1
|
Gu Z, He Y, Xiang H, Qin Q, Cao X, Jiang K, Zhang H, Li Y. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio 2025; 32:101655. [PMID: 40166378 PMCID: PMC11957681 DOI: 10.1016/j.mtbio.2025.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is increasingly prevalent in aging societies and poses a significant health challenge. Due to the limited blood supply to the disc, oral medications and systemic treatments are often ineffective. Consequently, localized injection therapies, which deliver therapeutic agents directly to the degenerated disc, have emerged as more efficient. Self-healing injectable hydrogels are particularly promising due to their potential for minimally invasive delivery, precise implantation, and targeted drug release into hard-to-reach tissue sites, including those requiring prolonged healing. Their dynamic viscoelastic properties accurately replicate the mechanical environment of the natural nucleus pulposus, providing cells with an adaptive biomimetic microenvironment. This review will initially discuss the anatomy and pathophysiology of intervertebral discs, current treatments, and their limitations. Subsequently, we conduct bibliometric analysis to explore the research hotspots and trends in applying injectable hydrogel technology to treat IVDD. It will then explore the promising features of injectable hydrogels in biomedical applications such as drug, protein, cells and gene delivery, tissue engineering and regenerative medicine. We discuss the construction mechanisms of injectable hydrogels via physical interactions, chemical and biological crosslinkers, and discuss the selection of biomaterials and fabrication methods for developing novel hydrogels for IVD tissue engineering. The article concludes with future perspectives on the application of injectable hydrogels in this field.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Orthopedics, Affiliated Guang'an District People's Hospital of North Sichuan Medical College, Guang'an County, 638000, PR China
| | - Yi He
- Department of Orthopedics, Affiliated Nanbu People's Hospital of North Sichuan Medical College, Nanbu County, Nanchong, 637000, PR China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xinna Cao
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, PR China
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
2
|
Moyo MTG, Adali T. Gellan gum as a promising transplantation carrier for differentiated progenitor cells in ophthalmic therapies. J BIOACT COMPAT POL 2025; 40:136-157. [DOI: 10.1177/08839115241278739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stem cell-based therapies for various ocular conditions are increasingly gaining traction in ophthalmic treatments, with hydrogel-based polymers playing a pivotal role. Current stem cell delivery methods face challenges such as limited cell retention, immunological rejection, and uneven dispersion. Hence, there is a critical demand for innovative delivery systems to enhance the viability, localization, and integration of transplanted stem cells while minimizing adverse effects. Central to this advancement is the meticulous selection of appropriate materials. Among the promising options, gellan gum, a versatile polysaccharide, is emerging as a potential carrier for differentiated progenitor cells in regenerative medicine, particularly in ophthalmology. This study explores the utilization of gellan gum hydrogels as carriers, focusing on their biocompatibility, customizable gelation properties, and ability to encapsulate, transplant, and biofunctionalize cells. Through a review of literature, the impact of gellan gum hydrogels on cell viability parameters is investigated, revealing their potential for promoting tissue regeneration and functional recovery in ocular diseases. Furthermore, this study compares gellan gum systems utilizing natural and synthetic polymers, discerning differences in efficacy, biocompatibility, and suitability for diverse applications in regenerative ophthalmology. This review highlights the promising role of gellan gum in ophthalmic therapies, providing valuable insights into future directions and hurdles in this evolving field.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia, North Cyprus, Mersin, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, North Cyprus, Mersin, Turkey
- Research and Application Center of Biomedical Sciences, Girne American University, North Cyprus, Mersin, Turkey
| | - Terin Adali
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, North Cyprus, Mersin, Turkey
- Research and Application Center of Biomedical Sciences, Girne American University, North Cyprus, Mersin, Turkey
| |
Collapse
|
3
|
Cook-Chennault K, Anaokar S, Medina Vázquez AM, Chennault M. Influence of High Strain Dynamic Loading on HEMA-DMAEMA Hydrogel Storage Modulus and Time Dependence. Polymers (Basel) 2024; 16:1797. [PMID: 39000653 PMCID: PMC11244401 DOI: 10.3390/polym16131797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Hydrogels have been extensively studied for biomedical applications such as drug delivery, tissue-engineered scaffolds, and biosensors. There is a gap in the literature pertaining to the mechanical properties of hydrogel materials subjected to high-strain dynamic-loading conditions even though empirical data of this type are needed to advance the design of innovative biomedical designs and inform numerical models. For this work, HEMA-DMAEMA hydrogels are fabricated using a photopolymerization approach. Hydrogels are subjected to high-compression oscillatory dynamic mechanical loading at strain rates equal to 50%, 60%, and 70%, and storage and loss moduli are observed over time, e.g., 72 h and 5, 10, and 15 days. As expected, the increased strains resulted in lower storage and loss moduli, which could be attributed to a breakdown in the hydrogel network attributed to several mechanisms, e.g., increased network disruption, chain scission or slippage, and partial plastic deformation. This study helps to advance our understanding of hydrogels subjected to high strain rates to understand their viscoelastic behavior, i.e., strain rate sensitivity, energy dissipation mechanisms, and deformation kinetics, which are needed for the accurate modeling and prediction of hydrogel behavior in real-world applications.
Collapse
Affiliation(s)
- Kimberly Cook-Chennault
- Mechanical and Aerospace Engineering Department, Rutgers University, Piscataway, NJ 08854-5750, USA
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08554-5750, USA
| | - Sharmad Anaokar
- Mechanical and Aerospace Engineering Department, Rutgers University, Piscataway, NJ 08854-5750, USA
| | | | - Mizan Chennault
- STEM Academy, Stuart Country Day School, Princeton, NJ 08540-1234, USA;
| |
Collapse
|
4
|
Tang J, Luo Y, Wang Q, Wu J, Wei Y. Stimuli-Responsive Delivery Systems for Intervertebral Disc Degeneration. Int J Nanomedicine 2024; 19:4735-4757. [PMID: 38813390 PMCID: PMC11135562 DOI: 10.2147/ijn.s463939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
As a major cause of low back pain, intervertebral disc degeneration is an increasingly prevalent chronic disease worldwide that leads to huge annual financial losses. The intervertebral disc consists of the inner nucleus pulposus, outer annulus fibrosus, and sandwiched cartilage endplates. All these factors collectively participate in maintaining the structure and physiological functions of the disc. During the unavoidable degeneration stage, the degenerated discs are surrounded by a harsh microenvironment characterized by acidic, oxidative, inflammatory, and chaotic cytokine expression. Loss of stem cell markers, imbalance of the extracellular matrix, increase in inflammation, sensory hyperinnervation, and vascularization have been considered as the reasons for the progression of intervertebral disc degeneration. The current treatment approaches include conservative therapy and surgery, both of which have drawbacks. Novel stimuli-responsive delivery systems are more promising future therapeutic options than traditional treatments. By combining bioactive agents with specially designed hydrogels, scaffolds, microspheres, and nanoparticles, novel stimuli-responsive delivery systems can realize the targeted and sustained release of drugs, which can both reduce systematic adverse effects and maximize therapeutic efficacy. Trigger factors are categorized into internal (pH, reactive oxygen species, enzymes, etc.) and external stimuli (photo, ultrasound, magnetic, etc.) based on their intrinsic properties. This review systematically summarizes novel stimuli-responsive delivery systems for intervertebral disc degeneration, shedding new light on intervertebral disc therapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuexin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qirui Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Inclusion of calcium phosphate does not further improve in vitro and in vivo osteogenesis in a novel, highly biocompatible, mechanically stable and 3D printable polymer. Sci Rep 2022; 12:16977. [PMID: 36216955 PMCID: PMC9550830 DOI: 10.1038/s41598-022-21013-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At a time of unpredictable challenges for health, one trend is certain: there is an exceedingly high demand for functional implants, particularly bone grafts. This has encouraged the emergence of bone tissue engineering substitutes as an alternative method to conventional bone grafts. However, the current approaches in the field face several limitations that have prevented the ultimate translation into clinical settings. As a result, many attempts have been made to fabricate synthetic bone implants that can offer suitable biological and mechanical properties.Light curable methacrylate-based polymers have ideal properties for bone repair. These materials are also suitable for 3D printing which can be applicable for restoration of both function and aesthetics. The main objective of this research was to investigate the role of calcium phosphate (CaP) incorporation in a mechanically stable, biologically functional and 3D printable polymer for the reconstruction of complex craniofacial defects. The experimental work initially involved the synthesis of (((((((((((3R,3aR,6S,6aR)- hexahydrofuro[3,2-b]furan-3,6-diyl)bis(oxy))bis(ethane-2,1- 48 diyl))bis(oxy))bis(carbonyl))bis(azanediyl))bis(3,3,5-trimethylcyclohexane-5,1- 49 diyl))bis(azanediyl))bis(carbonyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) referred to as CSMA and fabrication of composite discs via a Digital Light Printing (DLP) method. The flow behaviour of the polymer as a function of CaP addition, surface remineralisation potential, in vitro cell culture, using MC3T3 and Adipose-Derived Mesenchymal Stem Cells (ADSCs) and ex ovo angiogenic response was assessed. Finally, in vivo studies were carried out to investigate neo-bone formation at 4- and 8-weeks post-implantation. Quantitative micro-CT and histological evaluation did not show a higher rate of bone formation in CaP filled CSMA composites compared to CSMA itself. Therefore, such polymeric systems hold promising features by allowing more flexibility in designing a 3D printed scaffold targeted at the reconstruction of maxillofacial defects.
Collapse
|
6
|
Edifying the Focal Factors Influencing Mesenchymal Stem Cells by the Microenvironment of Intervertebral Disc Degeneration in Low Back Pain. Pain Res Manag 2022; 2022:6235400. [PMID: 35386857 PMCID: PMC8977320 DOI: 10.1155/2022/6235400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main triggers of low back pain, which is most often associated with patient morbidity and high medical costs. IVDD triggers a wide range of pathologies and clinical syndromes like paresthesia, weakness of extremities, and intermittent/chronic back pain. Mesenchymal stem cells (MSCs) have demonstrated to possess immunomodulatory functions as well as the capability of differentiating into chondrocytes under appropriate microenvironment conditions, which makes them potentially epitome for intervertebral disc (IVD) regeneration. The IVD microenvironment is composed by niche of cells, and their chemical and physical milieus have been exhibited to have robust influence on MSC behavior as well as differentiation. Nevertheless, the contribution of MSCs to the IVD milieu conditions in healthy as well as degeneration situations is still a matter of debate. It is still not clear which factors, if any, are essential for effective and efficient MSC survival, proliferation, and differentiation. IVD microenvironment clues such as nucleopulpocytes, potential of hydrogen (pH), osmotic changes, glucose, hypoxia, apoptosis, pyroptosis, and hydrogels are capable of influencing the MSCs aimed for the treatment of IVDD. Therefore, clinical usage of MSCs ought to take into consideration these microenvironment clues during treatment. Alteration in these factors could function as prognostic indicators during the treatment of patients with IVDD using MSCs. Thus, standardized valves for these microenvironment clues are warranted.
Collapse
|
7
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
8
|
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of chronic low back pain (LBP) that results in serious disability and significant economic burden. IVD degeneration alters the disc structure and spine biomechanics, resulting in subsequent structural changes throughout the spine. Currently, treatments of chronic LBP due to IVD degeneration include conservative treatments, such as pain medication and physiotherapy, and surgical treatments, such as removal of herniated disc without or with spinal fusion. However, none of these treatments can completely restore a degenerated disc and its function. Thus, although the exact pathogenesis of disc degeneration remains unclear, there are studies examining the effectiveness of biological approaches, such as growth factor injection, gene therapy, and cell transplantation, in promoting IVD regeneration. Furthermore, tissue engineering using a combination of cell transplantation and biomaterials has emerged as a promising new approach for repair or restoration of degenerated discs. The main purpose of this review was to provide an overview of the current status of tissue engineering applications for IVD regenerative therapy by performing literature searches using PubMed. Significant advances in tissue engineering have opened the door to a new generation of regenerative therapies for the treatment of chronic discogenic LBP.
Collapse
|
9
|
Binch ALA, Ratcliffe LPD, Milani AH, Saunders BR, Armes SP, Hoyland JA. Site-Directed Differentiation of Human Adipose-Derived Mesenchymal Stem Cells to Nucleus Pulposus Cells Using an Injectable Hydroxyl-Functional Diblock Copolymer Worm Gel. Biomacromolecules 2021; 22:837-845. [PMID: 33470795 DOI: 10.1021/acs.biomac.0c01556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have been identified for their promising therapeutic potential to regenerate and repopulate the degenerate intervertebral disk (IVD), which is a major cause of lower back pain. The optimal cell delivery system remains elusive but encapsulation of cells within scaffolds is likely to offer a decisive advantage over the delivery of cells in solution by ensuring successful retention within the tissue. Herein, we evaluate the use of a fully synthetic, thermoresponsive poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer worm gel that mimics the structure of hydrophilic glycosaminoglycans. The objective was to use this gel to direct differentiation of human ASCs toward a nucleus pulposus (NP) phenotype, with or without the addition of discogenic growth factors TGFβ or GDF6. Accordingly, human ASCs were incorporated into a cold, free-flowing aqueous dispersion of the diblock copolymer, gelation induced by warming to 37 °C and cell culture was conducted for 14 days with or without such growth factors to assess the expression of characteristic NP markers compared to those produced when using collagen gels. In principle, the shear-thinning nature of the biocompatible worm gel enables encapsulated human ASCs to be injected into the IVD using a 21G needle. Moreover, we find significantly higher gene expression levels of ACAN, SOX-9, KRT8, and KR18 for ASCs encapsulated within worm gels compared to collagen scaffolds, regardless of the growth factors employed. In summary, such wholly synthetic worm gels offer considerable potential as an injectable cell delivery scaffold for the treatment of degenerate disk disease by promoting the transition of ASCs toward an NP-phenotype.
Collapse
Affiliation(s)
- Abbie L A Binch
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, U.K
| | - Liam P D Ratcliffe
- Department of Chemistry, University of Sheffield Brook Hill, Sheffield S3 7HF, South Yorkshire, U.K
| | - Amir H Milani
- Department of Materials, University of Manchester, Manchester M13 9PL, U.K
| | - Brian R Saunders
- Department of Materials, University of Manchester, Manchester M13 9PL, U.K
| | - Steven P Armes
- Department of Chemistry, University of Sheffield Brook Hill, Sheffield S3 7HF, South Yorkshire, U.K
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, U.K.,NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, U.K
| |
Collapse
|
10
|
Abstract
Regenerative medicine is a novel scientific field that employs the use of stem cells as cell-based therapy for the regeneration and functional restoration of damaged tissues and organs. Stem cells bear characteristics such as the capacity for self-renewal and differentiation towards specific lineages and, therefore, serve as a backup reservoir in case of tissue injuries. Therapeutically, they can be autologously or allogeneically transplanted for tissue regeneration; however, allogeneic stem cell transplantation can provoke host immune responses leading to a host-versus-transplant reaction. A probable solution to this problem is stem cell encapsulation, a technique that utilizes various biomaterials for the creation of a semi-permeable membrane that encases the stem cells. Stem cell encapsulation can be accomplished by employing a great variety of natural and/or synthetic hydrogels and offers many benefits in regenerative medicine, including protection from the host’s immune system and mechanical stress, improved cell viability, proliferation and differentiation, cryopreservation and controlled and continuous delivery of the stem-cell-secreted therapeutic agents. Here, in this review, we report and discuss almost all natural and synthetic hydrogels used in stem cell encapsulation, along with the benefits that these materials, alone or in combination, could offer to cell therapy through functional cell encapsulation.
Collapse
|
11
|
Panebianco C, Meyers J, Gansau J, Hom W, Iatridis J. Balancing biological and biomechanical performance in intervertebral disc repair: a systematic review of injectable cell delivery biomaterials. Eur Cell Mater 2020; 40:239-258. [PMID: 33206993 PMCID: PMC7706585 DOI: 10.22203/ecm.v040a15] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discogenic back pain is a common condition without approved intervertebral disc (IVD) repair therapies. Cell delivery using injectable biomaterial carriers offers promise to restore disc height and biomechanical function, while providing a functional niche for delivered cells to repair degenerated tissues. This systematic review advances the injectable IVD cell delivery biomaterials field by characterising its current state and identifying themes of promising strategies. Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) guidelines were used to screen the literature and 183 manuscripts met the inclusion criteria. Cellular and biomaterial inputs, and biological and biomechanical outcomes were extracted from each study. Most identified studies targeted nucleus pulposus (NP) repair. No consensus exists on cell type or biomaterial carrier, yet most common strategies used mesenchymal stem cell (MSC) delivery with interpenetrating network/co-polymeric (IPN/CoP) biomaterials composed of natural biomaterials. All studies reported biological outcomes with about half the studies reporting biomechanical outcomes. Since the IVD is a load-bearing tissue, studies reporting compressive and shear moduli were analysed and two major themes were found. First, a competitive balance, or 'seesaw' effect, between biomechanical and biological performance was observed. Formulations with higher moduli had inferior cellular performance, and vice versa. Second, several low-modulus biomaterials had favourable biological performance and matured throughout culture duration with enhanced extracellular matrix synthesis and biomechanical moduli. Findings identify an opportunity to develop next-generation biomaterials that provide high initial biomechanical competence to stabilise and repair damaged IVDs with a capacity to promote cell function for long-term healing.
Collapse
Affiliation(s)
| | | | | | | | - J.C. Iatridis
- Address for correspondence: James C. Iatridis, Ph.D., One Gustave Levy Place, Box 1188, Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Telephone number: +1 2122411517
| |
Collapse
|
12
|
Li ZQ, Kong L, Liu C, Xu HG. Human Bone Marrow Mesenchymal Stem Cell-derived Exosomes Attenuate IL-1β-induced Annulus Fibrosus Cell Damage. Am J Med Sci 2020; 360:693-700. [PMID: 32771218 DOI: 10.1016/j.amjms.2020.07.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/25/2020] [Accepted: 07/17/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) has high morbidity and high disability. Exosomes as a favorable candidate for IDD treatment is a hot spot of current research. METHODS Exosomes were obtained from bone marrow mesenchymal stem cells (BM-MSCs) of patients with non-open femoral fractures. Then, annulus fibrosus (AF) cells were treated with IL-1β, IL-1β combined with exosomes or IL-1β combined with exosomes and rapamycin. Flow cytometry and CCK-8 assay were performed to explore the apoptosis and cell proliferation. Quantitative real-time PCR and western blot were performed to detect the gene and protein expression. RESULTS Exosomes were obtained from BM-MSCs successfully. BM-MSC-derived exosomes suppressed IL-1β-induced inflammation and apoptosis and promoted cell proliferation of AF cells. BM-MSC-derived exosomes inhibited autophagy of AF cells by activating PI3K/AKT/mTOR signaling pathway. The effect of BM-MSC-derived exosomes on inflammation and apoptosis of AF cells was rescued by rapamycin. CONCLUSIONS In conclusion, our study revealed that BM-MSC-derived exosomes inhibited IL-1β-induced inflammation and apoptosis of AF cells by suppressing autophagy.
Collapse
Affiliation(s)
- Zhong-Qi Li
- Department of Spine Surgery, Medical College of Shandong University, Jinan, Shandong, People's Republic of China; Department of Spine Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Lei Kong
- Department of Spine Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chen Liu
- Department of Spine Surgery, The First Affiliated Hospital of WanNan Medical College, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Spine Surgery, The First Affiliated Hospital of WanNan Medical College, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Raucci MG, D'Amora U, Ronca A, Ambrosio L. Injectable Functional Biomaterials for Minimally Invasive Surgery. Adv Healthc Mater 2020; 9:e2000349. [PMID: 32484311 DOI: 10.1002/adhm.202000349] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Injectable materials represent very attractive ready-to-use biomaterials for application in minimally invasive surgical procedures. It is shown that this approach to treat, for example, vertebral fracture, craniofacial defects, or tumor resection has significant clinical potential in the biomedical field. In the last four decades, calcium phosphate cements have been widely used as injectable materials for orthopedic surgery due to their excellent properties in terms of biocompatibility and osteoconductivity. However, few clinical studies have demonstrated certain weaknesses of these cements, which include high viscosity, long degradation time, and difficulties being manipulated. To overcome these limitations, the use of sol-gel technology has been investigated, which has shown good results for synthesis of injectable calcium phosphate-based materials. In the last few decades, injectable hydrogels have gained increasing attention owing to their structural similarities with the extracellular matrix, easy process conditions, and potential applications in minimally invasive surgery. However, the need to protect cells during injection leads to the development of double network injectable hydrogels that are capable of being cross-linked in situ. This review will provide the current state of the art and recent advances in the field of injectable biomaterials for minimally invasive surgery.
Collapse
Affiliation(s)
- Maria Grazia Raucci
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| |
Collapse
|
14
|
Ciardulli MC, Marino L, Lovecchio J, Giordano E, Forsyth NR, Selleri C, Maffulli N, Porta GD. Tendon and Cytokine Marker Expression by Human Bone Marrow Mesenchymal Stem Cells in a Hyaluronate/Poly-Lactic-Co-Glycolic Acid (PLGA)/Fibrin Three-Dimensional (3D) Scaffold. Cells 2020; 9:E1268. [PMID: 32443833 PMCID: PMC7291129 DOI: 10.3390/cells9051268] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023] Open
Abstract
We developed a (three-dimensional) 3D scaffold, we named HY-FIB, incorporating a force-transmission band of braided hyaluronate embedded in a cell localizing fibrin hydrogel and poly-lactic-co-glycolic acid (PLGA) nanocarriers as transient components for growth factor controlled delivery. The tenogenic supporting capacity of HY-FIB on human-Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) was explored under static conditions and under bioreactor-induced cyclic strain conditions. HY-FIB elasticity enabled to deliver a mean shear stress of 0.09 Pa for 4 h/day. Tendon and cytokine marker expression by hBM-MSCs were studied. Results: hBM-MSCs embedded in HY-FIB and subjected to mechanical stimulation, resulted in a typical tenogenic phenotype, as indicated by type 1 Collagen fiber immunofluorescence. RT-qPCR showed an increase of type 1 Collagen, scleraxis, and decorin gene expression (3-fold, 1600-fold, and 3-fold, respectively, at day 11) in dynamic conditions. Cells also showed pro-inflammatory (IL-6, TNF, IL-12A, IL-1β) and anti-inflammatory (IL-10, TGF-β1) cytokine gene expressions, with a significant increase of anti-inflammatory cytokines in dynamic conditions (IL-10 and TGF-β1 300-fold and 4-fold, respectively, at day 11). Mechanical signaling, conveyed by HY-FIB to hBM-MSCs, promoted tenogenic gene markers expression and a pro-repair cytokine balance. The results provide strong evidence in support of the HY-FIB system and its interaction with cells and its potential for use as a predictive in vitro model.
Collapse
Affiliation(s)
- Maria C. Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
| | - Luigi Marino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena (FC), Italy; (J.L.); (E.G.)
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena (FC), Italy; (J.L.); (E.G.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK;
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK;
- Centre for Sport and Exercise Medicine, Queen Mary University of London, Barts and The London School of Medicine, London E1 4NL, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
| |
Collapse
|
15
|
Ruiz-Cantu L, Gleadall A, Faris C, Segal J, Shakesheff K, Yang J. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110578. [PMID: 32228894 DOI: 10.1016/j.msec.2019.110578] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022]
Abstract
The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilage requires a major additional procedure that may create donor site morbidity. Major nasal reconstruction also requires sculpting autologous cartilages to form a cartilage framework, which is complex, highly skill-demanding and very time consuming. These limitations have prompted facial reconstructive surgeons to explore different techniques such as tissue engineered cartilage. This work explores the use of multi-material 3D bioprinting with chondrocyte-laden gelatin methacrylate (GelMA) and polycaprolactone (PCL) to fabricate constructs that can potentially be used for nasal reconstruction. In this study, we have investigated the effect of 3D manufacturing parameters including temperature, needle gauge, UV exposure time, and cell carrier formulation (GelMA) on the viability and functionality of chondrocytes in bioprinted constructs. Furthermore, we printed chondrocyte-laden GelMA and PCL into composite constructs to combine biological and mechanical properties. It was found that 20% w/v GelMA was the best concentration for the 3D bioprinting of the chondrocytes without comprising the scaffold's porous structure and cell functionality. In addition, the 3D bioprinted constructs showed neocartilage formation and similar mechanical properties to nasal alar cartilage after a 50-day culture period. Neocartilage formation was also observed in the composite constructs evidenced by the presence of glycosaminoglycans and collagen type II. This study shows the feasibility of manufacturing neocartilage using chondrocytes/GelMA/PCL 3D bioprinted porous constructs which could be applied as a method for fabricating implants for nose reconstruction.
Collapse
Affiliation(s)
- Laura Ruiz-Cantu
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andrew Gleadall
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, University of Loughborough, Loughborough LE113TU, UK
| | - Callum Faris
- Department of Otorhinolaryngology and Facial Plastic Reconstructive Surgery, Poole Hospital, Poole BH15 2JB, UK
| | - Joel Segal
- Advanced Manufacturing Technology Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Kevin Shakesheff
- Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jing Yang
- Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
16
|
Barakat AH, Elwell VA, Lam KS. Stem cell therapy in discogenic back pain. JOURNAL OF SPINE SURGERY (HONG KONG) 2019; 5:561-583. [PMID: 32043007 PMCID: PMC6989932 DOI: 10.21037/jss.2019.09.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 04/23/2023]
Abstract
Chronic low back pain has both substantial social and economic impacts on patients and healthcare budgets. Adding to the magnitude of the problem is the difficulty in identifying the exact causes of disc degeneration with modern day diagnostic and imaging techniques. With that said, current non-operative and surgical treatment modalities for discogenic low back pain fails to meet the expectations in many patients and hence the challenge. The objective for newly emerging stem cell regenerative therapy is to treat degenerative disc disease (DDD) by restoring the disc's cellularity and modulating the inflammatory response. Appropriate patient selection is crucial for the success of stem cell therapy. Regenerative modalities for discogenic pain currently focus on the use of either primary cells harvested from the intervertebral discs or stem cells from other sources whether autogenic or allogenic. The microenvironment in which stem cells are being cultured has been recognized to play a crucial role in directing or maintaining the production of the desired phenotypes and may enhance their regenerative potential. This has led to a more specific focus on innovating more effective culturing techniques, delivery vehicles and scaffolds for stem cell application. Although stem cell therapy might offer an attractive alternative treatment option, more clinical studies are still needed to establish on the safety and feasibility of such therapy. In this literature review, we aim to present the most recent in vivo and in vitro studies related to the use of stem cell therapy in the treatment of discogenic low back pain.
Collapse
Affiliation(s)
- Ahmed H. Barakat
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Vivian A. Elwell
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | | |
Collapse
|
17
|
Varma DM, DiNicolas MS, Nicoll SB. Injectable, redox-polymerized carboxymethylcellulose hydrogels promote nucleus pulposus-like extracellular matrix elaboration by human MSCs in a cell density-dependent manner. J Biomater Appl 2019; 33:576-589. [PMID: 30326804 DOI: 10.1177/0885328218805216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is a major cause for disability and is closely linked to intervertebral disc degeneration. Mechanical and biological dysfunction of the nucleus pulposus in the disc has been found to initiate intradiscal degenerative processes. Replacing or enriching the diseased nucleus pulposus with an injectable, stem cell-laden biomaterial that mimics its material properties can provide a minimally invasive strategy for biological and structural repair of the tissue. In this study, injectable, in situ-gelling carboxymethylcellulose hydrogels were developed for nucleus pulposus tissue engineering using encapsulated human marrow-derived mesenchymal stromal cells (hMSCs). With the goal of obtaining robust extracellular matrix deposition and faster construct maturation, two cell-seeding densities, 20 × 106 cells/ml and 40 × 106 cells/ml, were examined. The constructs were fabricated using a redox initiation system to yield covalently crosslinked, cell-seeded hydrogels via radical polymerization. Chondrogenic culture of the hydrogels over 35 days exhibited high cell viability along with deposition of proteoglycan and collagen-rich extracellular matrix, and mechanical and swelling properties similar to native human nucleus pulposus. Further, the matrix production and distribution in the carboxymethylcellulose hydrogels was found to be strongly influenced by hMSC-seeding density, with the lower cell-seeding density yielding a more favorable nucleus pulposus-specific matrix phenotype, while the rate of construct maturation was less dependent on the cell-seeding density. These findings are the first to demonstrate the utility of redox-polymerized carboxymethylcellulose hydrogels as hMSC carriers for potential minimally invasive treatment strategies for nucleus pulposus replacement.
Collapse
Affiliation(s)
- Devika M Varma
- The City College of the City University of New York, New York, NY, USA
| | | | - Steven B Nicoll
- The City College of the City University of New York, New York, NY, USA
| |
Collapse
|
18
|
Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS. Flow Behavior Prior to Crosslinking: The Need for Precursor Rheology for Placement of Hydrogels in Medical Applications and for 3D Bioprinting. Prog Polym Sci 2019; 91:126-140. [PMID: 31571701 PMCID: PMC6768569 DOI: 10.1016/j.progpolymsci.2019.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogels - water swollen cross-linked networks - have demonstrated considerable promise in tissue engineering and regenerative medicine applications. However, ambiguity over which rheological properties are needed to characterize these gels before crosslinking still exists. Most hydrogel research focuses on the performance of the hydrogel construct after implantation, but for clinical practice, and for related applications such as bioinks for 3D bioprinting, the behavior of the pre-gelled state is also critical. Therefore, the goal of this review is to emphasize the need for better rheological characterization of hydrogel precursor formulations, and standardized testing for surgical placement or 3D bioprinting. In particular, we consider engineering paste or putty precursor solutions (i.e., suspensions with a yield stress), and distinguish between these differences to ease the path to clinical translation. The connection between rheology and surgical application as well as how the use of paste and putty nomenclature can help to qualitatively identify material properties are explained. Quantitative rheological properties for defining materials as either pastes or putties are proposed to enable easier adoption to current methods. Specifically, the three-parameter Herschel-Bulkley model is proposed as a suitable model to correlate experimental data and provide a basis for meaningful comparison between different materials. This model combines a yield stress, the critical parameter distinguishing solutions from pastes (100-2000 Pa) and from putties (>2000 Pa), with power law fluid behavior once the yield stress is exceeded. Overall, successful implementation of paste or putty handling properties to the hydrogel precursor may minimize the surgeon-technology learning time and ultimately ease incorporation into current practice. Furthermore, improved understanding and reporting of rheological properties will lead to better theoretical explanations of how materials affect rheological performances, to better predict and design the next generation of biomaterials.
Collapse
Affiliation(s)
- Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Emily C. Beck
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| | - Stevin H. Gehrke
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Cory J. Berkland
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
19
|
Alinejad Y, Adoungotchodo A, Grant MP, Epure LM, Antoniou J, Mwale F, Lerouge S. Injectable Chitosan Hydrogels with Enhanced Mechanical Properties for Nucleus Pulposus Regeneration. Tissue Eng Part A 2019; 25:303-313. [DOI: 10.1089/ten.tea.2018.0170] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yasaman Alinejad
- Laboratory of Endovascular Biomaterials (LBeV), Centre de Recherche du CHUM (CRCHUM), Montreal, Canada
- Department of Mechanical Engineering, École de Technologie Supérieure (ETS), Montreal, Canada
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Atma Adoungotchodo
- Laboratory of Endovascular Biomaterials (LBeV), Centre de Recherche du CHUM (CRCHUM), Montreal, Canada
- Department of Mechanical Engineering, École de Technologie Supérieure (ETS), Montreal, Canada
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Michael P. Grant
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Laura M. Epure
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - John Antoniou
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
- Division of Orthopaedic Surgery, McGill University, Montreal, Canada
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
- Division of Orthopaedic Surgery, McGill University, Montreal, Canada
| | - Sophie Lerouge
- Laboratory of Endovascular Biomaterials (LBeV), Centre de Recherche du CHUM (CRCHUM), Montreal, Canada
- Department of Mechanical Engineering, École de Technologie Supérieure (ETS), Montreal, Canada
| |
Collapse
|
20
|
Ma K, Chen S, Li Z, Deng X, Huang D, Xiong L, Shao Z. Mechanisms of endogenous repair failure during intervertebral disc degeneration. Osteoarthritis Cartilage 2019; 27:41-48. [PMID: 30243946 DOI: 10.1016/j.joca.2018.08.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 02/02/2023]
Abstract
Intervertebral disc (IVD) degeneration is frequently associated with Low back pain (LBP), which can severely reduce the quality of human life and cause enormous economic loss. However, there is a lack of long-lasting and effective therapies for IVD degeneration at present. Recently, stem cell based tissue engineering techniques have provided novel and promising treatment for the repair of degenerative IVDs. Numerous studies showed that stem/progenitor cells exist naturally in IVDs and could migrate from their niche to the IVD to maintain the quantity of nucleus pulposus (NP) cells. Unfortunately, these endogenous repair processes cannot prevent IVD degeneration as effectively as expected. Therefore, theoretical basis for regeneration of the NP in situ can be obtained from studying the mechanisms of endogenous repair failure during IVD degeneration. Although there have been few researches to study the mechanism of cell death and migration of stem/progenitor cells in IVD so far, studies demonstrated that the major inducing factors (compression and hypoxia) of IVD degeneration could decrease the number of NP cells by regulating apoptosis, autophagy, and necroptosis, and the particular chemokines and their receptors played a vital role in the migration of mesenchymal stem cells (MSCs). These studies provide a clue for revealing the mechanisms of endogenous repair failure during IVD degeneration. This article reviewed the current research situation and progress of the mechanisms through which IVD stem/progenitor cells failed to repair IVD tissues during IVD degeneration. Such studies provide an innovative research direction for endogenous repair and a new potential treatment strategy for IVD degeneration.
Collapse
Affiliation(s)
- K Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - S Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Z Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - X Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - D Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - L Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Zhou X, Wang J, Huang X, Fang W, Tao Y, Zhao T, Liang C, Hua J, Chen Q, Li F. Injectable decellularized nucleus pulposus-based cell delivery system for differentiation of adipose-derived stem cells and nucleus pulposus regeneration. Acta Biomater 2018; 81:115-128. [PMID: 30267879 DOI: 10.1016/j.actbio.2018.09.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/11/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Stem cell-based tissue engineering is a promising treatment for intervertebral disc (IVD) degeneration. A bio-scaffold that can maintain the function of transplanted cells and possesses favorable mechanical properties is needed in tissue engineering. Decellularized nucleus pulposus (dNP) has the potential to be a suitable bio-scaffold because it mimics the native nucleus pulposus (NP) composition. However, matrix loss during decellularization and difficulty in transplantation limit the clinical application of dNP scaffolds. In this study, we fabricated an injectable dNP-based cell delivery system (NPCS) and evaluated its properties by assessing the microstructure, biochemical composition, water content, biosafety, biostability, and mechanical properties. We also investigated the stimulatory effects of the bio-scaffold on the NP-like differentiation of adipose-derived stem cells (ADSCs) in vitro and the regenerative effects of the NPCS on degenerated NP in an in vivo animal model. The results showed that approximately 68% and 43% of the collagen and sGAG, respectively, remained in the NPCS after 30 days. The NPCS also showed mechanical properties similar to those of fresh NP. In addition, the NPCS was biocompatible and able to induce NP-like differentiation and extracellular matrix (ECM) synthesis in ADSCs. The disc height index (almost 81%) and the MRI index (349.05 ± 38.48) of the NPCS-treated NP were significantly higher than those of the degenerated NP after 16 weeks. The NPCS also partly restored the ECM content and the structure of degenerated NP in vivo. Our NPCS has good biological and mechanical properties and has the ability to promote the regeneration of degenerated NP. STATEMENT OF SIGNIFICANCE: Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration. Stem cell-based tissue engineering is a promising treatment for NP regeneration. Bio-scaffolds which have favorable biological and mechanical properties are needed in tissue engineering. Decellularized NP (dNP) scaffold is a potential choice for tissue engineering, but the difficulty in balancing complete decellularization and retaining ECM limits its usage. Instead of choosing different decellularization protocols, we complementing the sGAG lost during decellularization by cross-linking via genipin and fabricating an injectable dNP-based cell delivery system (NPCS) which has similar components as the native NP. We also investigated the biological and mechanical properties of the NPCS in vitro and verified its regenerative effects on degenerated IVDs in an animal model.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Weijing Fang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Tengfei Zhao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianming Hua
- Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
22
|
An injectable chitosan/chondroitin sulfate hydrogel with tunable mechanical properties for cell therapy/tissue engineering. Int J Biol Macromol 2018; 113:132-141. [PMID: 29452185 DOI: 10.1016/j.ijbiomac.2018.02.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 01/06/2023]
|
23
|
Sawyer SW, Shridhar SV, Zhang K, Albrecht LD, Filip AB, Horton JA, Soman P. Perfusion directed 3D mineral formation within cell-laden hydrogels. Biofabrication 2018; 10:035013. [PMID: 29882516 DOI: 10.1088/1758-5090/aacb42] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the promise of stem cell engineering and the new advances in bioprinting technologies, one of the major challenges in the manufacturing of large scale bone tissue scaffolds is the inability to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create thick, perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) hydrogel and 3D printed polyvinyl alcohol pipes were used to create perfusable channels. A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in order to induce mineral deposition which was subsequently quantified via micro-CT. Histological staining was used to verify mineral deposition around the perfused channels, while COMSOL modeling was used to simulate oxygen diffusion between adjacent channels. This information was used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden GelMA. Progressive matrix mineralization was observed by cells surrounding perfused channels as opposed to random mineral deposition in static constructs. Micro-CT confirmed that there was a direct relationship between channel mineralization within perfused constructs and time within the bioreactor. Furthermore, the scalable method presented in this work serves as a model on how large-scale bone tissue replacement constructs could be made using commonly available 3D printers, sacrificial materials, and hydrogels.
Collapse
Affiliation(s)
- Stephen W Sawyer
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States of America
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhou X, Wang J, Fang W, Tao Y, Zhao T, Xia K, Liang C, Hua J, Li F, Chen Q. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater 2018; 71:496-509. [PMID: 29555463 DOI: 10.1016/j.actbio.2018.03.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 01/08/2023]
Abstract
Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Although adipose-derived stem cell (ADSC)-based therapy is regarded to be promising for the treatment of degenerated NP, there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. The induction effect of the scaffold on ADSC differentiation was studied in vitro, and a rat coccygeal vertebrae degeneration model was used to investigate the regenerative effect of the CCSA system on the degenerated NP in vivo. The results showed that the CCSA delivery system cross-linked with 0.02% genipin was biocompatible and promoted the expressions of NP-specific genes. After the injection of the CCSA system, the disc height, water content, extracellular matrix synthesis, and structure of the degenerated NP were partly restored. Our CCSA delivery system uses minimally invasive approaches to promote the regeneration of degenerated NP and provides an exciting new avenue for the treatment of degenerative disc disease. STATEMENT OF SIGNIFICANCE Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Stem cell-based tissue engineering is a promising method in NP regeneration, but there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. Although several research groups have studied the fabrication of injectable hydrogel with biological matrix, our study differs from other works. We chose type II collagen and CS, the two primary native components in the NP, as the main materials and combined them according to the natural ratio of collagen and sGAG in the NP. The delivery system is preloaded with ADSCs and can be injected into the NP with a needle, followed by in situ gelation. Genipin is used as a cross-linker to improve the bio-stability of the scaffold, with low cytotoxicity. We investigated the stimulatory effects of our scaffold on the differentiation of ADSCs in vitro and the regenerative effect of the CCSA delivery system on degenerated NP in vivo.
Collapse
|
25
|
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP, Du J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 2018; 46:6255-6275. [PMID: 28816316 DOI: 10.1039/c6cs00052e] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECMs) have been widely used as a support for the adhesion, migration, differentiation, and proliferation of adipose-derived stem cells (ADSCs). However, poor mechanical behavior and unpredictable biodegradation properties of natural ECMs considerably limit their potential for bioapplications and raise the need for different, synthetic scaffolds. Hydrogels are regarded as the most promising alternative materials as a consequence of their excellent swelling properties and their resemblance to soft tissues. A variety of strategies have been applied to create synthetic biomimetic hydrogels, and their biophysical and biochemical properties have been modulated to be suitable for cell differentiation. In this review, we first give an overview of common methods for hydrogel preparation with a focus on those strategies that provide potential advantages for ADSC encapsulation, before summarizing the physical properties of hydrogel scaffolds that can act as biological cues. Finally, the challenges in the preparation and application of hydrogels with ADSCs are explored and the perspectives are proposed for the next generation of scaffolds.
Collapse
Affiliation(s)
- Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fernandez-Moure J, Moore CA, Kim K, Karim A, Smith K, Barbosa Z, Van Eps J, Rameshwar P, Weiner B. Novel therapeutic strategies for degenerative disc disease: Review of cell biology and intervertebral disc cell therapy. SAGE Open Med 2018; 6:2050312118761674. [PMID: 29568524 PMCID: PMC5858682 DOI: 10.1177/2050312118761674] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc degeneration is a disease of the discs connecting adjoining vertebrae in which structural damage leads to loss of disc integrity. Degeneration of the disc can be a normal process of ageing, but can also be precipitated by other factors. Literature has made substantial progress in understanding the biological basis of intervertebral disc, which is reviewed here. Current medical and surgical management strategies have shortcomings that do not lend promise to be effective solutions in the coming years. With advances in understanding the cell biology and characteristics of the intervertebral disc at the molecular and cellular level that have been made, alternative strategies for addressing disc pathology can be discovered. A brief overview of the anatomic, cellular, and molecular structure of the intervertebral disc is provided as well as cellular and molecular pathophysiology surrounding intervertebral disc degeneration. Potential therapeutic strategies involving stem cell, protein, and genetic therapy for intervertebral disc degeneration are further discussed.
Collapse
Affiliation(s)
- Joseph Fernandez-Moure
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Regenerative and Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Caitlyn A Moore
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Azim Karim
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Kevin Smith
- Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zonia Barbosa
- Department of Regenerative and Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jeffrey Van Eps
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Regenerative and Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bradley Weiner
- Department of Regenerative and Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA.,Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
27
|
Partridge SW, Benning MJ, German MJ, Dalgarno KW. Development of an arthroscopically compatible polymer additive layer manufacture technique. Proc Inst Mech Eng H 2017. [PMID: 28639513 DOI: 10.1177/0954411917690560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article describes a proof of concept study designed to evaluate the potential of an in vivo three-dimensional printing route to support minimally invasive repair of the musculoskeletal system. The study uses a photocurable material to additively manufacture in situ a model implant and demonstrates that this can be achieved effectively within a clinically relevant timescale. The approach has the potential to be applied with a wide range of light-curable materials and with development could be applied to create functionally gradient structures in vivo.
Collapse
Affiliation(s)
- Simon W Partridge
- 1 School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Benning
- 1 School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J German
- 2 Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kenneth W Dalgarno
- 1 School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
28
|
Thermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function. Acta Biomater 2017; 54:212-226. [PMID: 28285075 DOI: 10.1016/j.actbio.2017.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 01/07/2023]
Abstract
We previously reported a synthetic Laponite® crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) hydrogel which promotes differentiation of mesenchymal stem cells (MSCs) to nucleus pulposus (NP) cells without additional growth factors. The clinical success of this hydrogel is dependent on: integration with surrounding tissue; the capacity to restore mechanical function; as well as supporting the viability and differentiation of delivered MSCs. Bovine NP tissue explants were injected with media (control), human MSCs (hMSCs) alone, acellular L-pNIPAM-co-DMAc hydrogel or hMSCs incorporated within the L-pNIPAM-co-DMAc hydrogel and maintained at 5% O2 for 6weeks. Viability of native NP cells and delivered MSCs was maintained. Furthermore hMSCs delivered via the L-pNIPAM-co-DMAc hydrogel differentiated and produced NP matrix components: aggrecan, collagen type II and chondroitin sulphate, with integration of the hydrogel with native NP tissue. In addition L-pNIPAM-co-DMAc hydrogel injected into collagenase digested bovine discs filled micro and macro fissures, were maintained within the disc during loading and restored IVD stiffness. The mechanical support of the L-pNIPAM-co-DMAc hydrogel, to restore disc height, could provide immediate symptomatic pain relief, whilst the delivery of MSCs over time regenerates the NP extracellular matrix; thus the L-pNIPAM-co-DMAc hydrogel could provide a combined cellular and mechanical repair approach. STATEMENT OF SIGNIFICANCE Low back pain (LBP) is associated with degeneration of the intervertebral disc (IVD). We have previously described development of a jelly delivery system (hydrogel). This has the potential to deliver adult stem cells to the centre of the IVD, known as the nucleus pulposus (NP). Here, we have demonstrated that adult stem cells can be safely injected into the NP using small bore needles, reducing damage to the disc. Following injection the hydrogel integrates with surrounding NP tissue, promotes differentiation of stem cells towards disc cells and restores IVD mechanical function. The hydrogel could be used to restore mechanical function to the IVD and deliver cells to promote regeneration of the disc as a minimally invasive treatment for LBP.
Collapse
|
29
|
Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:21-30. [DOI: 10.1016/j.msec.2016.12.053] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/07/2016] [Accepted: 12/11/2016] [Indexed: 11/18/2022]
|
30
|
Rogina A, Ressler A, Matić I, Gallego Ferrer G, Marijanović I, Ivanković M, Ivanković H. Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydr Polym 2017; 166:173-182. [PMID: 28385221 DOI: 10.1016/j.carbpol.2017.02.105] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022]
Abstract
The development of bioactive injectable system as cell carrier with minimal impact on viability of encapsulated cells represents a great challenge. In the present work, we propose a new pH-responsive chitosan-hydroxyapatite-based hydrogel with sodium bicarbonate (NaHCO3) as the gelling agent. The in situ synthesis of hydroxyapatite phase has resulted in stable composite suspension and final homogeneous hydrogel. The application of sodium bicarbonate has allowed non-cytotoxic fast gelation of chitosan-hydroxyapatite within 4min, and without excess of sodium ions concentration. Rheological properties of crosslinked hydrogel have demonstrated possible behaviour as 'strong physical hydrogel'. The live dead staining has confirmed good viability and dispersion, as well as proliferation of encapsulated cells by the culture time. Presented preliminary results show good potential of chitosan-hydroxyapatite/NaHCO3 as a cell carrier, whose impact on the cell differentiation need to be confirmed by encapsulation of other cell phenotypes.
Collapse
Affiliation(s)
- Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10001 Zagreb, Marulićev trg 19, p.p.177, Croatia.
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10001 Zagreb, Marulićev trg 19, p.p.177, Croatia.
| | - Igor Matić
- Faculty of Science, University of Zagreb, HR-10001 Zagreb, Horvatovac102a, Croatia.
| | - Gloria Gallego Ferrer
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; Biomedical Research Networking centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - Inga Marijanović
- Faculty of Science, University of Zagreb, HR-10001 Zagreb, Horvatovac102a, Croatia.
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10001 Zagreb, Marulićev trg 19, p.p.177, Croatia.
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10001 Zagreb, Marulićev trg 19, p.p.177, Croatia.
| |
Collapse
|
31
|
O’Connell G, Garcia J, Amir J. 3D Bioprinting: New Directions in Articular Cartilage Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2657-2668. [DOI: 10.1021/acsbiomaterials.6b00587] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Grace O’Connell
- Department
of Mechanical Engineering University of California, Berkeley, 5122 Etcheverry Hall, Berkeley, California 94720, United States
| | - Jeanette Garcia
- IBM Research-Almaden, 650
Harry Road K17/D2, San Jose, California 95120, United States
| | - Jamali Amir
- Joint Preservation Institute, 2825 J Street #440, Sacramento, California 95816, United States
| |
Collapse
|
32
|
Jo W, Jeong D, Kim J, Park J. Self-Renewal of Bone Marrow Stem Cells by Nanovesicles Engineered from Embryonic Stem Cells. Adv Healthc Mater 2016; 5:3148-3156. [PMID: 27860451 DOI: 10.1002/adhm.201600810] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/02/2016] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles can enhance cell proliferation by stimulating signal transduction and delivering genetic materials, and thus may have applications in regenerative medicine and other therapeutic applications. The processes employed to isolate extracellular vesicles, however, are complex and achieve low yield. To overcome these obstacles, a large-scale, micropore device for generating extracellular vesicle-mimetic nanovesicles that have characteristics similar to those of extracellular vesicles is fabricated. The nanovesicles are generated through the self-assembly capability of cell membrane fragments in an aqueous solution. The nanovesicles enhance the proliferation of murine mesenchymal stem cells (MSCs), stimulate the signal pathway related to cell proliferation, and do not influence the characteristics of murine MSCs. Therefore, these nanovesicles could provide stable MSCs for regenerative medicine and other therapeutic applications.
Collapse
Affiliation(s)
- Wonju Jo
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-gu Pohang Gyeong-buk 37673 Republic of Korea
| | - Dayeong Jeong
- School of Interdisciplinary Bioscience and Bioengineering; POSTECH; 77 Cheongam-Ro, Nam-gu Pohang Gyeong-buk 37673 Republic of Korea
| | - Junho Kim
- School of Interdisciplinary Bioscience and Bioengineering; POSTECH; 77 Cheongam-Ro, Nam-gu Pohang Gyeong-buk 37673 Republic of Korea
| | - Jaesung Park
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-gu Pohang Gyeong-buk 37673 Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering; POSTECH; 77 Cheongam-Ro, Nam-gu Pohang Gyeong-buk 37673 Republic of Korea
| |
Collapse
|
33
|
Melrose J. Strategies in regenerative medicine for intervertebral disc repair using mesenchymal stem cells and bioscaffolds. Regen Med 2016; 11:705-24. [DOI: 10.2217/rme-2016-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intervertebral disc (IVD) is a major weight bearing structure that undergoes degenerative changes with aging limiting its ability to dissipate axial spinal loading in an efficient manner resulting in the generation of low back pain. Low back pain is a number one global musculoskeletal disorder with massive socioeconomic impact. The WHO has nominated development of mesenchymal stem cells and bioscaffolds to promote IVD repair as primary research objectives. There is a clear imperative for the development of strategies to effectively treat IVD defects. Early preclinical studies with mesenchymal stem cells in canine and ovine models have yielded impressive results in IVD repair. Combinatorial therapeutic approaches encompassing biomaterial and cell-based therapies promise significant breakthroughs in IVD repair in the near future.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone & Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
34
|
Kumar D, Lyness A, Gerges I, Lenardi C, Forsyth NR, Liu Y. Stem Cell Delivery With Polymer Hydrogel for Treatment of Intervertebral Disc Degeneration: From 3D Culture to Design of the Delivery Device for Minimally Invasive Therapy. Cell Transplant 2016; 25:2213-2220. [PMID: 27452665 DOI: 10.3727/096368916x692618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nucleus pulposus (NP) tissue damage can induce detrimental mechanical strain on the biomechanical performance of intervertebral discs (IVDs), causing subsequent disc degeneration. A novel, photocurable, injectable, synthetic polymer hydrogel (pHEMA-co-APMA grafted with PAA) has already demonstrated success in encapsulating and differentiating human mesenchymal stem cells (hMSCs) toward an NP phenotype during hypoxic conditions. After demonstration of promising results in our previous work, in this study we have further investigated the inclusion of mechanical stimulation and its impact on hMSC differentiation toward an NP phenotype through the characterization of matrix markers such as SOX-9, aggrecan, and collagen II. Furthermore, investigations were undertaken in order to approximate delivery parameters for an injection delivery device, which could be used to transport hMSCs suspended in hydrogel into the IVD. hMSC-laden hydrogel solutions were injected through various needle gauge sizes in order to determine its impact on postinjection cell viability and IVD tissue penetration. Interpretation of these data informed the design of a potential minimally invasive injection device, which could successfully inject hMSCs encapsulated in a UV-curable polymer into NP, prior to photo-cross-linking in situ.
Collapse
|
35
|
Thorpe AA, Boyes VL, Sammon C, Le Maitre CL. Thermally triggered injectable hydrogel, which induces mesenchymal stem cell differentiation to nucleus pulposus cells: Potential for regeneration of the intervertebral disc. Acta Biomater 2016; 36:99-111. [PMID: 26996377 DOI: 10.1016/j.actbio.2016.03.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/19/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
There is an urgent need for new therapeutic options for low back pain, which target degeneration of the intervertebral disc (IVD). Here, we investigated a pNIPAM hydrogel system, which is liquid at 39°C ex vivo, where following injection into the IVD, body temperature triggers gelation. The combined effects of hypoxia (5% O2) and the structural environment of the hydrogel delivery system on the differentiation of human mesenchymal stem cells (hMSCs), towards an NP cell phenotype was investigated. hMSCs were incorporated into the liquid hydrogel, the mixture solidified and cultured for up to 6weeks under 21% O2 or 5% O2 where viability was maintained. Immunohistochemistry revealed significant increases in NP matrix components: aggrecan; collagen type II and chondroitin sulphate after culture for 1week in 5% O2, accompanied by increased matrix staining for proteoglycans and collagen, observed histologically. NP markers HIF1α, PAX1 and FOXF1 were also significantly increased where hMSC were incorporated into hydrogels with accelerated expression observed when cultured in 5% O2. hMSCs cultured under hypoxic conditions, which mimic the native disc microenvironment, accelerate differentiation of hMSCs within the hydrogel system, towards the NP phenotype without the need for chondrogenic inducing medium or additional growth factors, thus simplifying the treatment strategy for the repair of IVD degeneration.
Collapse
Affiliation(s)
- A A Thorpe
- Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, UK.
| | - V L Boyes
- Materials and Engineering Research Institute, Sheffield Hallam University, S1 1WB, UK.
| | - C Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, S1 1WB, UK.
| | - C L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, UK.
| |
Collapse
|
36
|
Jiang H, Pan V, Vivek S, Weeks ER, Ke Y. Programmable DNA Hydrogels Assembled from Multidomain DNA Strands. Chembiochem 2016; 17:1156-62. [PMID: 26888015 DOI: 10.1002/cbic.201500686] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/09/2023]
Abstract
Hydrogels are important in biological and medical applications, such as drug delivery and tissue engineering. DNA hydrogels have attracted significant attention due to the programmability and biocompatibility of the material. We developed a series of low-cost one-strand DNA hydrogels self-assembled from single-stranded DNA monomers containing multiple palindromic domains. This new hydrogel design is simple and programmable. Thermal stability, mechanical properties, and loading capacity of these one-strand DNA hydrogels can be readily regulated by simply adjusting the DNA domains.
Collapse
Affiliation(s)
- Huiling Jiang
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, 1760 Haygood Drive, Atlanta, Georgia, 30322, USA
| | - Victor Pan
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, 1760 Haygood Drive, Atlanta, Georgia, 30322, USA
| | - Skanda Vivek
- Emory University, Department of Physics, 400 Dowman Drive, Atlanta, GA, 30322-2430, USA
| | - Eric R Weeks
- Emory University, Department of Physics, 400 Dowman Drive, Atlanta, GA, 30322-2430, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, 1760 Haygood Drive, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
37
|
Sart S, Agathos SN, Li Y, Ma T. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors. Biotechnol J 2015; 11:43-57. [PMID: 26696441 DOI: 10.1002/biot.201500191] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 11/02/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment.
Collapse
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Spiros N Agathos
- Laboratory of Bioengineering, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
38
|
Sivashanmugam A, Arun Kumar R, Vishnu Priya M, Nair SV, Jayakumar R. An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.05.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
O'Connell GD, Leach JK, Klineberg EO. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation. Biores Open Access 2015; 4:431-45. [PMID: 26634189 PMCID: PMC4652242 DOI: 10.1089/biores.2015.0034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine.
Collapse
Affiliation(s)
- Grace D. O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department of Orthopedic Surgery, University of California, Davis Medical Center, Davis, California
| | - Eric O. Klineberg
- Department of Orthopedic Surgery, University of California, Davis Medical Center, Davis, California
| |
Collapse
|
40
|
Wang F, Shi R, Cai F, Wang YT, Wu XT. Stem Cell Approaches to Intervertebral Disc Regeneration: Obstacles from the Disc Microenvironment. Stem Cells Dev 2015; 24:2479-95. [PMID: 26228642 DOI: 10.1089/scd.2015.0158] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration results in segmental instability and irritates neural compressive symptoms, such as low back pain and motor deficiency. The transplanting of stem cell into degenerative discs has attracted increasing clinical attention, as a new and proven approach to alleviating disc degeneration and to relieving discogenic pains. Aside from supplementation with stem cells, the IVD itself already contains a pool of stem and progenitor cells. Since the resident disc stem cells are incapable of reversing the pathologic changes that occur during aging and disc degeneration, it has been debated as to whether transplanted stem cells are capable of providing an efficient and durable therapeutic effect, even though there have been positive outcomes in both animal models and in clinical trials. This review aims to decipher the interactions between the stem cell and the disc microenvironment. Within their new niches in the IVD, the exogenous stem cell shows metabolic adaptation to the low-glucose supply, hypoxia, and compressive loadings, but demonstrates little tolerance to the disc-like acidity and hypertonicity. Similarly, the survival of endogenous stem cells is threatened as well by the harsh disc microenvironment, which may exhaust the stem cell resources and restrict the self-repair capacity of a degenerating IVD. To eliminate the intrinsic obstacles within the stressful disc niches, stem cells should be delivered with an injectable scaffold that provides both survival and mechanical support. Quick healing or concretion of the injection injuries, which minimizes stem cell leakage and disturbance to disc homeostasis, is of equal importance toward achieving efficient stem cell-based disc regeneration.
Collapse
Affiliation(s)
- Feng Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Rui Shi
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Feng Cai
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Yun-Tao Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Xiao-Tao Wu
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| |
Collapse
|
41
|
Showalter BL, Elliott DM, Chen W, Malhotra NR. Evaluation of an In Situ Gelable and Injectable Hydrogel Treatment to Preserve Human Disc Mechanical Function Undergoing Physiologic Cyclic Loading Followed by Hydrated Recovery. J Biomech Eng 2015; 137:081008. [PMID: 25950273 DOI: 10.1115/1.4030530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 12/21/2022]
Abstract
Despite the prevalence of disc degeneration and its contributions to low back problems, many current treatments are palliative only and ultimately fail. To address this, nucleus pulposus replacements are under development. Previous work on an injectable hydrogel nucleus pulposus replacement composed of n-carboxyethyl chitosan, oxidized dextran, and teleostean has shown that it has properties similar to native nucleus pulposus, can restore compressive range of motion in ovine discs, is biocompatible, and promotes cell proliferation. The objective of this study was to determine if the hydrogel implant will be contained and if it will restore mechanics in human discs undergoing physiologic cyclic compressive loading. Fourteen human lumbar spine segments were tested using physiologic cyclic compressive loading while intact, following nucleotomy, and again following treatment of injecting either phosphate buffered saline (PBS) (sham, n = 7) or hydrogel (implant, n = 7). In each compressive test, mechanical parameters were measured immediately before and after 10,000 cycles of compressive loading and following a period of hydrated recovery. The hydrogel implant was not ejected from the disc during 10,000 cycles of physiological compression testing and appeared undamaged when discs were bisected following all mechanical tests. For sham samples, creep during cyclic loading increased (+15%) from creep during nucleotomy testing, while for implant samples creep strain decreased (-3%) toward normal. There was no difference in compressive modulus or compressive strains between implant and sham samples. These findings demonstrate that the implant interdigitates with the nucleus pulposus, preventing its expulsion during 10,000 cycles of compressive loading and preserves disc creep within human L5-S1 discs. This and previous studies provide a solid foundation for continuing to evaluate the efficacy of the hydrogel implant.
Collapse
|
42
|
Design modification and optimisation of the perfusion system of a tri-axial bioreactor for tissue engineering. Bioprocess Biosyst Eng 2015; 38:1423-9. [PMID: 25874927 PMCID: PMC4464371 DOI: 10.1007/s00449-015-1371-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022]
Abstract
A systematic design of experiments (DOE) approach was used to optimize the perfusion process of a tri-axial bioreactor designed for translational tissue engineering exploiting mechanical stimuli and mechanotransduction. Four controllable design parameters affecting the perfusion process were identified in a cause–effect diagram as potential improvement opportunities. A screening process was used to separate out the factors that have the largest impact from the insignificant ones. DOE was employed to find the settings of the platen design, return tubing configuration and the elevation difference that minimise the load on the pump and variation in the perfusion process and improve the controllability of the perfusion pressures within the prescribed limits. DOE was very effective for gaining increased knowledge of the perfusion process and optimizing the process for improved functionality. It is hypothesized that the optimized perfusion system will result in improved biological performance and consistency.
Collapse
|
43
|
Komeri R, Thankam FG, Muthu J. Influence of matrix and bulk behaviour of an injectable hydrogel on the survival of encapsulated cardiac cells. RSC Adv 2015. [DOI: 10.1039/c4ra16254d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The influence of physicochemical, morphological and mechanical behaviour of an injectable poly(propylene fumarate-co-ethylene glycol)/PEGDA hydrogel on the viability and proliferation of encapsulated cardiac cells was investigated.
Collapse
Affiliation(s)
- Remya Komeri
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram – 695 012
- India
| | - Finosh Gnanaprakasam Thankam
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram – 695 012
- India
| | - Jayabalan Muthu
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram – 695 012
- India
| |
Collapse
|