1
|
Johnson AP, Jyothi SL, Shahid M, Venkatesh MP, Chidambaram SB, Osmani RA, Gangadharappa HV, Pramod K. Graphene oxide nanoribbons conjugated with 1, 2-distearoyl-sn-glycero-3 phosphoethanolamine-poly (ethylene glycol)-transferrin enhanced targeted delivery and cytotoxicity of raloxifene against breast cancer. Int J Biol Macromol 2024; 278:134772. [PMID: 39154682 DOI: 10.1016/j.ijbiomac.2024.134772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
The clinical utility of raloxifene (RLX), a selective estrogen receptor modulator (SERM), has been compromised by severe side effects and unfavorable drug properties. To address these, a transferrin (Tf) conjugated graphene oxide nanoribbon (GONR) platform was tried for RLX. The stability of GONRs in biological media was improved by surface modification with 1, 2-Distearoyl-sn-glycero-3 phosphoethanolamine-Poly (ethylene glycol) (DSPE-PEG). The Tf molecule was covalently attached to DSPE-PEG (DPT) using EDC-NHS chemistry. The surface of GONR was then modified with DSPE-PEG (DP) or DPT and loaded with RLX (GDP-RLX and GDPT-RLX). The final formulations were characterized for drug loading and stability. The anticancer activities of pure RLX, GDP-RLX, and GDPT-RLX were evaluated and compared in all the in vitro and in vivo studies. In vitro cell line studies showed that GDPT-RLX have significantly high cytotoxicity, cellular uptake, apoptosis induction, G2/M phase arrest, anti-migration properties, and apoptotic protein expression, followed by GDP-RLX and RLX. Pharmacokinetics and tumor biodistribution were also found to be excellent with GDPT-RLX. The in vivo tumor therapy and tumor evaluation outcomes were also consistent with the in vitro data. The Tf conjugated GDPT-RLX represents a promising approach for targeted and sustained delivery of RLX with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 57 0015, Karnataka, India
| | - S L Jyothi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 57 0015, Karnataka, India
| | - M Shahid
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - M P Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 57 0015, Karnataka, India; Faculty of Pharmaceutical Sciences, UCSI University, Malaysia
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology & Toxicology, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India
| | - Riyaz Ali Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 57 0015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 57 0015, Karnataka, India.
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
2
|
Singh D, Gupta GD, Gupta N, Verma P, Dey A, Kaur S, Kumar A, Raj N. A Critical Appraisal of Functionalized 2-Dimensional Carbon-Based Nanomaterials for Drug Delivery Applications. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:479-493. [PMID: 37702173 DOI: 10.2174/1872210518666230911150337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023]
Abstract
The development of an efficient and innovative drug delivery system is essential to improve the pharmacological parameters of the medicinal compound or drug. The technique or manner used to improve the pharmacological parameters plays a crucial role in the delivery system. In the current scenario, various drug delivery systems are available where nanotechnology has firmly established itself in the field of drug delivery. One of the most prevalent elements is carbon with its allotropic modifications such as graphene-based nanomaterials, carbon nanotubes, carbon dots, and carbon fullerenes, these nanomaterials offer notable physiochemical and biochemical properties for the delivery applications due to their smaller size, surface area, and ability to interact with the cells or tissues. The exceptional physicochemical properties of carbon-based 2D nanomaterials, such as graphene and carbon nanotubes, make them attractive candidates for drug delivery systems. These nanomaterials offer a large surface area, high drug loading capacity, and tunable surface chemistry, enabling efficient encapsulation, controlled release, and targeted delivery of therapeutic agents. These properties of the nanomaterials can be exploited for drug delivery applications, like assisting the target delivery of drugs and aiding combination molecular imaging. This review emphasizes on the recent patents on 2D carbon-based nanomaterial and their role in drug delivery systems. Carbon-based 2D nanomaterials present a wealth of opportunities for advanced drug delivery systems. Their exceptional properties and versatility offers great potential in improving therapeutic efficacy, minimizing side effects, and enabling personalized medicine and the recent patents on 2D nanomaterial.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali. 140413, India
| | - G D Gupta
- Department of Pharmaceutical Sciences, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Nimish Gupta
- Department of Pharmaceutical Sciences, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Princi Verma
- Department of Pharmaceutical Sciences, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Abhisek Dey
- Department of Pharmaceutical Sciences, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Simranjeet Kaur
- Department of Pharmaceutical Sciences, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Akshay Kumar
- Department of Pharmaceutical Sciences, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Namandeep Raj
- Department of Pharmaceutical Sciences, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
3
|
Dabrowski B, Zuchowska A, Kasprzak A, Zukowska GZ, Brzozka Z. Cellular uptake of biotransformed graphene oxide into lung cells. Chem Biol Interact 2023; 376:110444. [PMID: 36906140 DOI: 10.1016/j.cbi.2023.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Due to its high surface area and convenient functionalization, graphene oxide has many potential applications in biomedicine, especially as a drug carrier. However, knowledge about its internalization inside mammalian cells is still limited. Graphene oxide cellular uptake is a complex phenomenon affected by factors such as the size of the particle and modifications of its surface. Moreover, nanomaterials introduced into living organisms interact with biological fluids' components. It may further alter its biological properties. All these factors must be considered when the cellular uptake of potential drug carriers is considered. In this study, the effect of graphene oxide particle sizes on internalization efficiency into normal (LL-24) and cancerous (A549) human lung cells was investigated. Moreover, one set of samples was incubated with human serum to determine how the interaction of graphene oxide with serum components affects its structure, surface, and interaction with cells. Our findings indicate that samples incubated with serum enhance cell proliferation but enter the cells with lesser efficiency than their counterparts not incubated with human serum. What is more affinity towards the cells was higher for larger particles.
Collapse
Affiliation(s)
| | | | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Poland
| | | | | |
Collapse
|
4
|
Dabrowski B, Zuchowska A, Brzozka Z. Graphene oxide internalization into mammalian cells – a review. Colloids Surf B Biointerfaces 2022; 221:112998. [DOI: 10.1016/j.colsurfb.2022.112998] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022]
|
5
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
6
|
Zakharova OV, Mastalygina EE, Golokhvast KS, Gusev AA. Graphene Nanoribbons: Prospects of Application in Biomedicine and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2425. [PMID: 34578739 PMCID: PMC8469389 DOI: 10.3390/nano11092425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Graphene nanoribbons are a type of graphene characterized by remarkable electrical and mechanical properties. This review considers the prospects for the application of graphene ribbons in biomedicine, taking into account safety aspects. According to the analysis of the recent studies, the topical areas of using graphene nanoribbons include mechanical, chemical, photo- and acoustic sensors, devices for the direct sequencing of biological macromolecules, including DNA, gene and drug delivery vehicles, and tissue engineering. There is evidence of good biocompatibility of graphene nanoribbons with human cell lines, but a number of researchers have revealed toxic effects, including cytotoxicity and genotoxicity. Moreover, the damaging effects of nanoribbons are often higher than those of chemical analogs, for instance, graphene oxide nanoplates. The possible mechanism of toxicity is the ability of graphene nanoribbons to damage the cell membrane mechanically, stimulate reactive oxidative stress (ROS) production, autophagy, and inhibition of proliferation, as well as apoptosis induction, DNA fragmentation, and the formation of chromosomal aberrations. At the same time, the biodegradability of graphene nanoribbons under the environmental factors has been proven. In general, this review allows us to conclude that graphene nanoribbons, as components of high-precision nanodevices and therapeutic agents, have significant potential for biomedical applications; however, additional studies of their safety are needed. Particular emphasis should be placed on the lack of information about the effect of graphene nanoribbons on the organism as a whole obtained from in vivo experiments, as well as about their ecological toxicity, accumulation, migration, and destruction within ecosystems.
Collapse
Affiliation(s)
- Olga V. Zakharova
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33 Internatsionalnaya St., 392000 Tambov, Russia;
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISiS, 4 Leninskiy prospekt, 119049 Moscow, Russia
| | - Elena E. Mastalygina
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
- Laboratory of Physics-Chemistry of Synthetic and Natural Polymers Composites, Institute of Biochemical Physics Named after N.M. Emanuel RAS (IBCP RAS), Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia
| | - Kirill S. Golokhvast
- Polytechnical Institute, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia;
- Siberian Federal Scientific Center for Agrobiotechnology RAS, Centralnaya 2B, 630501 Krasnoobsk, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| | - Alexander A. Gusev
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33 Internatsionalnaya St., 392000 Tambov, Russia;
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
- Research Educational Center Sustainable Development of the Forest Complex, Voronezh State Forestry University Named after G F Morozov, 394087 Voronezh, Russia
| |
Collapse
|
7
|
Bera S, Ghosh S, Ali A, Pal M, Chakrabarti P. Inhibition of microtubule assembly and cytotoxic effect of graphene oxide on human colorectal carcinoma cell HCT116. Arch Biochem Biophys 2021; 708:108940. [PMID: 34058149 DOI: 10.1016/j.abb.2021.108940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Nanomaterials, such as graphene oxide (GO), are increasingly being investigated for their suitability in biomedical applications. Tubulin is the key molecule for the formation of microtubules crucial for cellular function and proliferation, and as such an appealing target for developing anticancer drug. Here we employ biophysical techniques to study the effect of GO on tubulin structure and how the changes affect the tubulin/microtubule assembly. GO disrupts the structural integrity of the protein, with consequent retardation of tubulin polymerization. Investigating the anticancer potential of GO, we found that it is more toxic to human colon cancer cells (HCT116), as compared to human embryonic kidney epithelial cells (HEK293). Immunocytochemistry indicated the disruption of microtubule assembly in HCT116 cells. GO arrested cells in the S phase with increased accumulation in Sub-G1 population of cell cycle, inducing apoptosis by generating reactive oxygen species (ROS) in a dose- and time-dependent manner. GO inhibited microtubule formation by intervening into the polymerization of tubulin heterodimers both in vitro and ex vivo, resulting in growth arrest at the S phase and ROS induced apoptosis of HCT116 colorectal carcinoma cells. There was no significant harm to the HEK293 kidney epithelial cells used as control. Our report of pristine GO causing ROS-induced apoptosis of cancer cells and inhibition of tubulin-microtubule assembly can be of interest in cancer therapeutics and nanomedicine.
Collapse
Affiliation(s)
- Supriyo Bera
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
8
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
9
|
EGFR Protein Expression Relates with Tumor Histology, Methylation Status of EGFR and HPV16 E6 Viral Load in Oropharyngeal Carcinoma. Head Neck Pathol 2021; 15:743-756. [PMID: 33428063 PMCID: PMC8385027 DOI: 10.1007/s12105-020-01261-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The epidermal growth factor receptor (EGFR) pathway is important in tumorigenesis of oropharyngeal carcinoma (OPC). However, the molecular mechanisms contributing to EGFR expression in OPC are not well-known. To detect relating factors and clinicopathological impact of EGFR protein expression in OPC, gene amplification/loss, point mutations including synonymous mutations, and promoter methylation of EGFR, and the viral genome load of human papillomavirus type 16 (HPV16)-E5, -E6, and -E7, after extracting HPV16-related OPCs with qPCR of HPV16-E6 and E7, were investigated in 74 OPC surgical cases, including 52 HPV-related (HPV-OPC) and 22 HPV-unrelated (nHPV-OPC). Immunohistochemical (IHC) data of EGFR expression (high, weak, and negative), validated by the qPCR of EGFR mRNA, were compared with molecular, viral, and clinicopathological data of patients. All nHPV-OPC cases were EGFR-IHC-high, whereas 21.2%, 65.4%, and 13.5% of HPV-OPC cases showed EGFR-IHC-high, -weak, -negative (p < 0.01), respectively. In HPV-OPC cases, EGFR-IHC-weak/negative status was related to promoter methylation of EGFR (p = 0.009), but not with gene amplification/loss or the point mutation of EGFR and was more often seen in HPV16-OPC cases (p = 0.049). Among HPV16-OPC cases, EGFR-IHC-weak/negative was related to high E6 expression. EGFR protein-loss was related to the tumor histology of non-keratinizing squamous cell carcinoma (SCC) (p = 0.035) but not with patient prognosis. In conclusion, decreased EGFR protein expression was more frequent in HPV-OPC than in nHPV-OPC and was related to EGFR methylation, infection of HPV16, and the viral genome load of HPV16-E6. Clinicopathologically, it was related to the tumor histology of non-keratinizing SCC.
Collapse
|
10
|
Johnson AP, Gangadharappa H, Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J Control Release 2020; 325:141-162. [DOI: 10.1016/j.jconrel.2020.06.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|
11
|
Jović D, Jaćević V, Kuča K, Borišev I, Mrdjanovic J, Petrovic D, Seke M, Djordjevic A. The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1508. [PMID: 32752020 PMCID: PMC7466546 DOI: 10.3390/nano10081508] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Being a member of the nanofamily, carbon nanomaterials exhibit specific properties that mostly arise from their small size. They have proved to be very promising for application in the technical and biomedical field. A wide spectrum of use implies the inevitable presence of carbon nanomaterials in the environment, thus potentially endangering their whole nature. Although scientists worldwide have conducted research investigating the impact of these materials, it is evident that there are still significant gaps concerning the knowledge of their mechanisms, as well as the prolonged and chronic exposure and effects. This manuscript summarizes the most prominent representatives of carbon nanomaterial groups, giving a brief review of their general physico-chemical properties, the most common use, and toxicity profiles. Toxicity was presented through genotoxicity and the activation of the cell signaling pathways, both including in vitro and in vivo models, mechanisms, and the consequential outcomes. Moreover, the acute toxicity of fullerenol, as one of the most commonly investigated members, was briefly presented in the final part of this review. Thinking small can greatly help us improve our lives, but also obliges us to deeply and comprehensively investigate all the possible consequences that could arise from our pure-hearted scientific ambitions and work.
Collapse
Affiliation(s)
- Danica Jović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11040 Belgrade, Serbia
- Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jasminka Mrdjanovic
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Danijela Petrovic
- Department of Natural Sciences and Management in Education, Faculty of Education Sombor, University of Novi Sad, Podgorička 4, 25101 Sombor, Serbia
| | - Mariana Seke
- Institute of Nuclear Sciences "Vinca", University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
12
|
Suhrland C, Truman J, Obeid LM, Sitharaman B. Delivery of long chain C16and C24ceramide in HeLa cells using oxidized graphene nanoribbons. J Biomed Mater Res B Appl Biomater 2019; 108:1141-1156. [DOI: 10.1002/jbm.b.34465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/24/2019] [Accepted: 07/13/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Cassandra Suhrland
- Department of Biomedical EngineeringStony Brook University Stony Brook New York
| | - Jean‐Philip Truman
- Department of Medicine and the Stony Brook Cancer Center, Health Science CenterStony Brook University Stony Brook New York
| | - Lina M. Obeid
- Department of Medicine and the Stony Brook Cancer Center, Health Science CenterStony Brook University Stony Brook New York
| | - Balaji Sitharaman
- Department of Biomedical EngineeringStony Brook University Stony Brook New York
| |
Collapse
|
13
|
Mousavi SM, Soroshnia S, Hashemi SA, Babapoor A, Ghasemi Y, Savardashtaki A, Amani AM. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug Metab Rev 2019; 51:91-104. [DOI: 10.1080/03602532.2019.1582661] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadaf Soroshnia
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| | - Younes Ghasemi
- Department of Medical Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences and Technology, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Suhrland C, Truman JP, Obeid LM, Sitharaman B. Oxidized graphene nanoparticles as a delivery system for the pro-apoptotic sphingolipid C 6 ceramide. J Biomed Mater Res A 2018; 107:25-37. [PMID: 30422374 DOI: 10.1002/jbm.a.36474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 01/22/2023]
Abstract
Sphingolipids such as ceramide have attracted much attention as possible anticancer agents due to their potent pro-apoptotic effects. However, due to their extreme hydrophobicity, there is currently no clinically approved delivery method for in vivo use as a therapeutic agent. To this end, we have developed a novel method for loading the short-chain C6 ceramide onto oxidized graphene nanoribbons (O-GNRs) and graphene nanoplatelets (GNPs). Mass spectrometry revealed loading efficiencies of 57% and 51.5% for C6 ceramide onto O-GNRs and GNPs, respectively. The PrestoBlue viability assay revealed that 100 µg/mL of C6 ceramide-loaded O-GNRs and C6 ceramide-loaded GNPs reduced HeLa cell viability by approximately 93% and approximately 76%, respectively, compared to untreated HeLa cells, while equal concentrations of these nanoparticles without C6 ceramide did not significantly reduce HeLa cell viability. We confirmed that this cytotoxicity was apoptotic in nature via capase-3 activity and Hoechst staining. Using live-cell confocal imaging with the fluorescent NBD-ceramide loaded on O-GNRs, we observed robust uptake into HeLa cells within 30 min while NBD-ceramide on its own was uptaken much more rapidly. Transmission electron microscopy confirmed that C6 ceramide-loaded O-GNRs were actually entering cells. Taken together, these data show that O-GNRs are a promising delivery agent for ceramide. To our knowledge, this study is the first to use such a loading method. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 25-37, 2019.
Collapse
Affiliation(s)
- Cassandra Suhrland
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jean-Philip Truman
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, New York, New York
| | - Lina M Obeid
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, New York, New York
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
15
|
Fu J, Chang L. Fabrication of fasudil hydrochloride modified graphene oxide biocomposites and its defensive effect acute renal injury in septicopyemia rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:125-130. [PMID: 30036829 DOI: 10.1016/j.jphotobiol.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022]
Abstract
This investigation aspired to the impacts of intraperitoneal injection of suspended graphene oxide-bovine serum albumin (GO-BSA) biocomposite blended in fasudil (FSD)-against intense renal damage in septicopyemia rodent's models. It was picked a model of acute renal injury by an intraperitoneal organization of fasudil. Our outcomes demonstrated that few markers of renal capacity, for example, blood urea nitrogen (BUN), creatinine (SC), and intratubular waste levels were altogether diminished essentially in fasudil blended GO-BSA intraperitoneally infusion groups during the first week, showing that GO-BSA has an uncommon ability to ensure FSD discharges. Additionally, surprisingly, while rats got GO-BSA intraperitoneally, biomedical examination demonstrated the fruitful decrease of blood urea nitrogen and creatinine blood factors showing that GO-BSA has an uncommon ability alone to repair the acute renal injury. It appears that GO-BSA can adsorb ECM proteins and encourages their exchange to the intense renal damage tissue and expands its repair speed, in addition, GO-BSA ensures the FSD and along these lines the helpful adequacy of the FSD in intense renal damage enhanced by the grip of living cells to GO-BSA biocomposites. It could be inferred that GO-BSA material improves the rate of achievement of FSD conveys in intense renal damage in septicopyemia animals.
Collapse
Affiliation(s)
- Jing Fu
- Emergency Department, Sichuan Province People's Hospital, Qingyang District, Chengdu, Sichuan, China
| | - Li Chang
- Department of Emergency Intensive Care Unit, Sichuan Province People's Hospital, Qingyang District, Chengdu, Sichuan, China..
| |
Collapse
|
16
|
Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. NANO-MICRO LETTERS 2018; 10:53. [PMID: 30079344 PMCID: PMC6075845 DOI: 10.1007/s40820-018-0206-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/22/2018] [Indexed: 05/18/2023]
Abstract
Graphene-based nanomaterials (GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing: (1) the history, synthesis, structural properties and recent developments of GBNs for biomedical applications; (2) GBNs uses as therapeutics, drug/gene delivery and antibacterial materials; (3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and (4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs.
Collapse
Affiliation(s)
| | - Danielle McShan
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
17
|
Tu Z, Guday G, Adeli M, Haag R. Multivalent Interactions between 2D Nanomaterials and Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706709. [PMID: 29900600 DOI: 10.1002/adma.201706709] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/15/2018] [Indexed: 05/20/2023]
Abstract
2D nanomaterials, particularly graphene, offer many fascinating physicochemical properties that have generated exciting visions of future biological applications. In order to capitalize on the potential of 2D nanomaterials in this field, a full understanding of their interactions with biointerfaces is crucial. The uptake pathways, toxicity, long-term fate of 2D nanomaterials in biological systems, and their interactions with the living systems are fundamental questions that must be understood. Here, the latest progress is summarized, with a focus on pathogen, mammalian cell, and tissue interactions. The cellular uptake pathways of graphene derivatives will be discussed, along with health risks, and interactions with membranes-including bacteria and viruses-and the role of chemical structure and modifications. Other novel 2D nanomaterials with potential biomedical applications, such as transition-metal dichalcogenides, transition-metal oxide, and black phosphorus will be discussed at the end of this review.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Guy Guday
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, 68151-44316, Khoramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
18
|
Foreman HCC, Lalwani G, Kalra J, Krug LT, Sitharaman B. Gene delivery to mammalian cells using a graphene nanoribbon platform. J Mater Chem B 2017; 5:2347-2354. [DOI: 10.1039/c6tb03010f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We developed a novel oxidized graphene nanoribbon-based platform (O-GNR) for gene delivery of double-stranded DNA into mammalian cells.
Collapse
Affiliation(s)
| | - Gaurav Lalwani
- Theragnostic Technologies Inc
- Long Island High Technology Incubator Suite 123
- Stony Brook
- USA
| | - Jaslin Kalra
- Theragnostic Technologies Inc
- Long Island High Technology Incubator Suite 123
- Stony Brook
- USA
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology
- Stony Brook University
- Stony Brook
- USA
| | - Balaji Sitharaman
- Department of Biomedical Engineering
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|
19
|
Chowdhury SM, Xie S, Fang J, Lee SK, Sitharaman B. Nanoparticle-Facilitated Membrane Depolarization-Induced Receptor Activation: Implications on Cellular Uptake and Drug Delivery. ACS Biomater Sci Eng 2016; 2:2153-2161. [PMID: 33465891 DOI: 10.1021/acsbiomaterials.6b00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell-specific uptake of drug delivery systems (DDSs) are crucial to achieve optimal efficacy of many drugs. Widely employed strategies to facilitate targeted intracellular drug delivery involves attachment of targeting ligands (peptides or antibodies) to DDSs. Target receptors mutations can limit the effectiveness of this approach. Herein, we demonstrate, through in vitro inhibitory and drug delivery studies, that graphene nanoribbons (GNRs), water dispersed with the amphiphilic polymer called PEG-DSPE ((1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N [amino (polyethylene glycol)]) (induce membrane depolarization-mediated epidermal growth factor receptor (EGFR) activation. This phenomenon is ligand-independent and EGFR activation occurs via influx of Ca2+ ions from the extracellular space. We further provide evidence, through in vivo studies, that this mechanism could be exploited to facilitate efficacious drug delivery into tumors that overexpress EGFR. The results suggest that transient membrane depolarization-facilitated cell receptor activation can be employed as an alternate strategy for enhanced intracellular drug delivery.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Shawn Xie
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Justin Fang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Stephen K Lee
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
20
|
Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv Drug Deliv Rev 2016; 105:145-162. [PMID: 27569910 DOI: 10.1016/j.addr.2016.08.009] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 01/10/2023]
Abstract
Carbon-based functional nanomaterials have attracted immense scientific interest from many disciplines and, due to their extraordinary properties, have offered tremendous potential in a diverse range of applications. Among the different carbon nanomaterials, graphene is one of the newest and is considered the most important. Graphene, a monolayer material composed of sp2-hybridized carbon atoms hexagonally arranged in a two-dimensional structure, can be easily functionalized by chemical modification. Functionalized graphene and its derivatives have been used in diverse nano-biotechnological applications, such as in environmental engineering, biomedicine, and biotechnology. However, the prospective use of graphene-related materials in a biological context requires a detailed comprehension of these materials, which is essential for expanding their biomedical applications in the future. In recent years, the number of biological studies involving graphene-related nanomaterials has rapidly increased. These studies have documented the effects of the biological interactions between graphene-related materials and different organizational levels of living systems, ranging from biomolecules to animals. In the present review, we will summarize the recent progress in understanding mainly the interactions between graphene and cells. The impact of graphene on intracellular components, and especially the uptake and transport of graphene by cells, will be discussed in detail.
Collapse
|
21
|
Liu W, Sun C, Liao C, Cui L, Li H, Qu G, Yu W, Song N, Cui Y, Wang Z, Xie W, Chen H, Zhou Q. Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5909-5918. [PMID: 27324937 DOI: 10.1021/acs.jafc.5b05923] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety evaluation and the further exploration of the bioapplication.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine , Beijing 100124, People's Republic of China
| | - Cheng Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Chunyang Liao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Lin Cui
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Haishan Li
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine , Beijing 100124, People's Republic of China
| | - Guangbo Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Wenlian Yu
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine , Beijing 100124, People's Republic of China
| | - Naining Song
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine , Beijing 100124, People's Republic of China
| | - Yuan Cui
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine , Beijing 100124, People's Republic of China
| | - Zheng Wang
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine , Beijing 100124, People's Republic of China
| | - Wenping Xie
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine , Beijing 100124, People's Republic of China
| | - Huiming Chen
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine , Beijing 100124, People's Republic of China
| | - Qunfang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| |
Collapse
|
22
|
Graphene in therapeutics delivery: Problems, solutions and future opportunities. Eur J Pharm Biopharm 2016; 104:235-50. [DOI: 10.1016/j.ejpb.2016.04.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
|
23
|
Rashkow JT, Talukdar Y, Lalwani G, Sitharaman B. Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells. Nanomedicine (Lond) 2016; 10:1693-706. [PMID: 26080694 DOI: 10.2217/nnm.15.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM This study investigates the effects of tungsten disulfide nanotubes (WSNTs) and molybdenum disulfide nanoplatelets (MSNPs) on fibroblasts (NIH-3T3) and mesenchymal stem cells (MSCs) to determine safe dosages for potential biomedical applications. MATERIALS & METHODS Cytotoxicity of MSNPs and WSNTs (5-300 μg/ml) on NIH-3T3 and MSCs was assessed at 6, 12 or 24 h. MSC differentiation to adipocytes and osteoblasts was assessed following treatment for 24 h. RESULTS Only NIH-3T3 cells treated with MSNPs showed dose or time dependent increase in cytotoxicity. Differentiation markers of MSCs in treated groups were unaffected compared with untreated controls. CONCLUSION MSNPs and WSNTs at concentrations less than 50 µg/ml are potentially safe for treatment of fibroblasts or MSCs for up to 24 h.
Collapse
Affiliation(s)
- Jason Thomas Rashkow
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 115, Stony Brook, NY 11794-5281, USA
| | - Yahfi Talukdar
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 115, Stony Brook, NY 11794-5281, USA
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 115, Stony Brook, NY 11794-5281, USA
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 115, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
24
|
Mullick Chowdhury S, Zafar S, Tellez V, Sitharaman B. Graphene Nanoribbon-Based Platform for Highly Efficacious Nuclear Gene Delivery. ACS Biomater Sci Eng 2016; 2:798-808. [DOI: 10.1021/acsbiomaterials.5b00562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| | - Siraat Zafar
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| | - Victor Tellez
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| | - Balaji Sitharaman
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| |
Collapse
|
25
|
Patel SC, Lee S, Lalwani G, Suhrland C, Chowdhury SM, Sitharaman B. Graphene-based platforms for cancer therapeutics. Ther Deliv 2016; 7:101-16. [PMID: 26769305 PMCID: PMC4976992 DOI: 10.4155/tde.15.93] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
Graphene is a multifunctional carbon nanomaterial and could be utilized to develop platform technologies for cancer therapies. Its surface can be covalently and noncovalently functionalized with anticancer drugs and functional groups that target cancer cells and tissue to improve treatment efficacies. Furthermore, its physicochemical properties can be harnessed to facilitate stimulus responsive therapeutics and drug delivery. This review article summarizes the recent literature specifically focused on development of graphene technologies to treat cancer. We will focus on advances at the interface of graphene based drug/gene delivery, photothermal/photodynamic therapy and combinations of these techniques. We also discuss the current understanding in cytocompatibility and biocompatibility issues related to graphene formulations and their implications pertinent to clinical cancer management.
Collapse
Affiliation(s)
- Sunny C Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Stephen Lee
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Cassandra Suhrland
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | | | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
26
|
Wang Y, Liu K, Luo Z, Duan Y. Preparation and tumor cell model based biobehavioral evaluation of the nanocarrier system using partially reduced graphene oxide functionalized by surfactant. Int J Nanomedicine 2015; 10:4605-20. [PMID: 26229464 PMCID: PMC4514384 DOI: 10.2147/ijn.s82354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Currently, surfactant-functionalized nanomaterials are tending toward development of novel tumor-targeted drug carriers to overcome multidrug resistance in cancer therapy. Now, investigating the biocompatibility and uptake mechanism of specific drug delivery systems is a growing trend, but usually a troublesome issue, in simple pharmaceutical research. Methods We first reported the partially reduced graphene oxide modified with poly(sodium 4-styrenesulfonate) (PSS) as a nanocarrier system. Then, the nanocarrier was characterized by atomic force microscope, scanning electron microscope, high-resolution transmission electron microscope, ultraviolet–visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy, X-Ray powder diffraction, and Raman spectroscopy. Epirubicin (EPI) was attached to PSSG via π–π stacking, hydrogen bonding, and physical absorption to form conjugates of PSSG–EPI. The adsorption and desorption profiles, cytotoxicity coupled with drug accumulation, and uptake of PSSG and PSSG–EPI were evaluated. Finally, the subcellular behaviors, distribution, and biological fate of the drug delivery system were explored by confocal laser scanning microscope using direct fluorescence colocalization imaging and transmission electron microscopy. Results The partially reduced graphene oxide sheets functionalized by surfactant exhibit good dispersibility. Moreover, due to much less carboxyl groups retained on the edge of PSSG sheets, the nanocarriers exhibit biocompatibility in vitro. The obtained PSSG shows a high drug-loading capacity of 2.22 mg/mg. The complexes of PSSG–EPI can be transferred to lysosomes in 2 hours through endocytosis, then the drug is released in the cytoplasm in 8 hours, and ultimately EPI is delivered into cell nucleus to exhibit medicinal effects in 1 day. Conclusion The comprehensive exploration of the biological uptake mechanism of functional graphene-mediated tumor cell targeting model provides a typical protocol for evaluation of drug delivery system and will benefit the discovery of new surfactant-modified nanocarriers in nanomedicine.
Collapse
Affiliation(s)
- Yimin Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China
| | - Kunping Liu
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China ; Faculty of Biotechnology Industry, Chengdu University, Chengdu, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
27
|
Chowdhury SM, Fang J, Sitharaman B. Interaction of graphene nanoribbons with components of the blood vascular system. Future Sci OA 2015; 1:FSO19. [PMID: 26925250 PMCID: PMC4765390 DOI: 10.4155/fso.15.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM The systemic administration of graphene nanoribbons for a variety of in vivo biomedical applications will result in their interaction with cellular and protein components of the circulatory system. The aim of this study was to assess the in vitro effects of graphene nanoribbons (O-GNR) noncovalently functionalized with PEG-DSPE (1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N [amino (polyethylene glycol)]) on some of the key hematological and vascular components of the circulatory system. METHODS Transmission electron microscopy was used to characterize the nanoparticles. ELISA-based assays, bright-field microscopy, transmission electron microscopy and colorimetric assays were used to assess toxicological effects. RESULTS Our findings taken together indicate that low concentrations of O-GNR-PEG-DSPE (<80 μg/ml) are relatively nontoxic to the hematological components, and could be employed for diagnostic and therapeutic applications especially for diseases of the circulatory system. Graphene nanoribbons are a class of carbon-based nanostructures derived from multiwalled carbon nanotubes that have been shown to have unique properties and high potential for drug-delivery applications in recent studies from our group. However, further development of this nanoparticle for biomedical applications will be possible only after its interactions with components of the circulatory system are suitably characterized. Toward that goal, this study is aimed at identifying potential toxicities of graphene nanoribbons in the circulatory system. Results from this study will give us indications about safe dosages and lay the foundation toward further animal studies.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 115, Stony Brook, NY 11794–5281, USA
| | - Justin Fang
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 115, Stony Brook, NY 11794–5281, USA
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 115, Stony Brook, NY 11794–5281, USA
| |
Collapse
|
28
|
Nurunnabi M, Parvez K, Nafiujjaman M, Revuri V, Khan HA, Feng X, Lee YK. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv 2015; 5:42141-42161. [DOI: 10.1039/c5ra04756k] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review article summarizes the latest progress in research regarding bioapplications of graphene oxide derivatives and provides expert opinions on strategies for overcoming the current challenges.
Collapse
Affiliation(s)
- Md Nurunnabi
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Khaled Parvez
- Max Plank Institute for Polymer Research
- Mainz 55128
- Germany
| | - Md Nafiujjaman
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Haseeb A. Khan
- Analytical and Molecular Bioscience Research Group
- Department of Biochemistry
- College of Science
- King Saud University
- Riyadh 11451
| | - Xinliang Feng
- Max Plank Institute for Polymer Research
- Mainz 55128
- Germany
- Department of Chemistry and Food Chemistry
- Technische Universität Dresden
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Green Bioengineering
| |
Collapse
|
29
|
Mullick Chowdhury S, Dasgupta S, McElroy AE, Sitharaman B. Structural disruption increases toxicity of graphene nanoribbons. J Appl Toxicol 2014; 34:1235-46. [DOI: 10.1002/jat.3066] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/25/2014] [Accepted: 07/21/2014] [Indexed: 12/18/2022]
Affiliation(s)
| | - Subham Dasgupta
- School of Marine and Atmospheric Sciences; Stony Brook University; Stony Brook NY USA
| | - Anne E. McElroy
- School of Marine and Atmospheric Sciences; Stony Brook University; Stony Brook NY USA
| | - Balaji Sitharaman
- Department of Biomedical Engineering; Stony Brook University; Stony Brook NY USA
| |
Collapse
|