, Shen H, Zhong W. Targeted killing of cancer cells in vivo and in vitro with IGF-IR antibody-directed carbon nanohorns based drug delivery. Int J Pharm 2015; 478:644-54. [DOI: 10.1016/j.ijpharm.2014.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/19/2014] [Accepted: 12/10/2014] [Indexed: 01/23/2023]
|
17
|
Nezakati T, Cousins BG, Seifalian AM. Toxicology of chemically modified graphene-based materials for medical application. Arch Toxicol 2014; 88:1987-2012. [PMID: 25234085 PMCID: PMC4201927 DOI: 10.1007/s00204-014-1361-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
This review article aims to provide an overview of chemically modified graphene, and graphene oxide (GO), and their impact on toxicology when present in biological systems. Graphene is one of the most promising nanomaterials due to unique physicochemical properties including enhanced optical, thermal, and electrically conductive behavior in addition to mechanical strength and high surface-to-volume ratio. Graphene-based nanomaterials have received much attention over the last 5 years in the biomedical field ranging from their use as polymeric conduits for nerve regeneration, carriers for targeted drug delivery and in the treatment of cancer via photo-thermal therapy. Both in vitro and in vivo biological studies of graphene-based nanomaterials help understand their relative toxicity and biocompatibility when used for biomedical applications. Several studies investigating important material properties such as surface charge, concentration, shape, size, structural defects, and chemical functional groups relate to their safety profile and influence cyto- and geno-toxicology. In this review, we highlight the most recent studies of graphene-based nanomaterials and outline their unique properties, which determine their interactions under a range of environmental conditions. The advent of graphene technology has led to many promising new opportunities for future applications in the field of electronics, biotechnology, and nanomedicine to aid in the diagnosis and treatment of a variety of debilitating diseases.
Collapse
Affiliation(s)
- Toktam Nezakati
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Brian G. Cousins
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander M. Seifalian
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Yang M, Zhang M, Tahara Y, Chechetka S, Miyako E, Iijima S, Yudasaka M. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism. Toxicol Appl Pharmacol 2014; 280:117-26. [DOI: 10.1016/j.taap.2014.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/13/2023]
|
19
|
Matsumura S, Yuge R, Sato S, Tomida A, Ichihashi T, Irie H, Iijima S, Shiba K, Yudasaka M. Ultrastructural localization of intravenously injected carbon nanohorns in tumor. Int J Nanomedicine 2014; 9:3499-508. [PMID: 25092979 PMCID: PMC4114911 DOI: 10.2147/ijn.s62688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanocarbons have many potential medical applications. Drug delivery, diagnostic imaging, and photohyperthermia therapy, especially in the treatment of tumors, have attracted interest. For the further advancement of these application studies, the microscopic localization of nanocarbons in tumor tissues and cells is a prerequisite. In this study, carbon nanohorns (CNHs) with sizes of about 100 nm were intravenously injected into mice having subcutaneously transplanted tumors, and the CNHs in tumor tissue were observed with optical and electron microscopy. In the tumor tissue, the CNHs were found in macrophages and endothelial cells within the blood vessels. Few CNHs were found in tumor cells or in the region away from blood vessels, suggesting that, under these study conditions, the enhanced permeability of tumor blood vessels was not effective for the movement of CNHs through the vessel walls. The CNHs in normal skin tissue were similarly observed. The extravasation of CNHs was not so obvious in tumor but was easily found in normal skin, which was probably due to their vessel wall structure difference. Proper understanding of the location of CNHs in tissues is helpful in the development of the medical uses of CNHs.
Collapse
Affiliation(s)
- Sachiko Matsumura
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryota Yuge
- Smart Energy Research Laboratories, NEC Corporation, Tsukuba, Japan
| | - Shigeo Sato
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Akihiro Tomida
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | | | - Hiroshi Irie
- Teikyo University School of Medicine, Tokyo, Japan
| | - Sumio Iijima
- Smart Energy Research Laboratories, NEC Corporation, Tsukuba, Japan ; Faculty of Science and Technology, Meijo University, Tenpaku, Nagoya, Japan ; Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Japan
| | - Kiyotaka Shiba
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masako Yudasaka
- Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Japan
| |
Collapse
|
20
|
Orecchioni M, Bedognetti D, Sgarrella F, Marincola FM, Bianco A, Delogu LG. Impact of carbon nanotubes and graphene on immune cells. J Transl Med 2014; 12:138. [PMID: 24885781 PMCID: PMC4067374 DOI: 10.1186/1479-5876-12-138] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/03/2014] [Indexed: 12/20/2022] Open
Abstract
It has been recently proposed that nanomaterials, alone or in concert with their specific biomolecular conjugates, can be used to directly modulate the immune system, therefore offering a new tool for the enhancement of immune-based therapies against infectious disease and cancer. Here, we revised the publications on the impact of functionalized carbon nanotubes (f-CNTs), graphene and carbon nanohorns on immune cells. Whereas f-CNTs are the nanomaterial most widely investigated, we noticed a progressive increase of studies focusing on graphene in the last couple of years. The majority of the works (56%) have been carried out on macrophages, following by lymphocytes (30% of the studies). In the case of lymphocytes, T cells were the most investigated (22%) followed by monocytes and dendritic cells (7%), mixed cell populations (peripheral blood mononuclear cells, 6%), and B and natural killer (NK) cells (1%). Most of the studies focused on toxicity and biocompatibility, while mechanistic insights on the effect of carbon nanotubes on immune cells are generally lacking. Only very recently high-throughput gene-expression analyses have shed new lights on unrecognized effects of carbon nanomaterials on the immune system. These investigations have demonstrated that some f-CNTs can directly elicitate specific inflammatory pathways. The interaction of graphene with the immune system is still at a very early stage of investigation. This comprehensive state of the art on biocompatible f-CNTs and graphene on immune cells provides a useful compass to guide future researches on immunological applications of carbon nanomaterials in medicine.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Bianco
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, 07100 Sassari, Italy.
| | | |
Collapse
|
21
|
Kotagiri N, Kim JW. Stealth nanotubes: strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution. Int J Nanomedicine 2014; 9 Suppl 1:85-105. [PMID: 24872705 PMCID: PMC4024978 DOI: 10.2147/ijn.s51854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Carbon nanotubes (CNTs) have recently been in the limelight for their potential role in disease diagnostics and therapeutics, as well as in tissue engineering. Before these medical applications can be realized, there is a need to address issues like opsonization, phagocytosis by macrophages, and sequestration to the liver and spleen for eventual elimination from the body; along with equally important issues such as aqueous solubility, dispersion, biocompatibility, and biofunctionalization. CNTs have not been shown to be able to evade such biological obstacles, which include their nonspecific attachments to cells and other biological components in the bloodstream, before reaching target tissues and cells in vivo. This will eventually determine their longevity in circulation and clearance rate from the body. This review article discusses the current status, challenges, practical strategies, and implementations of coating CNTs with biocompatible and opsonin-resistant moieties, rendering CNTs transparent to opsonins and deceiving the innate immune response to make believe that the CNTs are not foreign. A holistic approach to the development of such "stealth" CNTs is presented, which encompasses not only several biophysicochemical factors that are not limited to surface treatment of CNTs, but also extraneous biological factors such as the protein corona formation that inevitably controls the in vivo fate of the particles. This review also discusses the present and potential applications, along with the future directions, of CNTs and their hybrid-based nanotheranostic agents for multiplex, multimodal molecular imaging and therapy, as well as in other applications, such as drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Nalinikanth Kotagiri
- Bio/Nano Technology Laboratory, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jin-Woo Kim
- Bio/Nano Technology Laboratory, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
22
|
Zhang M, Tahara Y, Yang M, Zhou X, Iijima S, Yudasaka M. Quantification of whole body and excreted carbon nanohorns intravenously injected into mice. Adv Healthc Mater 2014; 3:239-44. [PMID: 23828640 DOI: 10.1002/adhm.201300192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 01/25/2023]
Abstract
With the increase in the projected use of nanocarbons, such as carbon nanohorns (CNHs), carbon nanotubes (CNTs), and nanographenes, in medicine, the biodegradation and excretion of these materials has attracted increasing interest. Here, the excretion and pharmacokinetics of Gd2 O3 nanoparticle labels encapsulated within CNHs after their intravenous injection into mice is studied. The results show that CNHs quantitatively changed with the postinjection time in blood vessels, livers, and other organs. About 40% of the injected CNHs are lost from the mouse body at a postinjection time of 30 d; 15% are excreted in feces, most likely via the bililary pathway into the intestine, whereas the remaining 25% are inferred to be partly or completely degraded.
Collapse
Affiliation(s)
- Minfang Zhang
- Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Guerra J, Herrero MA, Vázquez E. Carbon nanohorns as alternative gene delivery vectors. RSC Adv 2014. [DOI: 10.1039/c4ra03251a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
24
|
Affiliation(s)
- Minfang Zhang
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Masako Yudasaka
- National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|