1
|
Tang R, Chen Y, Yan F, Chen KM. Phase Retrieval-Based Phase-Contrast Imaging and CT of Living Zebrafish. Zebrafish 2023. [PMID: 37023400 DOI: 10.1089/zeb.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Zebrafish are widely used as experimental animal models. They are small and move fast in the water. Real-time imaging of fast-moving zebrafish is a challenge, and it requires that the imaging technique has higher spatiotemporal resolution and penetration ability. The purpose of this study was to evaluate the feasibility of dynamic phase retrieval (PR)-based phase-contrast imaging (PCI) for real-time displaying of the breathing and swimming process in unanesthetized free-moving zebrafish, and to evaluate the feasibility of PR-based phase-contrast CT (PCCT) for visualizing the soft tissues in anesthetized living zebrafish. PR was performed using the phase-attenuation duality (PAD) method with the δ/β values (PAD property) of 100 and 1000 for dynamic PR-based PCI and PR-based PCCT, respectively. The contrast-to-noise ratio (CNR) was used for quantitatively assessing the visibility of the adipose tissue and muscle tissue. The skeleton and swim bladder chambers in fast-moving zebrafish were clearly shown. The dynamic processes of breathing and swimming were visibly recorded. The respiratory intensity and frequency and the movement flexibility of the zebrafish could be dynamically evaluated. By producing more obvious image contrast, PR-based PCCT clearly showed the adipose tissue and muscle tissue. The CNRs from PR-based PCCT were significantly higher than those from PR-free PCCT for both adipose tissue (9.256 ± 2.037 vs. 0.429 ± 0.426, p < 0.0001) and muscle tissue (7.095 ± 1.443 vs. 0.324 ± 0.267, p < 0.0001). Dynamic PR-based PCI holds the potential for investigating both morphological abnormalities and motor disorders. PR-based PCCT offers clear visualization and the potential for quantification of soft tissues in living zebrafish.
Collapse
Affiliation(s)
- Rongbiao Tang
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Yi Chen
- Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Ke-Min Chen
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Orłowska A, Szewczenko J, Kajzer W, Goldsztajn K, Basiaga M. Study of the Effect of Anodic Oxidation on the Corrosion Properties of the Ti6Al4V Implant Produced from SLM. J Funct Biomater 2023; 14:jfb14040191. [PMID: 37103281 PMCID: PMC10145819 DOI: 10.3390/jfb14040191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Additive technologies allowed for the development of medicine and implantology, enabling the production of personalized and highly porous implants. Although implants of this type are used clinically, they are usually only heat treated. Surface modification using electrochemical methods can significantly improve the biocompatibility of biomaterials used for implants, including printed ones. The study examined the effect of anodizing oxidation on the biocompatibility of a porous implant made of Ti6Al4V by the SLM method. The study used a proprietary spinal implant intended for the treatment of discopathy in the c4–c5 section. As part of the work, the manufactured implant was assessed in terms of compliance with the requirements for implants (structure testing—metallography) and the accuracy of the pores produced (pore size and porosity). The samples were subjected to surface modification using anodic oxidation. The research was carried out for 6 weeks in in vitro conditions. Surface topographies and corrosion properties (corrosion potential, ion release) were compared for unmodified and anodically oxidized samples. The tests showed no effect of anodic oxidation on the surface topography and improved corrosion properties. Anodic oxidation stabilized the corrosion potential and limited the release of ions to the environment.
Collapse
|
3
|
Duan X, Li N, Chen X, Zhu N. Characterization of Tissue Scaffolds Using Synchrotron Radiation Microcomputed Tomography Imaging. Tissue Eng Part C Methods 2021; 27:573-588. [PMID: 34670397 DOI: 10.1089/ten.tec.2021.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Distinguishing from other traditional imaging, synchrotron radiation microcomputed tomography (SR-μCT) imaging allows for the visualization of three-dimensional objects of interest in a nondestructive and/or in situ way with better spatial resolution, deep penetration, relatively fast speed, and/or high contrast. SR-μCT has been illustrated promising for visualizing and characterizing tissue scaffolds for repairing or replacing damaged tissue or organs in tissue engineering (TE), which is of particular advance for longitudinal monitoring and tracking the success of scaffolds once implanted in animal models and/or human patients. This article presents a comprehensive review on recent studies of characterization of scaffolds based on SR-μCT and takes scaffold architectural properties, mechanical properties, degradation, swelling and wettability, and biological properties as five separate sections to introduce SR-μCT wide applications. We also discuss and highlight the unique opportunities of SR-μCT in various TE applications; conclude this article with the suggested future research directions, including the prospective applications of SR-μCT, along with its challenges and methods for improvement in the field of TE.
Collapse
Affiliation(s)
- Xiaoman Duan
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Naitao Li
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Ning Zhu
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Canadian Light Source, Saskatoon, Canada
| |
Collapse
|
4
|
Zhang Y, Attarilar S, Wang L, Lu W, Yang J, Fu Y. A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications. Int J Bioprint 2021; 7:340. [PMID: 33997434 PMCID: PMC8114098 DOI: 10.18063/ijb.v7i2.340] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
NiTi alloy has a wide range of applications as a biomaterial due to its high ductility, low corrosion rate, and favorable biocompatibility. Although Young’s modulus of NiTi is relatively low, it still needs to be reduced; one of the promising ways is by introducing porous structure. Traditional manufacturing processes, such as casting, can hardly produce complex porous structures. Additive manufacturing (AM) is one of the most advanced manufacturing technologies that can solve impurity issues, and selective laser melting (SLM) is one of the well-known methods. This paper reviews the developments of AM-NiTi with a particular focus on SLM-NiTi utilization in biomedical applications. Correspondingly, this paper aims to describe the three key factors, including powder preparation, processing parameters, and gas atmosphere during the overall process of porous NiTi. The porous structure design is of vital importance, so the unit cell and pore parameters are discussed. The mechanical properties of SLM-NiTi, such as hardness, compressive strength, tensile strength, fatigue behavior, and damping properties and their relationship with design parameters are summarized. In the end, it points out the current challenges. Considering the increasing application of NiTi implants, this review paper may open new frontiers for advanced and modern designs.
Collapse
Affiliation(s)
- Yintao Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weijie Lu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junlin Yang
- Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Yuanfei Fu
- Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
5
|
FERNÁNDEZ MPEÑA, WITTE F, TOZZI G. Applications of X‐ray computed tomography for the evaluation of biomaterial‐mediated bone regeneration in critical‐sized defects. J Microsc 2020; 277:179-196. [DOI: 10.1111/jmi.12844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/06/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Affiliation(s)
- M. PEÑA FERNÁNDEZ
- Zeiss Global Centre, School of Mechanical and Design EngineeringUniversity of Portsmouth Portsmouth UK
| | - F. WITTE
- Biotrics Bioimplants GmbH Berlin Germany
| | - G. TOZZI
- Zeiss Global Centre, School of Mechanical and Design EngineeringUniversity of Portsmouth Portsmouth UK
| |
Collapse
|
6
|
Yuan B, Zhu M, Chung CY. Biomedical Porous Shape Memory Alloys for Hard-Tissue Replacement Materials. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1716. [PMID: 30217097 PMCID: PMC6164106 DOI: 10.3390/ma11091716] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022]
Abstract
Porous shape memory alloys (SMAs), including NiTi and Ni-free Ti-based alloys, are unusual materials for hard-tissue replacements because of their unique superelasticity (SE), good biocompatibility, and low elastic modulus. However, the Ni ion releasing for porous NiTi SMAs in physiological conditions and relatively low SE for porous Ni-free SMAs have delayed their clinic applications as implantable materials. The present article reviews recent research progresses on porous NiTi and Ni-free SMAs for hard-tissue replacements, focusing on two specific topics: (i) synthesis of porous SMAs with optimal porous structure, microstructure, mechanical, and biological properties; and, (ii) surface modifications that are designed to create bio-inert or bio-active surfaces with low Ni releasing and high biocompatibility for porous NiTi SMAs. With the advances of preparation technique, the porous SMAs can be tailored to satisfied porous structure with porosity ranging from 30% to 85% and different pore sizes. In addition, they can exhibit an elastic modulus of 0.4⁻15 GPa and SE of more than 2.5%, as well as good cell and tissue biocompatibility. As a result, porous SMAs had already been used in maxillofacial repairing, teeth root replacement, and cervical and lumbar vertebral implantation. Based on current research progresses, possible future directions are discussed for "property-pore structure" relationship and surface modification investigations, which could lead to optimized porous biomedical SMAs. We believe that porous SMAs with optimal porous structure and a bioactive surface layer are the most competitive candidate for short-term and long-term hard-tissue replacement materials.
Collapse
Affiliation(s)
- Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, Guangzhou 510640, China.
| | - Min Zhu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, Guangzhou 510640, China.
| | - Chi Yuen Chung
- Department of Physics & Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Xu R, Hu X, Yu X, Wan S, Wu F, Ouyang J, Deng F. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells. Int J Nanomedicine 2018; 13:5045-5057. [PMID: 30233172 PMCID: PMC6129016 DOI: 10.2147/ijn.s166661] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Selective laser melting (SLM) titanium is an ideal option to manufacture customized implants with suitable surface modification to improve its bioactivity. The peri-implant soft tissues form a protective tissue barrier for the underlying osseointegration. Therefore, original microrough SLM surfaces should be treated for favorable attachment of surrounding soft tissues. Material and methods In this study, anodic oxidation (AO) was applied on the microrough SLM titanium substrate to form TiO2 nanotube arrays. After that, calcium phosphate (CaP) nanoparticles were embedded into the nanotubes or the interval of nanotubes by electrochemical deposition (AOC). These two samples were compared to untreated (SLM) samples and accepted mechanically polished (MP) SLM titanium samples. Scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, surface roughness, and water contact angle measurements were used for surface characterization. The primary human gingival epithelial cells (HGECs) and human gingival fibroblasts (HGFs) were cultured for cell assays to determine adhesion, proliferation, and adhesion-related gene expressions. Results For HGECs, AOC samples showed significantly higher adhesion, proliferation, and adhesion-related gene expressions than AO and SLM samples (P<0.05) and similar exceptional ability in above aspects to MP samples. At the same time, AOC samples showed the highest adhesion, proliferation, and adhesion-related gene expressions for HGFs (P<0.05). Conclusion By comparison between each sample, we could confirm that both anodic oxidation and CaP nanoparticles had improved bioactivity, and their combined utilization may likely be superior to mechanical polishing, which is most commonly used and widely accepted. Our results indicated that creating appropriate micro-/nano-topographies can be an effective method to affect cell behavior and increase the stability of the peri-implant mucosal barrier on SLM titanium surfaces, which contributes to its application in dental and other biomedical implants.
Collapse
Affiliation(s)
- Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Xiucheng Hu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Xiaolin Yu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Shuangquan Wan
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Fan Wu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Jianglin Ouyang
- Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou, PR China.,Guangzhou Janus Biotechnology Co., Ltd, Chinese Academy of Sciences, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| |
Collapse
|
8
|
Xu JY, Chen XS, Zhang CY, Liu Y, Wang J, Deng FL. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:229-240. [PMID: 27524017 DOI: 10.1016/j.msec.2016.05.096] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/22/2016] [Indexed: 12/13/2022]
Abstract
Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P<0.05) and higher total protein contents on the 14th day (P<0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P<0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes.
Collapse
Affiliation(s)
- Jia-Yun Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Xian-Shuai Chen
- Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou 511458, PR China
| | - Chun-Yu Zhang
- Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou 511458, PR China
| | - Yun Liu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Jing Wang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Fei-Long Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China.
| |
Collapse
|
9
|
Bouet G, Marchat D, Cruel M, Malaval L, Vico L. In VitroThree-Dimensional Bone Tissue Models: From Cells to Controlled and Dynamic Environment. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:133-56. [DOI: 10.1089/ten.teb.2013.0682] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guenaelle Bouet
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - David Marchat
- Center for Biomedical and Healthcare Engineering, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR 5307, Saint-Etienne, France
| | - Magali Cruel
- University of Lyon, LTDS, UMR CNRS 5513, Ecole Centrale de Lyon, Ecully, France
| | - Luc Malaval
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - Laurence Vico
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| |
Collapse
|
10
|
Hoshino M, Uesugi K, Tsukube T, Yagi N. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1347-57. [PMID: 25343804 PMCID: PMC4421879 DOI: 10.1107/s1600577514018128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/07/2014] [Indexed: 05/24/2023]
Abstract
X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching.
Collapse
Affiliation(s)
- Masato Hoshino
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kentaro Uesugi
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takuro Tsukube
- Japanese Red Cross Kobe Hospital, 1-3-1 Wakinohamakaigandori, Chuo-ku, Kobe, Hyogo 651-0073, Japan
| | - Naoto Yagi
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
11
|
Hoffmann W, Bormann T, Rossi A, Müller B, Schumacher R, Martin I, de Wild M, Wendt D. Rapid prototyped porous nickel-titanium scaffolds as bone substitutes. J Tissue Eng 2014; 5:2041731414540674. [PMID: 25383165 PMCID: PMC4221926 DOI: 10.1177/2041731414540674] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/22/2014] [Indexed: 01/19/2023] Open
Abstract
While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium.
Collapse
Affiliation(s)
- Waldemar Hoffmann
- Departments of Biomedicine and Surgery, University Hospital Basel, Basel, Switzerland ; University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Therese Bormann
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Gründenstrasse 40, 4132 Muttenz, Switzerland ; Biomaterials Science Center, University of Basel, Basel, Switzerland
| | - Antonella Rossi
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland ; Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cagliari, Italy
| | - Bert Müller
- Biomaterials Science Center, University of Basel, Basel, Switzerland
| | - Ralf Schumacher
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Ivan Martin
- Departments of Biomedicine and Surgery, University Hospital Basel, Basel, Switzerland
| | - Michael de Wild
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - David Wendt
- Departments of Biomedicine and Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|