1
|
Liu Y, Chen W, Huang Y, Li Z, Li C, Liu H, Huangfu X. Mechanisms for thallium(I) adsorption by zinc sulfide minerals under aerobic and anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132745. [PMID: 37827100 DOI: 10.1016/j.jhazmat.2023.132745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
The highly toxic heavy metal thallium is widely distributed in sulfide ores and released into the environment by sulfide mining. However, the interface between the sulfide minerals and Tl(I) is unclear. In this study, the capacity for adsorption of thallium(I) by a common sulfide mineral (zinc sulfide) was investigated in aerobic and anaerobic environments, which revealed three mechanisms for adsorption on the ZnS surface (surface complexation, electrostatic action and oxidation promotion). Batch experiments indicated that the Tl(I) adsorption capacity of ZnS in an aerobic environment was approximately 9.3% higher than that in an anaerobic environment and was positively correlated with the pH. The adsorption kinetic data showed good fits with the pseudosecond-order model and the Freundlich isotherm model. The Tl(I) adsorption mechanism varied in different oxidative and pH environments. XPS, FTIR, and EDS results implied that complexation with surface hydroxyl groups was involved in the adsorption process. pH experiments and zeta analyses suggested that electrostatic attraction was also involved. Surface complexation and electrostatic attraction were the dominant mechanisms at pH values above 6. Furthermore, oxidative dissolution of ZnS and hydrolysis of Zn2+ enhanced the complexation with hydroxyl groups on the mineral surface and facilitated Tl adsorption. In this study, this interface mechanism provided new insights into thallium migration in sulfurized mineral environments in aerobic and anaerobic transition regions.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yuheng Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhiheng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Changsheng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Okamura Y, Shimizu R, Tominaga Y, Maki S, Aki T, Matsumura Y, Nakashimada Y. Characterization of Biogenic PbS Quantum Dots. Int J Mol Sci 2023; 24:14149. [PMID: 37762453 PMCID: PMC10531774 DOI: 10.3390/ijms241814149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Heavy metals in a polluted environment are toxic to life. However, some microorganisms can remove or immobilize heavy metals through biomineralization. These bacteria also form minerals with compositions similar to those of semiconductors. Here, this bioprocess was used to fabricate semiconductors with low energy consumption and cost. Bacteria that form lead sulfide (PbS) nanoparticles were screened, and the crystallinity and semiconductor properties of the resulting nanoparticles were characterized. Bacterial consortia that formed PbS nanoparticles were obtained. Extracellular particle size ranged from 3.9 to 5.5 nm, and lattice fringes were observed. The lattice fringes and electron diffraction spectra corresponded to crystalline PbS. The X-ray diffraction (XRD) patterns of bacterial PbS exhibited clear diffraction peaks. The experimental and theoretical data of the diffraction angles on each crystal plane of polycrystalline PbS were in good agreement. Synchrotron XRD measurements showed no crystalline impurity-derived peaks. Thus, bacterial biomineralization can form ultrafine crystalline PbS nanoparticles. Optical absorption and current-voltage measurements of PbS were obtained to characterize the semiconductor properties; the results showed semiconductor quantum dot behavior. Moreover, the current increased under light irradiation when PbS nanoparticles were used. These results suggest that biogenic PbS has band gaps and exhibits the general fundamental characteristics of a semiconductor.
Collapse
Affiliation(s)
- Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan; (T.A.); (Y.N.)
- Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan (Y.T.)
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan;
- Consolidated Research for Biogenic Nanomaterials, Hiroshima University, Hiroshima 739-8530, Japan;
| | - Ryo Shimizu
- Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan (Y.T.)
| | - Yoriko Tominaga
- Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan (Y.T.)
- Consolidated Research for Biogenic Nanomaterials, Hiroshima University, Hiroshima 739-8530, Japan;
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan
| | - Sachiko Maki
- Consolidated Research for Biogenic Nanomaterials, Hiroshima University, Hiroshima 739-8530, Japan;
- Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tsunehiro Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan; (T.A.); (Y.N.)
- Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan (Y.T.)
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan;
| | - Yukihiko Matsumura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan;
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan; (T.A.); (Y.N.)
- Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan (Y.T.)
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan;
| |
Collapse
|
3
|
Nayak D, Chopra H, Chakrabartty I, Saravanan M, Barabadi H, Mohanta YK. Opportunities and challenges for bioengineered metallic nanoparticles as future nanomedicine. BIOENGINEERED NANOMATERIALS FOR WOUND HEALING AND INFECTION CONTROL 2023:517-540. [DOI: 10.1016/b978-0-323-95376-4.00012-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Su Z, Li X, Xi Y, Xie T, Liu Y, Liu B, Liu H, Xu W, Zhang C. Microbe-mediated transformation of metal sulfides: Mechanisms and environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153767. [PMID: 35157862 DOI: 10.1016/j.scitotenv.2022.153767] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microorganisms play a key role in the natural circulation of various constituent elements of metal sulfides. Some microorganisms (such as Thiobacillus ferrooxidans) can promote the oxidation of metal sulfides to increase the release of heavy metals. However, other microorganisms (such as Desulfovibrio vulgaris) can transform heavy metals into metal sulfides crystals. Therefore, insight into the metal sulfides transformation mediated by microorganisms is of great significance to environmental protection. In this review, first, we discuss the mechanism and influencing factors of microorganisms transforming heavy metals into metal sulfides crystals in different environments. Then, we explore three microbe-mediated transformation forms of heavy metals to metal sulfides and their environmental applications: (1) transformation to metal sulfides precipitation for metal resource recovery; (2) transformation to metal sulfides nanoparticles (NPs) for pollutant treatment; (3) transformation to "metal sulfides-microbe" biohybrid system for clean energy production and pollutant remediation. Finally, we further provide critical views on the application of microbe-mediated metal sulfides transformation in the environmental field and discuss the need for future research.
Collapse
Affiliation(s)
- Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Bo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
5
|
Ma Z, Ji T, Ji G, Niu Q, Han W. Facile construction of dual-drug loaded nanoparticles for improvement synergistic chemotherapy in prostate cancer. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhiqiang Ma
- Department of Urology, Shijiazhuang Third People's Hospital, Shijiazhuang, China
| | - Tuo Ji
- Department of Medicine, Sishui County Hospital of Traditional Chinese Medicine, Jining, China
| | - Guanghou Ji
- Department of Clinical Laboratory, Sishui People's Hospital, Jining, China
| | - Qingqing Niu
- Department of Clinical Laboratory, Sishui People's Hospital, Jining, China
| | - Weiwei Han
- Medical Laboratory, Qingdao Huangdao District Central Hospital, Qingdao, China
| |
Collapse
|
6
|
Brar KK, Magdouli S, Othmani A, Ghanei J, Narisetty V, Sindhu R, Binod P, Pugazhendhi A, Awasthi MK, Pandey A. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. ENVIRONMENTAL RESEARCH 2022; 207:112202. [PMID: 34655607 DOI: 10.1016/j.envres.2021.112202] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, nanoparticles (NPs) and nanomaterials (NMs) are used extensively in various streams such as medical science, solar energy, drug delivery, water treatment, and detection of persistent pollutants. Intensive synthesis of NPs/NMs carried out via physico-chemical technologies is deteriorating the environment globally. Therefore, an urgent need to adopt cost-effective and green technologies to synthesize NPs/NMs by recycling of secondary waste resources is highly required. Environmental wastes such as metallurgical slag, electronics (e-waste), and acid mine drainage (AMD) are rich sources of metals to produce NPs. This concept can remediate the environment on the one hand and the other hand, it can provide a future roadmap for economic benefits at industrial scale operations. The waste-derived NPs will reduce the industrial consumption of limited primary resources. In this review article, green emerging technologies involving lignocellulosic waste to synthesize the NPs from the waste streams and the role of potential microorganisms such as microalgae, fungi, yeast, bacteria for the synthesis of NPs have been discussed. A critical insight is also given on use of recycling technologies and the incorporation of NMs in the membrane bioreactors (MBRs) to improve membrane functioning and process performance. Finally, this study aims to mitigate various persisting scientific and technological challenges for the safe disposal and recycling of organic and inorganic waste for future use in the circular economy.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Amina Othmani
- Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, 5019, Monastir, Tunisia
| | - Javad Ghanei
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712 100, China
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 0019, India.
| |
Collapse
|
7
|
Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Yanchatuña Aguayo OP, Mouheb L, Villota Revelo K, Vásquez-Ucho PA, Pawar PP, Rahman A, Jeffryes C, Terencio T, Dahoumane SA. Biogenic Sulfur-Based Chalcogenide Nanocrystals: Methods of Fabrication, Mechanistic Aspects, and Bio-Applications. Molecules 2022; 27:458. [PMID: 35056773 PMCID: PMC8779671 DOI: 10.3390/molecules27020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties. Furthermore, various bio-applications of these NMs are described. Finally, key elements regarding the whole process are summed up and some hints are provided to overcome encountered bottlenecks towards the improved and scalable production of biogenic S-NPs.
Collapse
Affiliation(s)
- Oscar P. Yanchatuña Aguayo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri B.P.17 RP, Tizi-Ouzou 15000, Algeria;
| | - Katherine Villota Revelo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Paola A. Vásquez-Ucho
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Prasad P. Pawar
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10051, Beaumont, TX 77710, USA; (P.P.P.); (C.J.)
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., P.O. Box 10888, Beaumont, TX 77710, USA;
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., P.O. Box 10888, Beaumont, TX 77710, USA;
| | - Clayton Jeffryes
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10051, Beaumont, TX 77710, USA; (P.P.P.); (C.J.)
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
| | - Thibault Terencio
- School of Chemical Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Si Amar Dahoumane
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
9
|
Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnol Adv 2022; 55:107914. [DOI: 10.1016/j.biotechadv.2022.107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
10
|
Naughton KL, Boedicker JQ. Simulations to Aid in the Design of Microbes for Synthesis of Metallic Nanomaterials. ACS Synth Biol 2021; 10:3475-3488. [PMID: 34807578 DOI: 10.1021/acssynbio.1c00412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbes are champions of nanomaterial synthesis. By virtue of their incredible native range─from thermal vents to radioactive soil─microbes evolved tools to thrive on inorganic material, and, in their normal course of living, forge nanomaterials. In recent decades, synthetic biologists have engineered a vast array of functional nanomaterials using genetic tools that control the natural ability of bacteria to perform complex redox chemistry, maintain steep chemical gradients, and express biomolecular scaffolds. Leveraging microbial biology can lead to intricate nanomaterial architectures whose design and assembly exists beyond the ken of inorganic methods. Theories enumerating microbial nanomaterial synthesis are spare, however, despite the advantage they could offer. Here, we describe a theoretical approach to simulating biogenic nanomaterial synthesis that incorporates key features and parameters of Gram-negative bacteria. By adapting previously verified inorganic theories of nanoparticle synthesis, we recapitulate past biogenic experiments, such as the ability to localize nanoparticle synthesis or regulate nucleation of specific nanomaterials. Moreover, the simulation offers direction in the design of future experiments. Our results demonstrate the promise of marrying experimental and theoretical approaches to microbial nanomaterial synthesis.
Collapse
Affiliation(s)
- Kyle L. Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
| | - James Q. Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371, United States
| |
Collapse
|
11
|
Park Y, Faivre D. Diversity of Microbial Metal Sulfide Biomineralization. Chempluschem 2021; 87:e202100457. [PMID: 34898036 DOI: 10.1002/cplu.202100457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Indexed: 01/30/2023]
Abstract
Since the emergence of life on Earth, microorganisms have contributed to biogeochemical cycles. Sulfate-reducing bacteria are an example of widespread microorganisms that participate in the metal and sulfur cycles by biomineralization of biogenic metal sulfides. In this work, we review the microbial biomineralization of metal sulfide particles and summarize distinctive features from exemplary cases. We highlight that metal sulfide biomineralization is highly metal- and organism-specific. The properties of metal sulfide biominerals depend on the degree of cellular control and on environmental factors, such as pH, temperature, and concentration of metals. Moreover, biogenic macromolecules, including peptides and proteins, help cells control their extracellular and intracellular environments that regulate biomineralization. Accordingly, metal sulfide biominerals exhibit unique features when compared to abiotic minerals or biominerals produced by dead cell debris.
Collapse
Affiliation(s)
- Yeseul Park
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108, Saint-Paul-lez-Durance, France
| | - Damien Faivre
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
12
|
Boedicker JQ, Gangan M, Naughton K, Zhao F, Gralnick JA, El-Naggar MY. Engineering Biological Electron Transfer and Redox Pathways for Nanoparticle Synthesis. Bioelectricity 2021; 3:126-135. [PMID: 34476388 DOI: 10.1089/bioe.2021.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many species of bacteria are naturally capable of types of electron transport not observed in eukaryotic cells. Some species live in environments containing heavy metals not typically encountered by cells of multicellular organisms, such as arsenic, cadmium, and mercury, leading to the evolution of enzymes to deal with these environmental toxins. Bacteria also inhabit a variety of extreme environments, and are capable of respiration even in the absence of oxygen as a terminal electron acceptor. Over the years, several of these exotic redox and electron transport pathways have been discovered and characterized in molecular-level detail, and more recently synthetic biology has begun to utilize these pathways to engineer cells capable of detecting and processing a variety of metals and semimetals. One such application is the biologically controlled synthesis of nanoparticles. This review will introduce the basic concepts of bacterial metal reduction, summarize recent work in engineering bacteria for nanoparticle production, and highlight the most cutting-edge work in the characterization and application of bacterial electron transport pathways.
Collapse
Affiliation(s)
- James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Manasi Gangan
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Kyle Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Fengjie Zhao
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA.,Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Patel A, Enman J, Gulkova A, Guntoro PI, Dutkiewicz A, Ghorbani Y, Rova U, Christakopoulos P, Matsakas L. Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. CHEMOSPHERE 2021; 263:128306. [PMID: 33297243 DOI: 10.1016/j.chemosphere.2020.128306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Industrial activities, such as mining, electroplating, cement production, and metallurgical operations, as well as manufacturing of plastics, fertilizers, pesticides, batteries, dyes or anticorrosive agents, can cause metal contamination in the surrounding environment. This is an acute problem due to the non-biodegradable nature of metal pollutants, their transformation into toxic and carcinogenic compounds, and bioaccumulation through the food chain. At the same time, platinum group metals and rare earth elements are of strong economic interest and their recovery is incentivized. Microbial interaction with metals or metals-bearing minerals can facilitate metals recovery in the form of nanoparticles. Metal nanoparticles are gaining increasing attention due to their unique characteristics and application as antimicrobial and antibiofilm agents, biocatalysts, in targeted drug delivery, for wastewater treatment, and in water electrolysis. Ideally, metal nanoparticles should be homogenous in shape and size, and not toxic to humans or the environment. Microbial synthesis of nanoparticles represents a safe, and environmentally friendly alternative to chemical and physical methods. In this review article, we mainly focus on metal and metal salts nanoparticles synthesized by various microorganisms, such as bacteria, fungi, microalgae, and yeasts, as well as their advantages in biomedical, health, and environmental applications.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Josefine Enman
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | | | - Pratama Istiadi Guntoro
- Mineral Processing, Division of Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Agata Dutkiewicz
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Yousef Ghorbani
- Mineral Processing, Division of Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| |
Collapse
|
14
|
Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nat Rev Chem 2020; 4:638-656. [PMID: 37127973 DOI: 10.1038/s41570-020-00221-w] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Inorganic nanomaterials are widely used in chemical, electronics, photonics, energy and medical industries. Preparing a nanomaterial (NM) typically requires physical and/or chemical methods that involve harsh and environmentally hazardous conditions. Recently, wild-type and genetically engineered microorganisms have been harnessed for the biosynthesis of inorganic NMs under mild and environmentally friendly conditions. Microorganisms such as microalgae, fungi and bacteria, as well as bacteriophages, can be used as biofactories to produce single-element and multi-element inorganic NMs. This Review describes the emerging area of inorganic NM biosynthesis, emphasizing the mechanisms of inorganic-ion reduction and detoxification, while also highlighting the proteins and peptides involved. We show how analysing a Pourbaix diagram can help us devise strategies for the predictive biosynthesis of NMs with high producibility and crystallinity and also describe how to control the size and morphology of the product. Here, we survey biosynthetic inorganic NMs of 55 elements and their applications in catalysis, energy harvesting and storage, electronics, antimicrobials and biomedical therapy. Furthermore, a step-by-step flow chart is presented to aid the design and biosynthesis of inorganic NMs employing microbial cells. Future research in this area will add to the diversity of available inorganic NMs but should also address scalability and purity.
Collapse
|
15
|
In-field bioreactors demonstrate dynamic shifts in microbial communities in response to geochemical perturbations. PLoS One 2020; 15:e0232437. [PMID: 32986713 PMCID: PMC7521895 DOI: 10.1371/journal.pone.0232437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
Subsurface microbial communities mediate the transformation and fate of redox sensitive materials including organic matter, metals and radionuclides. Few studies have explored how changing geochemical conditions influence the composition of groundwater microbial communities over time. We temporally monitored alterations in abiotic forces on microbial community structure using 1L in-field bioreactors receiving background and contaminated groundwater at the Oak Ridge Reservation, TN. Planktonic and biofilm microbial communities were initialized with background water for 4 days to establish communities in triplicate control reactors and triplicate test reactors and then fed filtered water for 14 days. On day 18, three reactors were switched to receive filtered groundwater from a contaminated well, enriched in total dissolved solids relative to the background site, particularly chloride, nitrate, uranium, and sulfate. Biological and geochemical data were collected throughout the experiment, including planktonic and biofilm DNA for 16S rRNA amplicon sequencing, cell counts, total protein, anions, cations, trace metals, organic acids, bicarbonate, pH, Eh, DO, and conductivity. We observed significant shifts in both planktonic and biofilm microbial communities receiving contaminated water. This included a loss of rare taxa, especially amongst members of the Bacteroidetes, Acidobacteria, Chloroflexi, and Betaproteobacteria, but enrichment in the Fe- and nitrate- reducing Ferribacterium and parasitic Bdellovibrio. These shifted communities were more similar to the contaminated well community, suggesting that geochemical forces substantially influence microbial community diversity and structure. These influences can only be captured through such comprehensive temporal studies, which also enable more robust and accurate predictive models to be developed.
Collapse
|
16
|
Moon JW, Paradis CJ, Joyner DC, von Netzer F, Majumder EL, Dixon ER, Podar M, Ge X, Walian PJ, Smith HJ, Wu X, Zane GM, Walker KF, Thorgersen MP, Poole Ii FL, Lui LM, Adams BG, De León KB, Brewer SS, Williams DE, Lowe KA, Rodriguez M, Mehlhorn TL, Pfiffner SM, Chakraborty R, Arkin AP, Wall JD, Fields MW, Adams MWW, Stahl DA, Elias DA, Hazen TC. Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. CHEMOSPHERE 2020; 255:126951. [PMID: 32417512 DOI: 10.1016/j.chemosphere.2020.126951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.
Collapse
Affiliation(s)
- Ji-Won Moon
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA; current U.S. Geological Survey, National Minerals Information Center, Reston, VA, USA
| | - Charles J Paradis
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Dominique C Joyner
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Frederick von Netzer
- University of Washington, Department of Civil and Environmental Engineering, Seattle, WA, USA
| | - Erica L Majumder
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Emma R Dixon
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Mircea Podar
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Xiaoxuan Ge
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - Peter J Walian
- Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging, Berkeley, CA, USA
| | - Heidi J Smith
- Montana State University, Center for Biofilm Engineering, Department of Microbiology & Immunology, Bozeman, MT, USA
| | - Xiaoqin Wu
- Lawrence Berkeley National Laboratory, Department of Ecology, Earth and Environmental Sciences Area, Berkeley, CA, USA
| | - Grant M Zane
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Kathleen F Walker
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Michael P Thorgersen
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - Farris L Poole Ii
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - Lauren M Lui
- Lawrence Berkeley National Laboratory Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Benjamin G Adams
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Kara B De León
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Sheridan S Brewer
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Daniel E Williams
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Kenneth A Lowe
- Oak Ridge National Laboratory, Environmental Science Division, Oak Ridge, TN, USA
| | - Miguel Rodriguez
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Tonia L Mehlhorn
- Oak Ridge National Laboratory, Environmental Science Division, Oak Ridge, TN, USA
| | - Susan M Pfiffner
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Romy Chakraborty
- Lawrence Berkeley National Laboratory, Department of Ecology, Earth and Environmental Sciences Area, Berkeley, CA, USA
| | - Adam P Arkin
- Lawrence Berkeley National Laboratory Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Judy D Wall
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Matthew W Fields
- Montana State University, Center for Biofilm Engineering, Department of Microbiology & Immunology, Bozeman, MT, USA
| | - Michael W W Adams
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - David A Stahl
- University of Washington, Department of Civil and Environmental Engineering, Seattle, WA, USA
| | - Dwayne A Elias
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Terry C Hazen
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA; University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA.
| |
Collapse
|
17
|
Mohanta YK, Hashem A, Abd_Allah EF, Jena SK, Mohanta TK. Bacterial synthesized metal and metal salt nanoparticles in biomedical applications: An up and coming approach. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Abeer Hashem
- Botany and Microbiology DepartmentKing Saud University Riyadh 11451 Saudi Arabia
| | | | - Santosh Kumar Jena
- Department of BiotechnologyNorth Orissa University Baripada 757003 India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research CenterUniversity of Nizwa Nizwa 616 Oman
| |
Collapse
|
18
|
Synthesis of zinc-gallate phosphors by biomineralization and their emission properties. Acta Biomater 2019; 97:557-564. [PMID: 31374337 DOI: 10.1016/j.actbio.2019.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022]
Abstract
Reduction of target species by microorganisms and their subsequent precipitation into sparingly soluble mineral phase nanoparticles have been referred to as microbially mediated nanomaterial synthesis. Here, we describe the microbially mediated production of nano-dimensioned spinel structured zinc-gallate (ZnGa2O4) phosphors exhibiting different emission performance with varying substituted elements. Interestingly, in the microbially mediated phosphor production described herein, there were no reducible metal- and non-metal species composing the target minerals. By varying substituted elements, zinc-gallate phosphors present typical red, green, and blue (RGB) emission. An apparent whitish emission was accomplished by blending phosphors. A promising potential for white light produced by biosynthesized mixtures of Cr-, Mn-, and Co- substituted zinc-gallates representing RGB emissions was evidenced. Microbial activity supplied a reducing driving force and provided appropriate near neutral pH and reduced Eh conditions to thermodynamically precipitate spinel structured nanomaterials from supersaturated divalent and trivalent cations. This result complemented conventional biomineralization concepts and expanded the realm of biomanufacturing nanomaterials for further applications. STATEMENT OF SIGNIFICANCE: This study substantiated that circumstances of a suitable pH/Eh derived from bacterial activity, divalent/trivalent ion supply, buffering capacity, and supersaturation could precipitate spinel structure nanoparticles. Even though live or dead cells with membrane could enhance the nuclei generation, the spinel structured phases were produced regardless of existence of live or dead cells and reducible metal or non-metal species incorporating into the produced solid phases. This finding led to production of a series of metal-substituted zinc-gallates with specific RGB emission that can result in whitish light using simple blending. We believe our findings could expand the realm of nanomaterial synthesis using low cost, highly scalable bio-nanotechnology.
Collapse
|
19
|
Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 2019; 9:12944-12967. [PMID: 35520790 PMCID: PMC9064032 DOI: 10.1039/c8ra10483b] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Metal nanoparticles have received great attention from researchers across the world because of a plethora of applications in agriculture and the biomedical field as antioxidants and antimicrobial compounds. Over the past few years, green nanotechnology has emerged as a significant approach for the synthesis and fabrication of metal nanoparticles. This green route employs various reducing and stabilizing agents from biological resources for the synthesis of nanoparticles. The present article aims to review the progress made in recent years on nanoparticle biosynthesis by microbes. These microbial resources include bacteria, fungi, yeast, algae and viruses. This review mainly focuses on the biosynthesis of the most commonly studied metal and metal salt nanoparticles such as silver, gold, platinum, palladium, copper, cadmium, titanium oxide, zinc oxide and cadmium sulphide. These nanoparticles can be used in pharmaceutical products as antimicrobial and anti-biofilm agents, targeted delivery of anticancer drugs, water electrolysis, waste water treatment, biosensors, biocatalysis, crop protection against pathogens, degradation of dyes etc. This review will discuss in detail various microbial modes of nanoparticles synthesis and the mechanism of their synthesis by various bioreducing agents such as enzymes, peptides, proteins, electron shuttle quinones and exopolysaccharides. A thorough understanding of the molecular mechanism of biosynthesis is the need of the hour to develop a technology for large scale production of bio-mediated nanoparticles. The present review also discusses the advantages of various microbial approaches in nanoparticles synthesis and lacuna involved in such processes. This review also highlights the recent milestones achieved on large scale production and future perspectives of nanoparticles.
Collapse
Affiliation(s)
- Geeta Gahlawat
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| | - Anirban Roy Choudhury
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| |
Collapse
|
20
|
Qi S, Yang S, Chen J, Niu T, Yang Y, Xin B. High-Yield Extracellular Biosynthesis of ZnS Quantum Dots through a Unique Molecular Mediation Mechanism by the Peculiar Extracellular Proteins Secreted by a Mixed Sulfate Reducing Bacteria. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10442-10451. [PMID: 30785253 DOI: 10.1021/acsami.8b18574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work describes a high-yield extracellular biosynthesis of ZnS QDs via a unique molecular mediation mechanism driven by the mixed sulfate reducing bacteria (SRB). The mixed SRB have obtained the highest ever ZnS QD biosynthesis rate of 35.0-45.0 g/(L·month). The biogenic ZnS QDs with an average crystallite size (ACS) of 6.5 nm have greater PL activity and better uniformity than that of a chemical route. Peculiar extracellular proteins (EPs) with molecular weights of approximately 65 and 14 kDa specially adhere to the ZnS QDs, which cover extraordinarily high contents of acidic amino acids (14.0 mol % Glu and 13.0 mol % Asp) and of nonpolar amino acids (12.0 mol % Ala, 11.0 mol % Gly, and 7.0 mol % Phe), for novel molecular mediation. The vast amount of negative charges in Glu and Asp guides the strong absorption between the EPs and Zn2+ via electrostatic attraction to reach a maximum absorption capacity of 745.9 mg/g within 2.0 h, motivating large and rapid nucleation as the first step of biosynthesis. Meanwhile, bridging and interlinkage occur inside the EPs or between the EPs via hydrophobic interactions dominated by the nonpolar amino acids, resulting in the formation of massive microcavities to control and restrict the growth of ZnS QDs as a template. The novel molecular mediation mechanism triggered by the peculiar EPs with an extraordinary amino acid composition and structure accounts for the high-yield biosynthesis of ZnS QDs. The mixed SRB have also successfully fabricated other metal sulfide QDs, including PbS, CuS, and CdS, through the novel molecular mediation.
Collapse
Affiliation(s)
- Shiyue Qi
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Shuhui Yang
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Ji Chen
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Tianqi Niu
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Yufei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , P. R. China
| | - Baoping Xin
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| |
Collapse
|
21
|
Moon JW, Eskelsen JR, Ivanov IN, Jacobs CB, Jang GG, Kidder MK, Joshi PC, Armstrong BL, Pierce EM, Oremland RS, Phelps TJ, Graham DE. Improved ZnS nanoparticle properties through sequential NanoFermentation. Appl Microbiol Biotechnol 2018; 102:8329-8339. [PMID: 30078139 DOI: 10.1007/s00253-018-9245-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Sequential NanoFermentation (SNF) is a novel process which entails sparging microbially produced gas containing H2S from a primary reactor through a concentrated metal-acetate solution contained in a secondary reactor, thereby precipitating metallic sulfide nanoparticles (e.g., ZnS, CuS, or SnS). SNF holds an advantage over single reactor nanoparticle synthesis strategies, because it avoids exposing the microorganisms to high concentrations of toxic metal and sulfide ions. Also, by segregating the nanoparticle products from biological materials, SNF avoids coating nanoparticles with bioproducts that alter their desired properties. Herein, we report the properties of ZnS nanoparticles formed from SNF as compared with ones produced directly in a primary reactor (i.e., conventional NanoFermentation, or "CNF"), commercially available ZnS, and ZnS chemically synthesized by bubbling H2S gas through a Zn-acetate solution. The ZnS nanoparticles produced by SNF provided improved optical properties due to their smaller crystallite size, smaller overall particle sizes, reduced biotic surface coatings, and reduced structural defects. SNF still maintained the advantages of NanoFermentation technology over chemical synthesis including scalability, reproducibility, and lower hazardous waste burden.
Collapse
Affiliation(s)
- Ji-Won Moon
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 37831, USA. .,National Minerals Information Center, United States Geological Survey, Reston, VA, 20192, USA.
| | | | - Ilia N Ivanov
- Center for Nanophase Materials Sciences, ORNL, Oak Ridge, TN, 37831, USA
| | | | - Gyoung Gug Jang
- Energy & Transportation Science Division, ORNL, Oak Ridge, TN, 37831, USA
| | | | - Pooran C Joshi
- Material Science and Technology Division, ORNL, Oak Ridge, TN, 37831, USA
| | - Beth L Armstrong
- Material Science and Technology Division, ORNL, Oak Ridge, TN, 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, ORNL, Oak Ridge, TN, 37831, USA
| | | | - Tommy J Phelps
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 37831, USA
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 37831, USA
| |
Collapse
|
22
|
Tran PL, Li J, Lungaro L, Ramesh S, Ivanov IN, Moon JW, Graham DE, Hamood A, Wang J, Elfick AP, Rivero IV. Cryomilled zinc sulfide: A prophylactic for Staphylococcus aureus-infected wounds. J Biomater Appl 2018; 33:82-93. [PMID: 29683016 DOI: 10.1177/0885328218770530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial pathogens that colonize wounds form biofilms, which protect the bacteria from the effect of host immune response and antibiotics. This study examined the effectiveness of newly synthesized zinc sulfide in inhibiting biofilm development by Staphylococcus aureus ( S. aureus) strains. Zinc sulfide (ZnS) was anaerobically biosynthesized to produce CompA, which was further processed by cryomilling to maximize the antibacterial properties to produce CompB. The effect of the two compounds on the S. aureus strain AH133 was compared using zone of inhibition assay. The compounds were formulated in a polyethylene glycol cream. We compared the effect of the two compounds on biofilm development by AH133 and two methicillin-resistant S. aureus clinical isolates using the in vitro model of wound infection. Zone of inhibition assay revealed that CompB is more effective than CompA. At 15 mg/application, the formulated cream of either compound inhibited biofilm development by AH133, which was confirmed using confocal laser scanning microscopy. At 20 mg/application, CompB inhibited biofilm development by the two methicillin-resistant S. aureus clinical isolates. To further validate the effectiveness of CompB, mice were treated using the murine model of wound infection. Colony forming cell assay and in vivo live imaging results strongly suggested the inhibition of S. aureus growth.
Collapse
Affiliation(s)
- Phat L Tran
- 1 Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Jianqiang Li
- 2 Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames IA, USA
| | - Lisa Lungaro
- 3 Institute for Bioengineering, University of Edinburgh, Edinburgh, Scotland, UK
| | - Srikanthan Ramesh
- 2 Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames IA, USA
| | - Ilia N Ivanov
- 4 Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge TN, USA
| | - Ji-Won Moon
- 5 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN, USA
| | - David E Graham
- 5 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN, USA
| | - Abdul Hamood
- 6 Department of Molecular Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,7 Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - James Wang
- 8 School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Alistair Pd Elfick
- 3 Institute for Bioengineering, University of Edinburgh, Edinburgh, Scotland, UK
| | - Iris V Rivero
- 2 Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames IA, USA.,7 Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
23
|
Christensen GA, Moon J, Veach AM, Mosher JJ, Wymore AM, van Nostrand JD, Zhou J, Hazen TC, Arkin AP, Elias DA. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition. PLoS One 2018; 13:e0194663. [PMID: 29558522 PMCID: PMC5860781 DOI: 10.1371/journal.pone.0194663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/07/2018] [Indexed: 02/01/2023] Open
Abstract
Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.
Collapse
Affiliation(s)
- Geoff A. Christensen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - JiWon Moon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Allison M. Veach
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Jennifer J. Mosher
- Marshall University, Biological Sciences, Huntington, West Virginia, United States of America
| | - Ann M. Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | - Jizhong Zhou
- University of Oklahoma, Norman, Oklahoma, United States of America
| | - Terry C. Hazen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- University of Tennessee, Knoxville, Tennessee, United States of America
| | - Adam P. Arkin
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- University of California at Berkeley, Berkeley, California, United States of America
| | - Dwayne A. Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
24
|
Eskelsen JR, Xu J, Chiu M, Moon JW, Wilkins B, Graham DE, Gu B, Pierce EM. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1139-1149. [PMID: 29258315 DOI: 10.1021/acs.est.7b04343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The dissolution of metal sulfides, such as ZnS, is an important biogeochemical process affecting fate and transport of trace metals in the environment. However, current studies of in situ dissolution of metal sulfides and the effects of structural defects on dissolution are lacking. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, we have examined biogenic ZnS nanoparticles produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium in the presence or absence of silver (Ag), and abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H2S-rich gas or Na2S solution. The size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were examined using high-resolution transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ∼10 nm) than the abiogenic ones (i.e., ∼3-5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ∼3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell TEM (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m2) have a significantly higher surface energy than the abiogenic ZnS nanoparticles (γ = 0.277 J/m2). Larger defect-bearing biogenic ZnS nanoparticles were thus more reactive than the smaller quantum-dot-sized ZnS nanoparticles. These findings provide new insight into the factors that affect the dissolution of metal sulfide nanoparticles in relevant natural and engineered scenarios, and have important implications for tracking the fate and transport of sulfide nanoparticles and associated metal ions in the environment. Moreover, our study exemplified the use of an in situ method (i.e., LCTEM) to investigate nanoparticle behavior (e.g., dissolution) in aqueous solutions.
Collapse
Affiliation(s)
- Jeremy R Eskelsen
- Environmental Sciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831, United States
| | - Jie Xu
- Geological Sciences, University of Texas at El Paso , 500 West University Ave, El Paso, Texas 79968, United States
| | - Michelle Chiu
- Environmental Sciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831, United States
| | - Ji-Won Moon
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831, United States
| | - Branford Wilkins
- Environmental Sciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831, United States
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831, United States
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
25
|
Jacobs CB, Maksov AB, Muckley ES, Collins L, Mahjouri-Samani M, Ievlev A, Rouleau CM, Moon JW, Graham DE, Sumpter BG, Ivanov IN. UV-activated ZnO films on a flexible substrate for room temperature O 2 and H 2O sensing. Sci Rep 2017; 7:6053. [PMID: 28729534 PMCID: PMC5519692 DOI: 10.1038/s41598-017-05265-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/15/2017] [Indexed: 11/23/2022] Open
Abstract
We demonstrate that UV-light activation of polycrystalline ZnO films on flexible polyimide (Kapton) substrates can be used to detect and differentiate between environmental changes in oxygen and water vapor. The in-plane resistive and impedance properties of ZnO films, fabricated from bacteria-derived ZnS nanoparticles, exhibit unique resistive and capacitive responses to changes in O2 and H2O. We propose that the distinctive responses to O2 and H2O adsorption on ZnO could be utilized to statistically discriminate between the two analytes. Molecular dynamic simulations (MD) of O2 and H2O adsorption energy on ZnO surfaces were performed using the large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with a reactive force-field (ReaxFF). These simulations suggest that the adsorption mechanisms differ for O2 and H2O adsorption on ZnO, and are governed by the surface termination and the extent of surface hydroxylation. Electrical response measurements, using DC resistance, AC impedance spectroscopy, and Kelvin Probe Force Microscopy (KPFM), demonstrate differences in response to O2 and H2O, confirming that different adsorption mechanisms are involved. Statistical and machine learning approaches were applied to demonstrate that by integrating the electrical and kinetic responses the flexible ZnO sensor can be used for detection and discrimination between O2 and H2O at low temperature.
Collapse
Affiliation(s)
- Christopher B Jacobs
- Center for Nanophase Materials Science and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA
| | - Artem B Maksov
- Center for Nanophase Materials Science and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, 444 Greve Hall, 821 Volunteer Boulevard, Knoxville, Tennessee, United States
| | - Eric S Muckley
- Center for Nanophase Materials Science and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, 444 Greve Hall, 821 Volunteer Boulevard, Knoxville, Tennessee, United States
| | - Liam Collins
- Center for Nanophase Materials Science and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA
| | - Masoud Mahjouri-Samani
- Center for Nanophase Materials Science and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA
| | - Anton Ievlev
- Center for Nanophase Materials Science and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA
| | - Christopher M Rouleau
- Center for Nanophase Materials Science and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA
| | - Ji-Won Moon
- Microbial Ecology & Physiology Group, Biosciences Division, Oak Ridge National Laboratory (ORNL), PO Box 2008, Oak Ridge, TN, USA
| | - David E Graham
- Microbial Ecology & Physiology Group, Biosciences Division, Oak Ridge National Laboratory (ORNL), PO Box 2008, Oak Ridge, TN, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Science and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA
- Computer Science & Mathematics Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA
| | - Ilia N Ivanov
- Center for Nanophase Materials Science and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, USA.
| |
Collapse
|
26
|
Bindu KR, Anila EI. Structural and Optical Properties of White Light Emitting ZnS:Mn2+ Nanoparticles at Different Synthesis Temperatures. J Fluoresc 2015; 25:795-801. [DOI: 10.1007/s10895-015-1590-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
|