1
|
Isreb A, Alhnan MA, Mkia A, Al-Jammal K, Yaghi AM, Oga EF, Timmins P, Bonner M, Forbes RT. Evaluation of Drug-Polymer and Drug-Drug Interaction in Cellulosic Multi-Drug Delivery Matrices. Methods Protoc 2025; 8:4. [PMID: 39846690 PMCID: PMC11755489 DOI: 10.3390/mps8010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
Multi-drug delivery systems have gained increasing interest from the pharmaceutical industry. Alongside this is the interest in amorphous solid dispersions as an approach to achieve effective oral delivery of compounds with solubility-limited bioavailability. Despite this, there is limited information regarding predicting the behavior of two or more drugs (in amorphous forms) in a polymeric carrier and whether molecular interactions between the compounds, between each compound, and if the polymer have any effect on the physical properties of the system. This work studies the interaction between model drug combinations (two of ibuprofen, malonic acid, flurbiprofen, or naproxen) dispersed in a polymeric matrix of hypromellose acetate succinate (HPMCAS) using a solvent evaporation technique. Hildebrand and Hansen calculations were used to predict the miscibility of compounds as long as the difference in their solubility parameter values was not greater than 7 MPa1/2. It was observed that the selected APIs (malonic acid, ibuprofen, naproxen, and flurbiprofen) were miscible within the formed polymeric matrix. Adding the API caused depression in the Tg of the polymer to certain concentrations (17%, 23%, 13%) for polymeric matrices loaded with malonic acid, ibuprofen, and naproxen, respectively. Above this, large crystals started to form, and phase separation was seen. Adding two APIs to the same matrix resulted in reducing the saturation concentration of one of the APIs. A trend was observed and linked to Hildebrand and Hansen solubility parameters (HSP).
Collapse
Affiliation(s)
- Abdullah Isreb
- Department of Clinical Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mohamed A. Alhnan
- Department of Life Science and Medicine, Kings College University, London SE1 9NH, UK;
| | - Abdulrahman Mkia
- Department of Pharmacy, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Khaled Al-Jammal
- Quay Pharma Ltd., Deeside Industrial Park, Quay House, 28 Parkway, Deeside CH5 2NS, UK;
| | - Abdallah M. Yaghi
- Department of Information, University of Sheffield, Sheffield S10 2AH, UK;
| | - Enoche Florence Oga
- Department of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.F.O.); (R.T.F.)
| | - Peter Timmins
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Michael Bonner
- Department of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Robert T. Forbes
- Department of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.F.O.); (R.T.F.)
| |
Collapse
|
2
|
Wang L, Wang Z, Luo W, Zhao H, Xie G. Dynamic Time-Programming Circuit for Encoding Information, Programming Dissipative Systems, and Delaying Release of Cargo. ACS APPLIED BIO MATERIALS 2024; 7:8599-8607. [PMID: 39630428 DOI: 10.1021/acsabm.4c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Living systems have some of the most sophisticated reaction circuits in the world, realizing many incredibly complex functions through a variety of simple molecular reactions, in which the most notable feature that distinguishes them from artificial molecular reaction networks is the precise control of reaction times and programmable expression. Here, we exploit the hydrolysis-directed nature of λ exonuclease and the programmed responses of the dynamic nanotechnology of nucleic acids to construct a simple, complete, and powerful set of temporally programmed circuits. This system can arbitrarily regulate the degradation rate of the blocker, thereby delaying the nucleic acid chain substitution reaction with less signal leakage. In addition, the powerful dynamic reaction network of nucleic acids enabled us to control the programmed execution of a wide range of reactions in different fields. We have developed a simple strategy to introduce precise control of the time dimension into nucleic acid reaction circuits, which greatly enriches the functionality and applicability of the reaction programs, which can be easily used as timers, compilers, converters, etc. The simplicity, precision, stability, and versatility of such dynamic temporal programming circuits greatly expand the potential of artificial molecular reaction networks for more complex practical applications in biochemistry and molecular biology.
Collapse
Affiliation(s)
- Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhongzhong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Heping Zhao
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
3
|
Han XS, Li PC, Song HT, Chen YM, Li JH, Yang Y, Li HP, Miyatake H, Ito Y. Mussel inspired sequential protein delivery based on self-healing injectable nanocomposite hydrogel. Int J Biol Macromol 2024; 264:130568. [PMID: 38447822 DOI: 10.1016/j.ijbiomac.2024.130568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Polysaccharide based self-healing and injectable hydrogels with reversible characteristics have widespread potential in protein drug delivery. However, it is a challenge to design the dynamic hydrogel for sequential release of protein drugs. Herein, we developed a novel mussel inspired sequential protein delivery dynamic polysaccharide hydrogel. The nanocomposite hydrogel can be fabricated through doping polydopamine nanoparticles (PDA NPs) into reversible covalent bond (imine bonds) crosslinked polymer networks of oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CEC), named PDA NPs@OHA-l-CEC. Besides multiple capabilities (i.e., injection, self-healing, and biodegradability), the nanocomposite hydrogel can achieve sustained and sequential protein delivery of vascular endothelial growth factor (VEGF) and bovine serum albumin (BSA). PDA NPs doped in hydrogel matrix serve dual roles, acting as secondary protein release structures and form dynamic non-covalent interactions (i.e., hydrogen bonds) with polysaccharides. Moreover, by adjusting the oxidation degree of OHA, the hydrogels with different crosslinking density could control overall protein release rate. Analysis of different release kinetic models revealed that Fickian diffusion drove rapid VEGF release, while the slower BSA release followed a Super Case II transport mechanism. The novel biocompatible system achieved sequential release of protein drugs has potentials in multi-stage synergistic drug deliver based on dynamic hydrogel.
Collapse
Affiliation(s)
- Xiao Shuai Han
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Peng Cheng Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Heng Tao Song
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, PR China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Jian Hui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, PR China.
| | - Yang Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Hao Peng Li
- Second Affiliated Hospital of Xi'an Jiaotong University, College of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center formergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center formergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
4
|
Hossain M, Sulochana SP, Heath KE, Bari SMI, Brewster P, Barnes J, Munivar A, Walker GM, Puleo DA, Werfel TA. Interval delivery of 5HT 2A agonists using multilayered polymer films. J Biomed Mater Res A 2023; 111:790-800. [PMID: 36606344 PMCID: PMC10101876 DOI: 10.1002/jbm.a.37497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
There is an urgent unmet medical need to develop therapeutic options for the ~50% of depression patients suffering from treatment-resistant depression, which is difficult to treat with existing psycho- and pharmaco-therapeutic options. Classical psychedelics, such as the 5HT2A agonists, have re-emerged as a treatment paradigm for depression. Recent clinical trials highlight the potential effectiveness of 5HT2A agonists to improve mood and psychotherapeutic growth in treatment-resistant depression patients, even in those who have failed a median of four previous medications in their lifetime. Moreover, microdosing could be a promising way to achieve long-term alleviation of depression symptoms without a hallucinogenic experience. However, there are a gamut of practical barriers that stymie further investigation of microdosing 5HT2A agonists, including: low compliance with the complicated dosing regimen, high risk of diversion of controlled substances, and difficulty and cost administering the long-term treatment regimens in controlled settings. Here, we developed a drug delivery system composed of multilayered cellulose acetate phthalate (CAP)/Pluronic F-127 (P) films for the encapsulation and interval delivery of 5HT2A agonists from a fully biodegradable and biocompatible implant. CAPP film composition, thickness, and layering strategies were optimized, and we demonstrated three distinct pulses from the multilayered CAPP films in vitro. Additionally, the pharmacokinetics and biodistribution of the 5HT2A agonist 2,5-Dimethoxy-4-iodoamphetamine (DOI) were quantified following the subcutaneous implantation of DOI-loaded single and multilayered CAPP films. Our results demonstrate, for the first time, the interval delivery of psychedelics from an implantable drug delivery system and open the door to future studies into the therapeutic potential of psychedelic delivery.
Collapse
Affiliation(s)
- Mehjabeen Hossain
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Suresh P Sulochana
- Center of Biomedical Research Excellence in Natural Products Neuroscience, University of Mississippi, University, Mississippi, USA
| | - Katie E Heath
- Center of Biomedical Research Excellence in Natural Products Neuroscience, University of Mississippi, University, Mississippi, USA
| | | | - Parker Brewster
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi, USA
| | - Jared Barnes
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi, USA
| | - Azim Munivar
- Research and Development, BioHaven Pharmaceuticals, Inc, New Haven, Connecticut, USA
| | - Glenn M Walker
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi, USA
| | - David A Puleo
- Office of the Provost, The University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Thomas A Werfel
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
5
|
Huang F, Cheng L, Li J, Ren B. Nanofibrous scaffolds for regenerative endodontics treatment. Front Bioeng Biotechnol 2022; 10:1078453. [PMID: 36578510 PMCID: PMC9790898 DOI: 10.3389/fbioe.2022.1078453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Untreated dental caries, tooth trauma and dental anatomical variations such as dens invaginatus can result in pulpitis. However, standard root canal therapy cannot treat immature permanent teeth due to an open apical foramen and thin dentinal walls. Thus, regenerative endodontics treatment (RET) following a disinfection step with pulp regeneration has been developed. Pulp connective-tissue, dentin formation, revascularization and reinnervation can occur in this procedure which should be supplemented with intelligent biomaterials to improve repeatability and support well-coordinated regeneration. Furthermore, nanofibrous scaffolds, as one of the most commonly used materials, show promise. The purpose of this article is to highlight the advantages of nanofibrous scaffolds and discuss the future modification and application of them.
Collapse
Affiliation(s)
- Fangting Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Jain A, Subbarao K, McGinty S, Pontrelli G. Optimization of Initial Drug Distribution in Spherical Capsules for Personalized Release. Pharm Res 2022; 39:2607-2620. [PMID: 36071351 DOI: 10.1007/s11095-022-03359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Customization of the rate of drug delivered based on individual patient requirements is of paramount importance in the design of drug delivery devices. Advances in manufacturing may enable multilayer drug delivery devices with different initial drug distributions in each layer. However, a robust mathematical understanding of how to optimize such capabilities is critically needed. The objective of this work is to determine the initial drug distribution needed in a spherical drug delivery device such as a capsule in order to obtain a desired drug release profile. METHODS This optimization problem is posed as an inverse mass transfer problem, and optimization is carried out using the solution of the forward problem. Both non-erodible and erodible multilayer spheres are analyzed. Cases with polynomial forms of initial drug distribution are also analyzed. Optimization is also carried out for a case where an initial burst in drug release rate is desired, followed by a constant drug release rate. RESULTS More than 60% reduction in root-mean-square deviation of the actual drug release rate from the ideal constant drug release rate is reported. Typically, the optimized initial drug distribution in these cases prevents or minimizes large drug release rate at early times, leading to a much more uniform drug release overall. CONCLUSIONS Results demonstrate potential for obtaining a desired drug delivery profile over time by carefully engineering the drug distribution in the drug delivery device. These results may help engineer devices that offer customized drug delivery by combining advanced manufacturing with mathematical optimization.
Collapse
Affiliation(s)
- Ankur Jain
- Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA.
| | - Kamesh Subbarao
- Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK.,Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, UK
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
7
|
Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. NANO TODAY 2020; 34:100914. [PMID: 32788923 PMCID: PMC7416836 DOI: 10.1016/j.nantod.2020.100914] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive characteristic is the ability to release one or more drugs (or release drugs along with genes) in a controlled sequence at different times or at different sites. This approach can lengthen gene expression periods, reduce the side effects of drugs, enhance the efficacy of drugs, and induce an anti-proliferative effect on cancer cells due to the synergistic effects of genes and drugs. The key objective of this review is to summarize recent progress in SR-based drug/gene delivery systems for cancer and other diseases.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Faranak Elmi
- Department of Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Department of Biology, Faculty of science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department, Bioengineering Division and Bioengineering Centre, Hacettepe University, 06800, Ankara, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, 06830, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
8
|
Deng X, Ren Y, Hou L, Liu W, Jiang T, Jiang H. Compound-Droplet-Pairs-Filled Hydrogel Microfiber for Electric-Field-Induced Selective Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903098. [PMID: 31464378 DOI: 10.1002/smll.201903098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/08/2019] [Indexed: 06/10/2023]
Abstract
The separate co-encapsulation and selective controlled release of multiple encapsulants in a predetermined sequence has potentially important applications for drug delivery and tissue engineering. However, the selective controlled release of distinct contents upon one triggering event for most existing microcarriers still remains challenging. Here, novel microfluidic fabrication of compound-droplet-pairs-filled hydrogel microfibers (C-Fibers) is presented for two-step selective controlled release under AC electric field. The parallel arranged compound droplets enable the separate co-encapsulation of distinct contents in a single microfiber, and the release sequence is guaranteed by the discrepancy of the shell thickness or core conductivity of the encapsulated droplets. This is demonstrated by using a high-frequency electric field to trigger the first burst release of droplets with higher conductivity or thinner shell, followed by the second release of the other droplets under low-frequency electric field. The reported C-Fibers provide novel multidelivery system for a wide range of applications that require controlled release of multiple ingredients in a prescribed sequence.
Collapse
Affiliation(s)
- Xiaokang Deng
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Likai Hou
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Xi'an, 710064, China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
9
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
10
|
Boateng F, Ngwa W. Novel bioerodable eluting-spacers for radiotherapy applications with in situ dose painting. Br J Radiol 2019; 92:20180745. [PMID: 31084497 DOI: 10.1259/bjr.20180745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate feasibility of using bioerodable/bioerodible spacers (BES) over biodegradable spacers (BDS) loaded with gold nanoparticles for radiotherapy applications with in situ dose-painting, and to explore dosimetric impact on dose enhancement ratio of different radioisotopes. METHODS Analytical models proposed were based on experimentally reported erosion rate constant (k 0 = 5. 5E-7 kgm- 2s- 1 ) for bioerodible polymeric matrix. An in vivo determined diffusion coefficient (2.2E-8 cm2/s) of 10 nm gold nanoparticles (AuNP) of concentration 7 mg/g was used to estimate diffusion coefficient of other AuNP sizes (2, 5, 14 nm) using the Stoke-Einstein diffusion equation. The corresponding dose enhancement factors (DEF) were used to study dosimetric feasibility of employing AuNP-eluting BPS for radiotherapy applications. RESULTS The results showed AuNP release period from BES was significantly shorter (116 h) compared to BDS (more than a month) reported previously. The results also agree with reported Hopfenberg equation for a cylindrical matrix undergoing surface erosion. The DEF at tumour distance 5 mm for Cs-131 (DEF > 2.2) greater than that of I-125 (DEF > 2) and Pd-103 (DEF ≥ 2) could be achieved for AuNP sizes (2, 5, 10, and 14 nm) respectively. CONCLUSION Our findings suggested that BES could be used for short-lived radioisotopes like Pd-103 and Cs-131 in comparison to eluting BDS which is feasible for long-lived radioisotopes like I-125. ADVANCES IN KNOWLEDGE The study provides scientific basis for development of new generation eluting spacers viable for enhancing localized tumour dose. It concludes that BES gives higher DEF for Cs-131, and good candidate for replacing conventional fiducials/spacers.
Collapse
Affiliation(s)
| | - Wilfred Ngwa
- 2 University of Massachusetts Lowell , Massachusetts , USA.,3 Brigham and Women's Hospital , Massachusetts , USA.,4 Harvard Medical School , Massachusetts , USA
| |
Collapse
|
11
|
Léber A, Budai-Szűcs M, Urbán E, Vályi P, Gácsi A, Berkó S, Kovács A, Csányi E. Combination of Zinc Hyaluronate and Metronidazole in a Lipid-Based Drug Delivery System for the Treatment of Periodontitis. Pharmaceutics 2019; 11:E142. [PMID: 30934537 PMCID: PMC6471433 DOI: 10.3390/pharmaceutics11030142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Despite being a highly prevalent disease and a possible contributor to adult tooth loss, periodontitis possesses no well-established therapy. The aim of the recent study was the development and evaluation of a mucoadhesive monophase lipid formulation for the sustained local delivery of amoxicillin, metronidazole, and/or zinc hyaluronate or gluconate. METHODS To investigate our formulations, differential scanning calorimetry, X-ray diffraction, swelling, erosion, mucoadhesivity, drug release, and antimicrobial measurements were performed. RESULTS Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results show that the loaded drugs are in a suspended form, the softening of the formulations starts at body temperature, but a part remains solid, providing sustained release. Swelling of the lipid compositions is affected by the hydrophilic components, their concentration, and the strength of the coherent lipid structure, while their erosion is impacted by the emulsification of melted lipid components. CONCLUSIONS Results of drug release and antimicrobial effectiveness measurements show that a sustained release may be obtained. Amoxicillin had higher effectiveness against oral pathogens than metronidazole or zinc hyaluronate alone, but the combination of the two latter could provide similar effectiveness to amoxicillin. The applied mucoadhesive polymer may affect adhesivity, drug release through the swelling mechanism, and antimicrobial effect as well.
Collapse
Affiliation(s)
- Attila Léber
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged 6720, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged 6720, Hungary.
| | - Edit Urbán
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged 6720, Hungary.
| | - Péter Vályi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Szeged 6720, Hungary.
| | - Attila Gácsi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged 6720, Hungary.
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged 6720, Hungary.
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged 6720, Hungary.
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged 6720, Hungary.
| |
Collapse
|
12
|
Śmiga-Matuszowicz M, Korytkowska-Wałach A, Nowak B, Pilawka R, Lesiak M, Sieroń AL. Poly(isosorbide succinate)-based in situ forming implants as potential systems for local drug delivery: Preliminary studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:311-317. [DOI: 10.1016/j.msec.2018.05.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 01/14/2023]
|
13
|
Yang GZ, Li JJ, Yu DG, He MF, Yang JH, Williams GR. Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater 2017; 53:233-241. [PMID: 28137657 DOI: 10.1016/j.actbio.2017.01.069] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
Nanoscale drug depots, comprising a drug reservoir surrounded by a carrier membrane, are much sought after in contemporary pharmaceutical research. Using cellulose acetate (CA) as a filament-forming polymeric matrix and ferulic acid (FA) as a model drug, nanoscale drug depots in the form of core-shell fibers were designed and fabricated using a modified tri-axial electrospinning process. This employed a solvent mixture as the outer working fluid, as a result of which a robust and continuous preparation process could be achieved. The fiber-based depots had a linear morphology, smooth surfaces, and an average diameter of 0.62±0.07μm. Electron microscopy data showed them to have clear core-shell structures, with the FA encapsulated inside a CA shell. X-ray diffraction and IR spectroscopy results verified that FA was present in the crystalline physical form. In vitro dissolution tests revealed that the fibers were able to provide close to zero-order release over 36h, with no initial burst release and minimal tailing-off. The release properties of the depot systems were much improved over monolithic CA/FA fibers, which exhibited a significant burst release and also considerable tailing-off at the end of the release experiment. Here we thus demonstrate the concept of using modified tri-axial electrospinning to design and develop new types of heterogeneous nanoscale biomaterials. STATEMENT OF SIGNIFICANCE Nanoscale drug depots with a drug reservoir surrounded by a carrier are highly attractive in biomedicine. A cellulose acetate based drug depot was investigated in detail, starting with the design of the nanostructure, and moving through its fabrication using a modified tri-axial electrospinning process and a series of characterizations. The core-shell fiber-based drug depots can provide a more sustained release profile with no initial burst effect and less tailing-off than equivalent monolithic drug-loaded fibers. The drug release mechanisms are also distinct in the two systems. This proof-of-concept work can be further expanded to conceive a series of new structural biomaterials with improved or new functional performance.
Collapse
Affiliation(s)
- Guang-Zhi Yang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiao-Jiao Li
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Mei-Feng He
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jun-He Yang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
14
|
Jennings CL, Perry EK, Dziubla TD, Puleo DA. Sequential Release of Multiple Drugs from Flexible Drug Delivery Films. INT J POLYM MATER PO 2017; 66:569-576. [PMID: 28736462 PMCID: PMC5515595 DOI: 10.1080/00914037.2016.1252352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sequential release of drugs aligned with the phases of tissue healing could reduce scarring. To achieve this aim, layered film devices comprising cellulose acetate phthalate (CAP) and Pluronic F-127 (Pluronic) were loaded with ketoprofen, quercetin, and pirfenidone. Citrate plasticizers were added to impart flexibility. Release of two or three drugs in sequence over several days was obtained for all multilayered devices tested. Mechanical analysis showed that elongation increased and modulus decreased with increasing plasticizer content. Release profiles can be tailored by order of layers, plasticizer concentration, and drug loaded, making CAP-Pluronic an appealing system for inhibiting scar tissue formation.
Collapse
Affiliation(s)
- Cheryl L. Jennings
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Ellis K. Perry
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Thomas D. Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - David A. Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
Do AV, Akkouch A, Green B, Ozbolat I, Debabneh A, Geary S, Salem AK. Controlled and Sequential Delivery of Fluorophores from 3D Printed Alginate-PLGA Tubes. Ann Biomed Eng 2017; 45:297-305. [PMID: 27234816 PMCID: PMC5124557 DOI: 10.1007/s10439-016-1648-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022]
Abstract
Controlled drug delivery systems, that include sequential and/or sustained drug delivery, have been utilized to enhance the therapeutic effects of many current drugs by effectively delivering drugs in a time-dependent and repeatable manner. In this study, with the aid of 3D printing technology, a novel drug delivery device was fabricated and tested to evaluate sequential delivery functionality. With an alginate shell and a poly(lactic-co-glycolic acid) (PLGA) core, the fabricated tubes displayed sequential release of distinct fluorescent dyes and showed no cytotoxicity when incubated with the human embryonic kidney (HEK293) cell line or bone marrow stromal stem cells (BMSC). The controlled differential release of drugs or proteins through such a delivery system has the potential to be used in a wide variety of biomedical applications from treating cancer to regenerative medicine.
Collapse
Affiliation(s)
- Anh-Vu Do
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa, IA, USA
| | - Adil Akkouch
- Center for Computer-Aided Design, College of Engineering, University of Iowa, Iowa, IA, USA
| | - Brian Green
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa, IA, USA
| | - Ibrahim Ozbolat
- Center for Computer-Aided Design, College of Engineering, University of Iowa, Iowa, IA, USA
- Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, State College, PA, USA
| | - Amer Debabneh
- Center for Computer-Aided Design, College of Engineering, University of Iowa, Iowa, IA, USA
| | - Sean Geary
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA.
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa, IA, USA.
| |
Collapse
|
16
|
Jennings CL, Dziubla TD, Puleo DA. Combined Effects of Drugs and Plasticizers on the Properties of Drug Delivery Films. J BIOACT COMPAT POL 2016; 31:323-333. [PMID: 27821905 DOI: 10.1177/0883911515627178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Formation of scar tissue may be reduced or prevented if wounds were locally treated with a combination of molecules tuned to the different healing phases, guiding tissue regeneration along a scar free path. To this end, drug delivery devices made of cellulose acetate phthalate and Pluronic F-127 were loaded with either quercetin or pirfenidone and plasticized with either triethyl citrate (TEC) or tributyl citrate (TBC). Quercetin inhibits oxidative stress, and pirfenidone has been shown to reduce production of pro-inflammatory and fibrogenic molecules. The combined effects of drug and plasticizer on erosion, release, and mechanical properties of the drug delivery films were investigated. TEC-plasticized films containing quercetin released drug at a slower rate than did TBC films. Pirfenidone-loaded films released drug at a faster rate than erosion occurred for both types of plasticizers. Higher plasticizer contents of both TEC and TBC increased the elongation and decreased the elastic modulus. In contrast, increased pirfenidone loading in both TEC and TBC films resulted in a significantly higher modulus, an anti-plasticizer effect. Adding pirfenidone significantly decreased elongation for all film types, but quercetin-loaded samples had significantly greater elongation with increasing drug content. Films containing quercetin elongated more than did pirfenidone-loaded films. Quercetin is over 1.5 times larger than pirfenidone, has water solubility over 12 times lower, and has 6 times more bonding sites than pirfenidone. These differences affected how the two drugs interacted with cellulose acetate phthalate and Pluronic F-127 and thereby determined polymer properties. Drug release, erosion, and mechanical properties of association polymer films can be tailored by the characteristics of the drugs and plasticizers included in the system.
Collapse
Affiliation(s)
- Cheryl L Jennings
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - David A Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Rambhia KJ, Ma PX. Controlled drug release for tissue engineering. J Control Release 2015; 219:119-128. [PMID: 26325405 DOI: 10.1016/j.jconrel.2015.08.049] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022]
Abstract
Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed.
Collapse
Affiliation(s)
- Kunal J Rambhia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Sundararaj SC, Al-Sabbagh M, Rabek CL, Dziubla TD, Thomas MV, Puleo DA. Comparison of sequential drug release in vitro and in vivo. J Biomed Mater Res B Appl Biomater 2015; 104:1302-10. [PMID: 26111338 DOI: 10.1002/jbm.b.33472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/04/2015] [Accepted: 06/05/2015] [Indexed: 11/10/2022]
Abstract
Development of drug-delivery devices typically involves characterizing in vitro release performance with the inherent assumption that this will closely approximate in vivo performance. Yet, as delivery devices become more complex, for instance with a sequential drug release pattern, it is important to confirm that in vivo properties correlate with the expected "programming" achieved in vitro. In this work, a systematic comparison between in vitro and in vivo biomaterial erosion and sequential release was performed for a multilayered association polymer system comprising cellulose acetate phthalate and Pluronic F-127. After assessing the materials during incubation in phosphate-buffered saline, devices were implanted supracalvarially in rats. Devices with two different doses and with different erosion rates were harvested at increasing times post-implantation, and the in vivo thickness loss, mass loss, and the drug release profiles were compared with their in vitro counterparts. The sequential release of four different drugs observed in vitro was successfully translated to in vivo conditions. Results suggest, however, that the total erosion time of the devices was longer and that release rates of the four drugs were different, with drugs initially released more quickly and then more slowly in vivo. Many comparative studies of in vitro and in vivo drug release from biodegradable polymers involved a single drug, whereas this research demonstrated that sequential release of four drugs can be maintained following implantation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1302-1310, 2016.
Collapse
Affiliation(s)
- Sharath C Sundararaj
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Mohanad Al-Sabbagh
- Division of Periodontics, College of Dentistry, University of Kentucky, Lexington, Kentucky
| | - Cheryl L Rabek
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Mark V Thomas
- Division of Periodontics, College of Dentistry, University of Kentucky, Lexington, Kentucky
| | - David A Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
19
|
Hao S, Wang B, Wang Y. Researching the dose ratio in a controlled release multiple-drug delivery system: using combination therapy with porous microparticles for the treatment of Helicobacter pylori infection. J Mater Chem B 2015; 3:417-431. [DOI: 10.1039/c4tb01127a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triple-drug loaded porous gastroretentive microparticles were prepared to treat Helicobacter pylori infection, and the mass ratios of the released drugs were in accordance with that in a triple therapy regimen.
Collapse
Affiliation(s)
- Shilei Hao
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400030
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400030
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400030
| |
Collapse
|
20
|
Albuquerque MTP, Valera MC, Nakashima M, Nör JE, Bottino MC. Tissue-engineering-based strategies for regenerative endodontics. J Dent Res 2014; 93:1222-31. [PMID: 25201917 PMCID: PMC4237634 DOI: 10.1177/0022034514549809] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/04/2014] [Accepted: 08/09/2014] [Indexed: 01/06/2023] Open
Abstract
Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.
Collapse
Affiliation(s)
- M T P Albuquerque
- Department of Restorative Dentistry, Division of Dental Biomaterials, Indiana University School of Dentistry, Indianapolis, IN 46202, USA Department of Restorative Dentistry, Division of Endodontics, Universidade Estadual Paulista, São José dos Campos Dental School, São José dos Campos, São Paulo, 12245-000, Brazil
| | - M C Valera
- Department of Restorative Dentistry, Division of Dental Biomaterials, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - M Nakashima
- Department of Dental Regenerative Medicine, Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, 474-8511, Japan
| | - J E Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - M C Bottino
- Department of Restorative Dentistry, Division of Dental Biomaterials, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3266] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Namdev B. Shelke
- Institute for Regenerative Engineering; University of Connecticut Health Center; Farmington CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences; University of Connecticut Health Center; Farmington CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; Farmington CT 06030 USA
| | - Roshan James
- Institute for Regenerative Engineering; University of Connecticut Health Center; Farmington CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences; University of Connecticut Health Center; Farmington CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; Farmington CT 06030 USA
| | - Cato T. Laurencin
- Institute for Regenerative Engineering; University of Connecticut Health Center; Farmington CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences; University of Connecticut Health Center; Farmington CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; Farmington CT 06030 USA
- Departments of Materials and Biomedical Engineering; University of Connecticut; Storrs CT 06269 USA
| | - Sangamesh G. Kumbar
- Institute for Regenerative Engineering; University of Connecticut Health Center; Farmington CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences; University of Connecticut Health Center; Farmington CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; Farmington CT 06030 USA
- Departments of Materials and Biomedical Engineering; University of Connecticut; Storrs CT 06269 USA
| |
Collapse
|
22
|
Huang J, Li W, Li Y, Luo C, Zeng Y, Xu Y, Zhou J. Generation of uniform polymer eccentric and core-centered hollow microcapsules for ultrasound-regulated drug release. J Mater Chem B 2014; 2:6848-6854. [DOI: 10.1039/c4tb01050g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uniform polydimethylsiloxane microcapsules with eccentric and core-centered internal hollow structures show controlled-release behaviour for site-specific drug delivery under ultrasound regulation.
Collapse
Affiliation(s)
- Jingxian Huang
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Wanbo Li
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Yan Li
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Chongdai Luo
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Yecheng Zeng
- School of Pharmaceutical Science
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Science
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Jianhua Zhou
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| |
Collapse
|